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Objective. Tumor-associated macrophages (TAMs) within the tumor immune microenvironment (TiME) of solid tumors play an
important role in treatment resistance and disease recurrence. .e purpose of this study was to investigate if nanoradiomics
(radiomic analysis of nanoparticle contrast-enhanced images) can differentiate tumors based on TAM burden. Materials and
Methods. In vivo studies were performed in transgenic mouse models of neuroblastoma with low (N� 11) and high (N� 10) tumor-
associatedmacrophage (TAM) burden. Animals underwent delayed nanoparticle contrast-enhanced CT (n-CECT) imaging at 4 days
after intravenous administration of liposomal-iodine agent (1.1 g/kg). CT imaging-derived conventional tumor metrics (tumor
volume and CT attenuation) were computed for segmented tumor CT datasets. Nanoradiomic analysis was performed using a
PyRadiomics workflow implemented in the quantitative image feature pipeline (QIFP) server containing 900 radiomic features (RFs).
RF selection was performed under supervised machine learning using a nonparametric neighborhood component method. A 5-fold
validation was performed using a set of linear and nonlinear classifiers for group separation. Statistical analysis was performed using
the Kruskal–Wallis test. Results. N-CECT imaging demonstrated heterogeneous patterns of signal enhancement in low and high
TAM tumors. CT imaging-derived conventional tumor metrics showed no significant differences (p> 0.05) in tumor volume
between low and high TAM tumors. Tumor CT attenuation was not significantly different (p> 0.05) between low and high TAM
tumors. Machine learning-augmented nanoradiomic analysis revealed two RFs that differentiated (p< 0.002) low TAM and high
TAM tumors. .e RFs were used to build a linear classifier that demonstrated very high accuracy and further confirmed by 5-fold
cross-validation. Conclusions. Imaging-derived conventional tumor metrics were unable to differentiate tumors with varying TAM
burden; however, nanoradiomic analysis revealed texture differences and enabled differentiation of low and high TAM tumors.

1. Introduction

.e immunosuppressive tumormicroenvironment (TME) is
a major contributor of treatment resistance and disease
recurrence in solid tumor malignancies [1, 2]. Among
various immune cell types, tumor-associated macrophages
(TAMs) represent a key cellular player and therapeutic target

[3–6]. Growing evidence suggests that TAMs carry out
critical roles in essentially every stage of disease progression
including tumor growth, angiogenesis, metastasis, and
treatment resistance to conventional and emerging targeted
therapies [7, 8]. A high burden of TAMs has been correlated
with metastatic phenotype, treatment resistance, and poor
prognosis in adult and pediatric solid tumors [9–13].
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Techniques for monitoring TAM burden in solid tumors
could aid in disease prognosis, a priori identification of
treatment resistance, and monitoring of tumor response to
TAM-directed immunotherapies.

Biopsy-based approaches are challenging for accurate
assessment and monitoring of TAM burden due to spatial
tumor heterogeneity and difficulties in repeated invasive
tumor sampling procedures. Conventional imagingmethods
and standard imaging quantitative metrics based on ultra-
sound, contrast-enhanced CT, and MRI are insensitive to
TAM burden since macrophages represent a relatively small
fraction (<10%) of cells within the tumor mass and exert an
indirect effect on tumor growth. Molecular imaging using
TAM-targeted contrast agents is undergoing investigation
for use with MRI and PET imaging [14–17].

Due to the central role of TAMs in angiogenesis and
development of tumor vascular architecture, advanced algo-
rithms that quantitatively analyze images to search for subtle
changes in tumor morphology and texture could help in
differentiating tumors with varying TAM levels. Radiomics is a
growing field in diagnostic radiology, wherein in vivo images
are mined to objectively define phenotypic characteristics of
tumors by extracting quantitative image features such as in-
tensity, shape, size, morphology, and texture [18, 19]. In this
study, we performed radiomic analysis on contrast-enhanced
CT (CECT) images acquired using a nanoparticle contrast
agent that enables interrogation of tumor vascular architecture
[20–22]. We investigated if nanoradiomics (radiomic analysis
of nanoparticle contrast-enhanced images) can differentiate
tumors based on TAM burden.

