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Abstract: Given the problems in intelligent gearbox diagnosis methods, it is difficult to 

obtain the desired information and a large enough sample size to study; therefore, we 

propose the application of various methods for gearbox fault diagnosis, including wavelet 

lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex 

field environment, it is less likely for machines to have the same fault; moreover, the fault 

features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, 

gearbox vibration signals were processed with wavelet packet decomposition, and the 

signal energy coefficients of each frequency band were extracted and used as input feature 

vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using 

wavelet lifting could successfully filter out the noisy signals while maintaining the impulse 

characteristics of the fault; thus effectively extracting the fault frequency of the machine. 

Lastly, the knowledge base was built based on the field rules summarized by experts to 

identify the detailed fault type. Results have shown that SVM is a powerful tool to 

accomplish gearbox fault pattern recognition when the sample size is small, whereas the 

wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can 
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be used to identify the detailed fault type. Therefore, a method that combines SVM, 

wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis. 

Keywords: gearbox; support vector machines (SVM); wavelet lifting; rule-based 

reasoning (RBR); intelligent diagnosis 

 

1. Introduction  

 

With the continuous development of modern industrial large-scale manufacturing and progress in 

the sciences and technology, machinery, as the major production tool, tends to be large, complex, 

speedy, continuous and automatic to maximally improve production efficiency and product quality. 

Machine production efficiency is increasing, and their mechanical structures are becoming more 

complicated. Once a machine breaks down, the whole production process must stop, which can lead to 

enormous economic losses and serious personnel injuries. Therefore, reliable and safe equipment 

operation is required. It has been proved that constantly monitoring equipment conditions and 

effectively implementing fault diagnosis techniques are the major preventive measures that guarantee 

safe equipment operation by detecting faults at an early stage to avoid major and fatal accidents. 

An intelligent machine fault diagnosis system has been developed rapidly in the past decades by 

successfully applying new theories. Meanwhile, the large scale and complexity of modern machines, 

together with the urgent needs of real-time and automatic machine fault diagnosis, have driven the 

transformation of fault diagnosis technology from artificial diagnosis to intelligent diagnosis. 

Among all kinds of intelligent diagnosis methods, pattern recognition based on an Artificial Neural 

Network (ANN) has been widely used because of its power in self- organizing, unsupervised-learning, 

and nonlinear pattern classification [1]. However, in practice, it is difficult to obtain the large quantity 

of typical fault samples that is required by an ANN. Because machinery malfunctions, especially  

large-scale machinery and equipment malfunctions, can lead to huge economic losses, few fault 

samples are available. Thus, these fault diagnosis methods, although excellent in theory, do not 

perform well in practice [2]. The newly developed support vector machine (SVM) opens a new path to 

resolve problems in fault diagnosis. The SVM was originally proposed by Vapnik in 1979. It is a new 

tool that supports machine learning with an optimal approach and has shown unique advantages and a 

promising future in resolving small sample size issues in pattern recognition. SVMs specifically target 

the issue of limited samples and aim to obtain the optimal solution with the available information, 

rather than the optimal value with a sample size close to infinity; its algorithm is converted to a 

quadratic optimization problem and, theoretically, produces a globally optimal solution, which solves 

the inevitable local extrema problem in neural network methods. The algorithm transforms the 

problem to a high-dimensional eigenspace through a kernel-based nonlinear transformation, and a 

linear discriminant function is subsequently constructed in high-dimensional space to achieve the 

nonlinear discriminant function in the original space. Thus, the dimension problem is solved cleverly 

and the complexity of the algorithm is independent of the sample dimension [3]. Although the support 

vector data are significantly lower than the number of training samples, there are still some problems. 

http://www.iciba.com/diagnosis/
http://www.iciba.com/artificial/
http://www.iciba.com/function/
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For example, the support vector data grow linearly with the number of training samples, which may 

lead to excessive fitting and is time-consuming in calculation; probability prediction can not be 

obtained with a SVM; users of SVM must give an error parameter, which significantly influences the 

results. Unfortunately, the value of the given parameter is highly subjective, and all its possible values 

have to be guessed in order to find the best result. Moreover, the kernel function of SVM must fulfill 

Mercer’s condition [4]. 

It is well known that the bottleneck of fault diagnosis is a lack of fault samples, which provides 

SVM a bright application future in machine fault diagnosis. Jack has used SVM to detect the rolling 

bearing condition [5]; he also optimized the SVM parameter with a genetic algorithm and achieved a 

good generalization [6]. Thukaram et al. compared the differences between neural networks and SVMs 

in recognizing faults, and demonstrated the advantages of SVM in situations with small sample size. 

