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Abstract: The isolation of T cells, followed by differentiation into Regulatory T cells (Tregs), and re-transplantation into the body
has been proposed as a therapeutic option for inflammatory bowel disease. A key requirement for making this a viable
therapeutic option is the generation of a large population of Tregs. However, cytokines in the local microenvironment can impact
the yield of Tregs during differentiation. As such, experimental design is an essential part of evaluating the importance of
different cytokine concentrations for Treg differentiation. However, currently only single, constant concentrations of the cytokines
have been investigated. This work addresses this point by performing experimental design in silico which seeks to maximize the
predicted induction of Tregs relative to Th17 cells, by selecting an optimal input function for the concentrations of TGF-β, IL-2,
IL-6, and IL-23. While this approach sounds promising, the results show that only marginal improvements in the concentration of
Tregs can be achieved for dynamic cytokine profiles as compared to optimal constant concentrations. Since constant
concentrations are easier to implement in experiments, it is recommended for this particular system to keep the concentrations
constant where IL-6 should be kept low and high concentrations of TGF-β, IL-2, and IL-23 should be used.

1 Introduction
Chronic inflammation, and specifically immune-mediated
inflammatory diseases, affects 5–7% of people in Western society
and can result in irreversible damage to tissue and organs [1–3].
One mechanism underlying some cases of chronic inflammation is
an imbalance of different T cell populations, such as, e.g. effector
T cells and regulatory T cells (Tregs), where a person's Tregs are
insufficient in number to regulate the inflammatory response [4–8].

Cell-based therapeutics has been proposed as a potential
treatment for chronic inflammation [5, 9–13]. However, treatments
that show long-term positive effects are rare, and effective
treatments do not exist for some conditions such as inflammatory
bowel disease [4, 9, 10, 14–16]. One potential treatment strategy is
to isolate a population of a patient's own naive T cells, induce the
cells ex vivo to differentiate into a high percentage of Tregs, and
subsequently re-transfer the differentiated T cells back into the
patient at the site(s) of chronic inflammation [13]. The rationale is
that the Tregs would be present at a sufficient abundance to
regulate and mitigate chronic inflammation.

An important consideration involved in this proposed treatment
modality is the question of how to maximise the number of Tregs
induced from naive T cells in ex vivo culture. Maximising Treg
induction is especially important due to the fact that naive T cells
can also differentiate into T-helper-17 (Th17) cells, which have
been shown to increase inflammation rather than mitigate it [5, 6,
8]. As a result, it is possible to generate a mixed population
containing different T-cell subtypes (e.g. Tregs, Th1, Th2, and
Th17) which reduces the yield of Tregs.

Previous studies have shown that the set of cytokines present in
the local extracellular environment of naive T cells influences
differentiation fate [4–6, 13, 17, 18]. In particular, evidence has
suggested that transforming growth factor β (TGF-β) in
combination with interleukin-6 (IL-6) induces the Th17 phenotype,
while TGF-β without IL-6 induces Tregs, with IL-2 and IL-23 also
playing a potential role [5]. In order to generate sufficient

quantities of Tregs, it is necessary to maximise production of Tregs
in vitro or ex vivo by exposing the T cells to an optimal
concentration of different cytokines. These cytokines are typically
used at a single, constant concentration throughout the in vitro
differentiation phase [13]. However, since the different T-cell
subtypes also produce a wide array of cytokines, it is likely that the
cytokine concentration in the extracellular milieu is not constant.
Thus, a large space of experimental conditions is often used to
identify optimal T-cell differentiation conditions. As this requires a
repeated evaluation of different experimental conditions, many
designs involve an in silico component [5]. Since dynamic input
profiles have been shown to significantly outperform steady-state
input profiles for some systems, e.g. certain biochemical reactions
[19], the focus of this work is on in silico model-based
experimental design to determine optimal experiments that can
take time-varying cytokine input profiles into account for the
particular system under investigation.