2. Materials and Methods

2.1. Animals Models with Varying TAM Burden. In vivo
studies were performed in transgenic mouse models of
neuroblastoma. Transgenic mice that develop spontaneous
bilateral adrenal neuroblastoma tumors driven by tetracycline
inducible simian virus 40 T-antigen (SV40-Tag or NB-Tag)
were a gift fromDr. H. Iwakura (KyotoUniversity, Japan) and
used as a model of a relatively low TAM burden [23, 24]. We
crossed NB-Tag with CD1d−/− mice (a gift from Dr. L. Van
Kaer, Vanderbilt University, Nashville, TN) which are defi-
cient in natural killer T (NKT) cells [25] to generate NB-Tag/
CD1d−/− mice. Since NKT cells control TAMs in neuro-
blastoma [26, 27], NB-Tag/CD1d−/− mice were used as a
model of high TAM burden. All mice were on a C57BL/6
background. A total of 11mice were included in the low TAM
group and 10mice were included in the high TAMgroup. Out
of these, 6 mice/group were used for the determination of
TAM burden by flow cytometry. .e remaining mice (N� 5
in the low TAM group and N� 4 in the high TAM group)
were used for the CT imaging study. Since transgenic mice
develop bilateral tumors, n� 10 low TAM tumors and n� 8
high TAM tumors were included in the radiomic analysis.

2.2. Nanoparticle Contrast Agent. A PEGylated liposomal-
iodine nanoparticle contrast agent was used for CECT
imaging [20, 21]. Phospholipids consisting of 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine, cholesterol, and
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[methoxy (polyethylene glycol)-2000] were dissolved in
ethanol at a molar ratio of 56 : 40 : 4. An aqueous solution of
iodixanol (550mg I/mL) was added to ethanolic lipid so-
lution and hydrated for 45 minutes followed by sequential
extrusion at −65°C for particle sizing. .e resultant solution
was diafiltered against 150mM saline/10mM histidine so-
lution to remove unencapsulated iodixanol. .e average
liposome size in the final formulation, determined by dy-
namic light scattering (DLS), was 128± 16 nm. .e iodine
concentration, determined by UV spectrophotometry
(λ245 nm), was 105± 6mg I/mL.

2.3. Nanoparticle CECT Imaging. Delayed nanoparticle
CECT (n-CECT) imaging was performed four days after
intravenous administration of nanoparticle contrast agent
(1.1 g I/kg) [21]. Imaging was performed on a small animal
micro-CT system (Inveon, Siemens Inc., Knoxville, TN,
USA). Mice were anesthetized using −3% isoflurane, posi-
tioned on a CT scanner bed and maintained at −1.5% iso-
flurane delivered via nose cone. .e following scan
parameters were used for the acquisition of CT images:
70 kVp, 0.5mA, 850ms X-ray exposure, 540 projections,
−20min scan time. Images were reconstructed at an iso-
tropic resolution of 35 μm and calibrated for Hounsfield unit
(HU).

2.4. Determination of TAM Burden. Tumors were harvested
and processed to obtain single cell suspensions for deter-
mination of TAM burden by flow cytometry. Briefly, minced
tumor tissues were digested with collagenase IV, dispase II,
and DNAse I (Sigma). Single cell suspension was then
treated with ACK lysing buffer (Lonza) to remove red blood
cells, and immune cells were isolated using a Percoll (GE
Healthcare) gradient [28]. Cells were stained with CD45 PE,
CD11b PerCP, F4/80 Pacific Blue, Ly6C FITC, Ly6G APC-
Cy7 (BD Biosciences), and the Aqua Live/Dead viability dye
(Molecular Probes). Cells were then analyzed on the LSRII
four-laser flow cytometer (BD Biosciences) using BD
FACSDiva software (version 6.0) and FlowJo (version 7.2.5;
BD Biosciences). TAMs were defined as percentage of CD45
cells that were CD11b+, Ly6G−, Ly6C−, and F4/80+ [29].