In order to perform this investigation, the mathematical model
by Carbo et al. [5] is used. This model captures and quantifies the
experimental observations that have led to characterisation of naive
T-cell differentiation fate based on extracellular cytokine
stimulations. This model consists of a system of ordinary
differential equations (ODEs) representing the signal transduction
dynamics of naive T cells responding to extracellular cytokine
signalling [5]. The model contains 59 ODEs corresponding to
concentrations of the molecular species involved in signal
transduction for differentiation of naive T cells [5]. Solving the
ODEs numerically for different extracellular cytokine compositions
allows for plotting the dynamic trajectories of any of the 59
signalling species. Three downstream species in the signalling
pathway have been utilised extensively as biomarkers for Tregs
and Th17 cells: (i) Forkhead box P3 (FOXP3) is a transcription
factor used as a biomarker for Tregs; (ii) IL-17, a cytokine, and (iii)
RAR-related orphan receptor γ isoform t (RORγt), a transcription
factor, are both used as biomarkers for Th17 [4, 5, 8, 20].
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Using this model, an optimisation problem is formulated that
seeks to maximise differentiation into Tregs in silico by
determining optimal time-dependent input functions for the
cytokines TGF-β, IL-2, IL-6, and IL-23. The results of the optimal
experimental design may be used for informing clinical ex vivo
differentiation experiments in which the goal is to maximise Treg
induction relative to Th17 induction for T-cell re-transplantation
and treatment of chronic inflammation, as illustrated in Fig. 1.
Furthermore, a comparison between the optimal time-dependent
and steady-state input profiles is also made as time-dependent
profiles are significantly more challenging to implement
experimentally and as such dynamic input profiles should only be
used if significantly higher Treg concentrations can be achieved
due to the dynamics. 

This paper is structured as follows: Section 2 describes the
optimal experimental design problem that is solved for maximising
Treg induction relative to Th17 induction, Section 3 presents the
results of optimal experimental design including a sensitivity
analysis on the objective function of the optimisation problem;
Sections 4 and 5 discuss implications and conclusions drawn from
the results of optimal experimental design for this problem.

2 Formulation of the optimal experimental design
problem
Optimal experimental design has been used extensively to
maximise experimental efficiency by optimising experimental
conditions [21–26]. The development and implementation of
optimal experimental design methods can lead to experiments that
provide maximal information gain with minimal resource usage
[21–26]. However, the use of optimal experimental design in
biological systems is a more recent development and is not as
wide-spread as in other fields [26]. Here, optimal experimental
design is applied to the problem of maximising Treg induction
from naive T cells and simultaneously minimising induction of
Th17 in the same ex vivo population (see Fig. 1).

2.1 Model of T-cell differentiation signalling

Carbo et al. [5] constructed a mathematical model of the signalling
pathways controlling naive T-cell differentiation. This model
contains 59 ODEs of the form in (1), where x is the vector of state
variables representing concentrations of signalling species in the
model at time t, and u is the vector of inputs (see [5],
supplementary information). The model also contains fitted
parameters and initial conditions and can be downloaded from the
BioModels database [27, 28]

dx
dt = f t, x, u (1)

The model was constructed based on experimental observations
from the literature and was shown by Carbo et al.[5] to accurately
predict qualitatively differentiated phenotype when naive T cells
were induced with various combinations of extracellular cytokines
for differentiation purposes. The differentiated T-cell phenotypes
include Tregs and Th17 cells. A representative example of the
ODEs found in the system of model equations is given below for
the rate of change of TGF-β

dxTGFβ
dt = vTGFβ

uTGFβ
2

uTGFβ
2 + xTGFβ

2 + 0.001 − kTGFβxTGFβ

−k1xTGFβxTGFβR − k2xTGFβ ⋅ TGFβR + k1xTGFβ

(2)

Here, the subscripts refer to chemical species involved in the
reactions to produce or consume TGF-β, including TGF-β itself
and its receptor, and the parameters are defined in the
supplementary information for [5]. The equations for the model
were derived from mass action kinetics and modifications of
Michaelis–Menten kinetics.

The model system of ODEs can be solved, using a numerical
ODE solver, such as those contained in software packages such as
MATLAB, to obtain predictions for time-dependent trajectories x
of the signalling molecules in the pathway if the input
concentrations, u, of extracellular cytokines is specified. The
biomarkers FOXP3, IL-17, and RORγt are used to represent Treg
and Th17 concentrations in the ex vivo population (see Fig. 1).
Fig. 2 shows plots of the concentrations of these biomarkers during
a simulated ex vivo differentiation experiment for two different
input cytokine compositions. The high FOXP3 expression and low
IL-17 and RORγt expression in Fig. 2 are indicative of the Treg
phenotype, while the low FOXP3 expression and high IL-17 and
RORγt expression in Fig. 2 are indicative of the Th17 phenotype.
Note that the biomarker concentrations are of the same order of
magnitude, although they are not explicitly normalised in the
model. The full model system of ODEs, as well as list of calibrated
model parameter values, can be found in the supplementary
information section of Carbo et al. [5]. 