2.5. Immunofluorescence Analysis. Frozen tumor tissue was
sectioned (5 μm) and transferred to slides. Sections were
washed with phosphate-buffered saline (PBS) for 5 minutes
to remove optimal cutting temperature (OCT) medium, and
the tissue was fixed with 4% formalin for 15 minutes. .e
sections were again washed three times with PBS for 5
minutes each. Sections were permeabilized using 0.01%
Triton in PBS for 15 minutes. At the end of incubation,
sections were washed 3 times with PBS. Nonspecific sites on
tissue sections were blocked using 5% BSA in PBS. Subse-
quently, sections were incubated with anti-CD11b-AF488
(1 : 50 dilution) and anti-CD31 (1 :100 dilution) overnight at
4C. .e sections were washed three times with PBST
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(PBS + 0.01% Tween 20) for 5 minutes each. Sections were
then incubated with anti-AF647 (appropriate secondary for
CD31) for 90 minutes at room temperature. Sections were
again washed three times with PBST for 5 minutes each and
incubated with DAPI (1 μg/ml in PBS) for 5 minutes. .e
sections were mounted using antifade mounting media and
imaged on an Olympus Fluoview confocal microscope
(FV10000) for CD11b (AF-488, Ex/Em: 488/525 nm), CD31
(AF-647, Ex/Em: 594/650 nm), and DAPI nuclei (Ex/Em:
405/470 nm) staining.

Five fields of interest (60x magnification) were imaged
from each section for quantitative analysis. 5-6 tumor
sections were analyzed from each tumor specimen.
CD11b+ spots were manually counted around CD31+ areas.
Analysis of perivascular CD11b+ TAMs was performed by
counting CD11b+ cells within 3 cell layers (identified by
DAPI stained nucleus) of CD31+ cells. Remaining CD11b+

cells were considered as nonperivascular macrophages
[30, 31].

2.6. Radiomics and Image Analysis. Radiomic analysis was
combined with machine learning for determining radiomic
signatures that classify tumors based on TAM burden
(Figure 1). Regions of interest (ROIs) were manually drawn
in delayed n-CECT images to delineate tumor margins for
3D segmentation of tumor volume. CT imaging-derived
conventional tumor metrics were computed for segmented
tumors. .ese included tumor volume and tumor mean CT
attenuation. Radiomic analysis was performed using a
PyRadiomics workflow implemented in the quantitative
image feature pipeline (QIFP) server containing a total of
900 radiomic features (RFs) to analyze shape, size, intensity,
morphology, and texture [32]. .ese radiomic features are
divided into three categories: (1) original radiomics features
(n� 86) which contain first-order statistics, shape and size
descriptors, and texture classes which include gray-level co-
occurrence matrix (GLCM), gray level run length matrix
(GLRLM), gray level size zone matrix (GLSZM), gray level
dependence matrix (GLDM), and neighboring gray-tone
difference matrix (NGTDM); (2) logarithmic enhancement
of original radiomics features with three degrees of Sigma
values (n� 222); and (3) wavelet representations of original
radiomic features (n� 592). A mathematical basis and de-
tailed description for each radiomic feature has been de-
scribed previously [33].

RF selection was performed using the nonparametric
neighborhood component method [34]. .e method uses a
gradient ascent technique (a diagonal adaptation of
neighborhood component analysis) to maximize the ex-
pected leave-one-out classification accuracy with a regula-
rization threshold set to 0.2 [35]. RFs reflecting tumor size
was discarded (n� 48) due to potential concerns of size bias.
As a result, RF selection was performed on a reduced set
(n� 852 RFs) using the nonparametric neighborhood
component method followed by elimination of highly
correlated features with absolute value of Pearson correla-
tion coefficient> 0.7. .e resulting vector of radiomic fea-
tures was fed into a supervised machine learning module (in

MATLAB) containing various classifiers for identification of
radiomic signatures.