2.2 Piecewise constant cytokine input functions

In the original model by Carbo et al., the cytokine input
concentrations are constants, set at values that determine the
concentration trajectories of the signalling molecules in the
pathway. In this study, time-dependent input functions are used
instead of the constant input functions for four of the cytokines.
The underlying hypothesis is that by optimising time-dependent
input functions, the ex vivo induction of Tregs from naive T cells
will be increased relative to induction of Th17 compared to the
case where only constant inputs are used. To test this hypothesis in

Fig. 1  Illustration of the optimal experimental design problem to maximise
Treg induction and simultaneously minimise Th17 induction from naive T
cells in ex vivo culture
(a) Schematic of differentiation and transplantation process, (b) Plot of biomarkers for
Treg and Th17 which represent the two cell types in the model

 

Fig. 2  Biomarker trajectories for the Treg and Th17 biomarkers when
input cytokine profile is Treg-inducing (solid) or Th17-inducing (dashed)
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silico, piecewise constant input functions were introduced into the
model for the cytokines TGF-β, IL-2, IL-6, and IL-23, replacing
the constant input functions for these cytokines. Piecewise constant
functions were chosen because they are time dependent but can be
tractably implemented in ex vivo culture experiments. The form of
piecewise constant functions is shown in (3) below, where the
function is a vector with each element corresponding to a cytokine.
An example of a piecewise constant input function with one input
or multiple inputs is shown in Figs. 3a and b, respectively.

ui t = ∑
j = 1

r
ci, jstep t − j − 1 Δt − ∑

j = 1

r
ci, jstep t − jΔt

= ci, 1step t + ∑
j = 2

r
ci, jstep t − j − 1 Δt

−ci, j − 1step t − j − 1 Δt − ci, rstep t − rΔt

= ci, 1step t + ∑
j = 2

r
(ci, j − ci, j − 1)step t − j − 1 Δt

−ci, rstep t − rΔt

(3)

In (3), ci, j is the (i, j) element of the matrix c which contains the
input concentration levels of the cytokines in each of the r time
intervals. The index i represents the cytokine TGF-β, IL-2, IL-6, or
IL-23; j represents the time interval; ‘step’ represents the Heaviside
step function; ui is the input concentration level of cytokine i at

time t; and Δt is the duration of the time intervals for each
concentration level. For the present problem, a number of values
for r were investigated; however, only the results for r = 6 are
discussed in detail here as they are representative for this
investigation. As the experimental duration is 300 h, this results in
Δt = 300 h/6 = 50 h, and c is a 4 × 6 matrix of concentration levels
for the four cytokines over the six time intervals of the ex vivo
differentiation culture (see Fig. 3).

The rationale for introducing time-dependent input functions is
that biological signalling systems are inherently dynamic and may,
therefore, respond differently to time-varying extracellular inputs.

2.3 Objective function for maximisation of Treg induction

The mathematical expression of the objective function is given as

obj c = FOXP3 final − IL − 17 final − RORγt final, (4)

where c is the matrix of optimisation variables defined in (3). Here,
each term is the final concentration of a biomarker in the ex vivo
differentiation culture. The final concentration is chosen because it
is at the final time point that the Tregs in culture are harvested for
re-transplantation into the patient. Note that the objective function
is the difference between Treg biomarkers (FOXP3) and Th17
biomarkers (IL-17 and RORγt), which represents the relative
difference between Tregs and Th17 cells differentiated in culture.
Note further that Th17 differentiation is represented by the sum of
both its biomarkers, IL-17 and RORγt. This objective function is
maximised in the optimisation problem to determine predicted
optimal experimental conditions for obtaining the maximal number
of differentiated Tregs relative to differentiated Th17 cells in the ex
vivo culture. Finally, it should be noted that other objective
functions representing relative Treg induction to Th17 induction
are possible. However, the objective function in (4) was chosen so
that obj c  is linear in the final biomarker concentrations, in
contrast to a different objective function which would be non-linear
in these concentrations, e.g. ratios of the biomarker concentration.
Using a linear objective function facilitates the derivation of the
objective function gradient, described below. As one goal of this
paper was to implement an optimisation solution using a method
for calculating the analytical gradient, the objective function was
chosen as (4), above.

Bounds were placed on the concentrations of the input
cytokines, specifying a range of allowable input concentrations.
The input concentrations were bounded between 0 and 25 ng/ml
for the optimisation problem in order to avoid selecting
concentration levels that are too high and therefore possibly
cytotoxic to the naive T cells. The above formulation results in the
optimisation problem

maximise obj c
subject to: model equations;

0 ≤ c ≤ 25 ng/mL .
(5)

It should be noted that a different number of time intervals, r, and
thereby different sampling times Δt, as well as different bounds on
the inputs, have also been investigated. However, only the most
meaningful results, in terms of biological significance and for
representation purposes, are discussed in this work.