2.7. Statistical Analysis. Statistical analysis of flow cytom-
etry-derived TAM burden was performed using the Wil-
coxon rank sum test. CT imaging-derived conventional
tumor metrics were analyzed using the Kruskal–Wallis test.
A 5-fold cross-validation was performed using a set of linear
and nonlinear classifiers to confirm the accuracy for group
separation.

3. Results

Flow cytometry was performed to measure the overall
burden on TAMs in tumors of NB-Tag/CD1d−/− (referred as
high TAM tumors) and NB-Tag mice (referred as low TAM
tumors). Flow cytometry analysis demonstrated a signifi-
cantly higher (p< 0.05) burden of CD11b+/F4/80+/Ly6C−/
Ly6G− TAMs in high TAM tumors compared to low TAM
tumors (Figure 2). .e spatial distribution of TAMs relative
to tumor vasculature was assessed by fluorescence micros-
copy. Immunofluorescence analysis revealed a predominant
perivascular distribution of TAMs in both tumor models
(Figure 3).

Delayed contrast-enhanced CT imaging was performed
four days after administration of nanoparticle contrast agent.
A four-day time point was chosen to give adequate time for the
nanoparticle contrast agent to extravasate in tumor and ensure
its clearance from systemic circulation, thereby eliminating
potential confounding signal from residual blood-pool signal
[21]. Nanoparticle contrast-enhanced CT (n-CECT) imaging
demonstrated heterogeneous patterns of signal enhancement
in bilateral tumors in low and high TAM tumor models
(Figure 4). CT-derived conventional tumormetrics showed no
significant differences (p> 0.05) in tumor volume between
low TAM (0.51± 0.11 cm3) and high TAM (0.43± 0.16 cm3)
tumors (Figure 5(a)). Tumor CT attenuation did not differ
significantly (p> 0.05) between low TAM (54± 9 HU) and
high TAM (47± 7 HU) tumors (Figure 5(b)). Overall, these
findings suggest that CT-derived conventional tumors metrics
are unable to differentiate tumors based on their TAMburden.

Advanced quantitative analysis was performed on three-
dimensional (3D) images for differentiating tumors based on
their TAM burden. Tumors segmented in n-CECT images
were processed using the open-access QIFP radiomics
software for computing radiomic features (RFs). A total of
852 RFs (48 out of 900 RFs were excluded due to potential
size bias) representing tumor’s phenotypic characteristics
were computed for each segmented tumor CT dataset. A
diagonal adaptation of neighborhood component analysis
was utilized to identify radiomic features that differentiated
tumors based on TAM burden. A total of 17 RFs were
identified (Figure 6), out of which 15 highly correlated
wavelet-based RFs (absolute value of Pearson correlation
coefficient> 0.7) were eliminated. .e remaining two RFs
were fed into a machine learning module for training linear
and nonlinear classifiers. A linear classifier-based trained
model yielded a perfect validation accuracy of 1.0 for the
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classification and differentiation of low TAM and high TAM
tumors (Figure 6). A 5-fold validation of RFs was performed
using a machine learning approach to confirm the high
accuracy of the linear classifier (RF signature) that differ-
entiated tumors based on TAM burden. .e identified RFs
belonged to two categories: original gray level size zone
matrix (GLSZM) (one RF) and second category wavelet (one
RF) belonging to the wavelet LHL (low-high-low) subcat-
egory (Figure 7).