2.4 Gradient of the objective function for maximisation of
Treg induction

The gradient of (4) is written as

g c = ∂ FOXP3 final
∂c − ∂ IL − 17 final

∂c − ∂ RORγt final
∂c . (6)

Since the final concentrations of the biomarkers are not algebraic
functions of c, and can only be computed by numerically solving
the system of model ODEs, the derivatives in the gradient (6)
cannot be computed by directly applying differentiation rules, a
similar scenario to that presented in [29]. To calculate these

Fig. 3  Generic piecewise constant input functions with one or multiple
input cytokines
(a) One input cytokine. The c matrix for this input function would be the 1 × 6 matrix
[2.5, 24.4, 10, 13.75, 7.25, 15] ng/ml, (b) Four input cytokines. The c matrix for this
vector input function would have the rows [2.5, 24.4, 10, 13.75, 7.25, 15] (cytokine 1),
[10, 15, 20, 23.625, 20, 21.875] (cytokine 2), [2.5, 1.25, 7.5, 5, 6.25,7.5] (cytokine 3),
[12.5, 12.5, 15, 20, 10, 11.25] (cytokine 4) ng/ml
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derivatives, a method involving sensitivity analysis, described
below, was implemented. This was done because the three terms in
the gradient (6) are sensitivity coefficients which can be computed
from the model.

Sensitivity analysis, and in particular, local sensitivity analysis,
is the calculation of the differential effect of model parameters on
model output quantities [26, 30]. For the present model, the
sensitivity coefficients for differential changes in signalling species
concentration with respect to input function concentration levels
can be considered. These sensitivity coefficients take the form

∂xk t
∂c , (7)

where xk is the concentration of signalling species k. To compute
the sensitivity coefficients as a function of time for every state
variable xk in the model, the sensitivity equations (8) can be solved
simultaneously with the model ODEs (1) using a fixed-step ODE
solver, such as the MATLAB function ode5, a fixed-step fifth-order
Runge–Kutta solver.

d
dt

∂x
∂c = ∂ f

∂xT
∂x
∂c + ∂ f

∂c (8)

In (8), x is the vector of state variables and f is the vector of slope
functions on the right side of the ODE model (1).

When the sensitivity equations are solved for a given input
matrix c, the sensitivity coefficients that comprise the terms of the
gradient (6) will have been evaluated for that given c, and the
gradient can, therefore, be evaluated by selecting only those
sensitivity coefficients from the larger array containing all of the
sensitivity coefficients of the state variables at every time point in
the ODE solution. This procedure was performed in MATLAB to
evaluate the gradient for every iteration of the optimisation
problem.

To evaluate the gradient, it is necessary to evaluate the
individual terms of (8), namely ∂ f /∂xT and ∂ f /∂c. The first of
these is the Jacobian of the model ODE system, which is computed
by taking the individual partial derivatives of each slope function
f k with respect to each state variable xl. The second term ∂ f /∂c is
calculated as

∂ f k
∂ci, j

= ∂ f k
∂ui t

∂ui
∂ci, j t

= ∂ f k
∂ui t

step t − j − 1 Δt − step t − jΔt
(9)

(see (10)) , where (10) is due to the consistent form of the model
equations which causes the partial derivative to be of the same
form for each i, and vi is a constant parameter in the model, specific
to each cytokine i. One can observe how (10) is obtained by taking
the derivative of (2) when i = k = TGFβ. Note that the value of
0.001 in the denominators of (10) was determined by Carbo et al.
[5] to calibrate the model with experimental data.

3 Solution of the optimal experimental design
problem
A non-linear programming problem was formulated using the
objective function (4) and gradient (6). This problem was set up in
MATLAB and the optimisation problem was solved using IPOPT,
a state-of-the-art interior point algorithm [31]. By supplying the
exact gradient to IPOPT rather than requiring the solver to
approximate the gradient with finite differences, the solution speed
was increased by an order of magnitude: whereas IPOPT found the
optimal solution in 180 s when the exact gradient was available, it
did not determine a solution before exceeding the maximum time
limit of 2000 s when the gradient was approximated. This was due
to the fact that finite difference approximations for partial
derivatives in the gradient require the model ODE system to be
solved multiple times per iteration. Furthermore, a larger number
of iterations were required for the solution of the optimisation
problem using numerical gradients because the finite difference
approximations cause the solver to move in directions based on a
less accurate gradient calculation. Lastly, a particle swarm
optimisation routine from the OPTI toolbox for MATLAB (https://
www.inverseproblem.co.nz/OPTI/) was also used for solving this
problem to verify that the found results are not just local solutions
or specific to the particular solver used. As particle swarm
optimisation found the same results returned by IPOPT only one
set of solutions is shown in this work.

The optimal solution is plotted in Fig. 4, showing the optimal
input cytokine concentration functions. The optimal TGF-β input
function is constant at the upper concentration bound, indicating
that a high concentration is optimal for TGF-β; this is also true for
IL-2. The optimal concentration for IL-6 is very low,
approximately zero, as expected from previous investigations [5,
6]. IL-23, however, remains at high values for the first five time
intervals and is then decreased to approximately zero for the final
time interval. 

A plot of the biomarkers in response to the optimal input
function is shown in Fig. 5, superimposed on a plot of the
biomarkers in response to a constant (non-optimal) input profile. It
can be seen from this plot that the optimal biomarker response only
provides a marginal improvement from a non-optimal biomarker
response obtained from constant cytokine profiles. This suggests
that constant cytokine profiles may suffice for an ex vivo
differentiation experiment, as long as the cytokine inputs are at
constant levels that are conducive to Treg induction, i.e. high TGF-
β and low IL-6. 

To test the importance of each of the four cytokines, a
sensitivity analysis was carried out to measure the effect of each
cytokine concentration level on the objective function. Since the
gradient of the optimisation problem contains the sensitivity
coefficients, this sensitivity analysis was performed by evaluating
the gradient of the objective function for a value of c within the
range of allowable concentration levels. The value of c was chosen
as 12.5 ng/ml for each element of c, half of the upper bound
concentration. Results of the sensitivity analysis are shown in
Fig. 6. The heatmap shows that IL-6 is the only cytokine that has a
substantial effect on the objective function among the four
cytokines considered. This finding is consistent with the previously
established experimental and computational evidence that IL-6 is

∂ f k
∂ui t

=
2viui

ui
2 + xk

2 + 0.001 ∗ 1 − ui
2

ui
2 + xk

2 + 0.001 , k = i ∈ TGFβ, IL2, IL6, IL23

0 otherwise
, (10)

Fig. 4  Optimal cytokine input functions
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the cytokine that has the strongest influence on the outcome, i.e.
Treg or Th17, in the presence of TGF-β. 

4 Discussion
The optimal experimental design using dynamic inputs led to
marginally improved concentrations of Treg biomarkers compared
to constant inputs for the four cytokines TGF-β, IL-2, IL-6, and
IL-23. These cytokines were selected due to their known role in
naive T-cell differentiation into Tregs and Th17 cells. It was
hypothesised that introducing time-dependent input functions for
these cytokines would improve Treg induction relative to Th17
induction, compared to constant input functions. The small
improvement in the Treg maximisation objective function appears
to be achieved by maintaining high TGF-β and IL-2 concentration,
low IL-6 concentration, and by changing the IL-23 concentration
from high to low before the final time interval. The comparison
between optimal biomarker trajectories and non-optimal biomarker
trajectories showing that the objective was only improved
marginally by the optimal input function profile suggests that
nearly optimal Treg induction relative to Th17 induction can be
achieved using constant cytokine input profiles. As constant input
profiles are easier to use experimentally, these results indicate that
the benefit from using dynamic input profiles, at least for this
particular system, might not be worth the additional experimental
efforts compared to constant inputs. However, it is important to
note that the results are dependent upon the model used and that an
experimental investigation to validate these in silico findings
should be done.

Previous observations [5, 6] indicate that IL-6 has the strongest
influence on differentiation into Treg and Th17 in the presence of
TGF-β. The sensitivity analysis results (Fig. 6) support this

observation, showing that the objective function is substantially
more sensitive to IL-6 input concentration changes than to changes
in the other cytokines considered. This suggests that it is important
to keep extracellular IL-6 concentration low throughout an ex vivo
Treg induction experiment, especially during the later time points,
at which the sensitivity coefficients have a larger magnitude
(Fig. 6).

5 Conclusion
This paper investigated the maximisation of regulatory T-cell
induction using experimental design applied to a model from the
literature. Optimal piecewise constant cytokine input functions led
to increased Treg induction in silico compared to constant input
concentrations. However, constant inputs may suffice
experimentally, as the predicted improvement in Treg induction
from using piecewise constant inputs was only marginal compared
to constant inputs.

IL-6 concentration was found to be the most important factor in
producing a large fraction of Tregs, and the results are consistent
with existing literature, suggesting that the concentration of this
cytokine should be kept as low as possible. The in silico results
suggest that TGF-β and IL-2 should be kept at high concentrations
while varying IL-23 from high to low in the last time interval of the
experiment may maximise Treg induction relative to Th17
induction. Due to the in silico nature of this work, these results will
need to be validated experimentally.
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