4. Discussion

Tumor-associated macrophages (TAMs), a key component
of the TME, orchestrate several functions in mediating

immune suppression and disease progression [4, 8]. Non-
invasive methods that differentiate TAM burden in tumors
could enable patient stratification and interventions to fa-
cilitate improved treatment outcomes. In this work, we
investigated a radiomics approach for differentiating tumors
based on TAM burden. .is study demonstrated that while
CT imaging-derived conventional tumor metrics cannot
differentiate tumors with varying TAM burden, radiomic
analysis of nanoparticle contrast-enhanced images can
differentiate and classify tumors based on their TAM
burden.

Current research on noninvasive approaches for the
determination of TAM burden has primarily focused on
using molecular imaging agents. Both small molecule and
nanoparticle platform-based imaging agents have been in-
vestigated using MRI and nuclear techniques (PET/SPECT)
as the read-out [14, 15, 17, 36]. Such approaches have the
advantage of identifying specific locations in tumor with
high TAM levels. However, these approaches pose a chal-
lenge in TAM-based tumor classification when TAM levels
do not vary substantially or when the mean tumor signal is
confounded by nonspecific signal (signal from passive
intratumoral localization of TAM-targeted imaging probes).
In our work, we investigated a radiomics approach to data
mine images and detect subtle changes in tumor architecture
and texture due to varying TAM levels.

Recent studies have revealed that TAMs predominantly
exhibit a perivascular distribution in tumor, and this pattern
of distribution is likely responsible for treatment resistance
and metastatic progression [5]. Our work also demonstrated
a predominant perivascular distribution of TAMs in the
studied mouse models of spontaneous neuroblastoma tu-
mors. Due to their perivascular distribution, TAMs play a
central role in shaping tumor vasculature [5, 30, 31].
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.erefore, we investigated if advanced quantitative imaging
methods that interrogate whole tumor vasculature could aid
in classifying tumors based on their TAM burden. Studies
were performed in transgenic mice with spontaneous tu-
mors. .e use of spontaneous tumor models ensures natural
tumor development in immune competent mice without
external intervention to artificially manipulate the tumor
architecture and tumor microenvironment. .is is partic-
ularly important in the setting of radiomic analysis which
seeks to discern texture-based architectural difference in
tumor phenotype.

A nanoparticle contrast agent was utilized in combi-
nation with high-resolution CT imaging to probe tumor
vasculature in models of varying TAM burden. Previous
studies have shown utility of nanoparticle CT contrast
agents in probing tumor vasculature for differentiation of
tumor phenotypes and monitoring tumor response to
vascular-targeted therapies [37–39]. Unlike conventional

contrast agents which have rapid wash-in/wash-out ki-
netics in tumors, nanoparticle contrast agents extravasate
and reside in tumors for prolonged period due to enhanced
permeability and retention (EPR) phenomenon associated
with abnormal tumor vasculature [20, 40]. As a result, the
pattern of nanoparticle contrast distribution in tumors is
strictly governed by tumor architecture and therefore al-
lows interrogation of TAM influence on the pattern of
tumor vascular architecture and changes in vascular per-
meability..e prolonged retention of nanoparticle contrast
agents in tumors provides a longer window to capture
contrast-enhanced images without concerns of signal
variability/decay which is often observed with rapid in-
jection of conventional agents due to their short half-life.
.ese properties would benefit radiomic analysis of
nanoparticle contrast-enhanced images since it eliminates
artificial variations in signal enhancement patterns asso-
ciated with rapid tumor kinetics of the contrast agent, a
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Figure 3: Perivascular distribution of tumor-associatedmacrophages (TAMs). (a) Representative immunofluorescence images demonstrate
a predominant perivascular distribution of TAMs in low and high TAMburden tumors. TAMswere stained with CD11b-AF647 (green) and
blood vessels were stained with CD31-AF477 (red). (b) Distribution of CD11b +TAMs in perivascular and nonperivascular regions.
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phenomenon observed with conventional low molecular
weight imaging agents [41, 42].

Analysis of CT imaging-derived conventional tumor CT
metrics did not reveal differences in tumor size or mean
tumor CT attenuation between low and high TAM burden
tumors. .ese findings are consistent with a previous study
which demonstrated that subtle changes in tumor immune
burden do not cause overall changes detectable with con-
ventional imaging [22].

Radiomic analysis was performed on high-resolution
CECT images. CT has been at the forefront for radiomic
analysis in clinical domain due to its quantitative nature (CT
attenuation is directly proportional to contrast agent con-
centration), high spatial resolution, and isotropic voxels,
thereby facilitating reproducibility, ease of standardization
for multicenter and widespread use [43, 44]. Radiomic
analysis of delayed nanoparticle CECT images, however,
revealed differences in tumor texture between low TAM and
high TAM tumors. A 5-fold validation was implemented to
improve robustness of RFs in classifying tumors. .e dis-
covered radiomic signatures consisted of two RFs,

comparable to results of previous studies [45, 46]. .e
emergence of these RFs suggests that wavelet decomposition
of nanoparticle CECT images provides multifrequency
representations that uncover information about tumor
heterogeneity and TAM burden. While it is difficult to
pinpoint the precise molecular and cellular perturbations
that result in the identification of RFs, it is acknowledged
that understanding the biological basis of RFs will be im-
portant to advance the field towards clinical translation
[47, 48]. .e robustness and utility of nanoradiomics was
shown recently in another study, wherein it allowed for
monitoring the efficacy of TME-directed cellular immu-
notherapy by differentiating tumors with varying myeloid-
derived suppressor cells (MDSCs) levels [22]. Similar to this
study, the previous study also revealed texture-based
nanoradiomic features in detecting MDSC-induced tumor
vascular architecture changes [22].

We acknowledge that our study has limitations. .e
nanoradiomics approach needs to be validated in additional
tumor models of varying TAM burden. .e generation of
spontaneous tumors with varying TAM levels in immune

Low TAM High TAM

5mm 5mm

Figure 4: Nanoparticle contrast-enhanced CT. Representative thick slab coronal n-CECT images of mouse lower abdomen demonstrating
heterogeneous pattern of signal enhancement in spontaneous bilateral tumors (blue contours) in low TAM and high TAM tumors.
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competent mice is not trivial. Although TAM levels can
theoretically be varied using mouse models of implantable
tumors wherein tumor cells are coimplanted with TAMs,
such methods present challenges with precise control of
TAM burden. While the tumor models utilized in this study
clearly showed differences in TAM levels, it is possible that
other components of TME may also be naturally affected
given the highly complex interplay between TAMs, other
myeloid and immune cells, and tumor cells within the TME.
Radiomic analysis was performed on a small sample size
(n� 8–10 tumors). It is possible that with larger sample size,
the accuracy could be lower. We performed nanoradiomics
on CECT images due to the higher spatial resolution

(35 μm), isotropic voxel, and quantitative nature of CT.
However, further studies are warranted to understand the
effect of CT scan parameters on robustness of radiomic
features. We did not compare nanoradiomic features against
features generated from radiomic analysis of noncontrast CT
images since such analysis is unlikely to provide robust
radiomic features due to lack of intratumoral signal varia-
tions in noncontrast CT images. We could not compare
results of nanoradiomics against conventional radiomic
analysis (analysis of CECT images acquired using a con-
ventional contrast agent) due to the inherent limitations
(long scan times) of small animal CT scanners which makes
conventional CECT impractical. However, it is likely that
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radiomic analysis can be performed on contrast-enhanced
MR images acquired using nanoparticle contrast agents,
such as ultrasmall superparamagnetic iron oxide (USPIO)
nanoparticles. Finally, in addition to intratumoral region,
radiomic analysis of tumor periphery or peritumoral region
could potentially aid in a comprehensive understanding of
the tumor microenvironment.

5. Conclusion

.is study shows that tumors with different TAM burden
manifest subtle changes in tumor architecture that are not
detected with imaging-derived conventional tumor metrics
but are revealed on radiomic analysis of nanoparticle con-
trast-enhanced images.
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