Nonetheless, most studies are still limited in laboratory tests; there are not many applications of SVM 

in intelligent fault diagnosis systems in practice. More research and field tests are required for 

application of SVM in practice. We investigate further in this field. 

The wavelet transform is a breakthrough in signal processing technology in the past two  

decades [7]. Currently, the wavelet lifting analysis algorithm has been successfully applied in many 

fields, even though it was only recently proposed. Calderbank, Daubechies and Sweldens et al. have 

applied wavelet lifting analysis to the image compressing field and have achieved better compression 

compared to first generation wavelet analysis [8,9]. Howlet and Nguyen have applied the wavelet 

lifting transform to audio signal analysis to reduce the signal Shannon entropy by  

approximately 6% [10]. MIT investigators Sudarshan et al. combined the wavelet lifting transform 

with finite element analysis and proposed a novel multiresolution finite element method. In fault 

diagnosis, application of the wavelet lifting transform has just begun. Based on Claypoole’s  

self-adaptive wavelet transformation, Samuel and Pines at the University of Maryland developed a 

new method using the wavelet lifting combined with matching pursuit gear fault features, which has 

led to satisfactory results in helicopter transmission fault diagnostics [11]. Zhengjia He and Chendong 

Duan et al. in Xi’an Jiaotong University have also done considerable research in this field. They have 

deduced several construction methods of wavelet lifting and obtained excellent analysis results in 

signal processing, time-frequency analysis and feature extraction when combining wavelet lifting with 

other methods [8,12]. 

Rule-based reasoning (RBR) is a traditional intelligent diagnosis method. Experience and 

knowledge will be represented in the form of rules which will be saved in knowledge base, and the 

reasoning mechanisms will be used to get the diagnosis conclusions with the rules. Considering the 

engine wear process, Peilin Zhang, Bing Li and Shubao Liang et al. have established a fuzzy rule 

based on typical wear faults for certain engines. They have introduced a symmetric fuzzy  

cross-entropy method for fault reasoning and established a model of engine fault diagnosis based on a 

combined method of symmetric fuzzy cross-entropy and rule-based reasoning [13]. In order to perform 

a flexible, rapid and precise case adaptation in a case-based reasoning design system, Xin Song, Wei 

Guo and Zhiyong Wang have proposed a case adaptation mechanism that is based on regression 

analysis and rule-based reasoning [14].  

This study presents a method that combines wavelet lifting, an SVM and rule-based reasoning to 

diagnose gearbox faults. Gearbox vibration signals are initially processed by wavelet packet 
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decomposition. Then, the energy coefficients of each frequency band are calculated and used as input 

vectors to the SVM to recognize normal and faulty gearbox patterns. Precise analysis from the wavelet 

lifting scheme was then utilized to obtain the machine fault feature frequency. Finally, based on the 

fault feature frequency, the existing diagnostic knowledge and rules were used for logical reasoning to 

establish a knowledge base to identify fault types. The diagnosis scheme based on an SVM, wavelet 

lifting and rule-based reasoning methods is shown in Figure 1. 

Figure 1. The principle of intelligent fault diagnosis based on SVM, wavelet lifting  

and RBR. 

 

 

2. Application of SVM in Machine Fault Diagnosis 

 

2.1. Principle of SVM 

 

A support vector machine is based on minimizing structural risks. Its algorithm was initially 

designed for two-class classification. In the field of machine faults, an SVM can simply determine 

whether there is a fault.  

The SVM method is developed by determining the optimal separating hyperplane in for linear 

separability. The optimal separating hyperplane is not only able to classify all training samples, but 

also maximizes the distance between the separating hyperplane and points in training samples that are 

closest to the separating plane. 

The fault training sample set is ( , ), 1,..., , , { 1, 1}d

i ix y i n x R y      , where n is the number of 

training samples, and d is the dimension of fault feature vectors. Assuming the following equation  

is satisfied:  

[( ) ] 1, 1,...,i iy wx b i n     (1)  

Yes 
Determination of 

normality via SVM 

 

Diagnostic Data 

Machine  

normal 

Extraction of feature vectors 

Conclusion 

Wavelet lifting  
 案例库  

Rule-based reasoning 

 

No 
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the minimum value of φ(w) is: 

21 1
( ) || || ( )

2 2
w w ww     (2)  

The solution of this optimal problem is the saddle point of the Lagrange function, and the optimal 

discriminant function is obtained as:  

* * * *

1

( ) sgn[( ) ] sgn [( ) ]i

n

i i

i

f x w x b y x x b


      (3)  

Nonlinear problems can be converted to high-dimensional linear problems with a nonlinear 

transformation. In high-dimensional space, only the inner-product computation is needed, which can 

be obtained by using functions in the original low dimensions. According to the relative principles of 

functional analysis, if one kernel function K(xi,x) fulfills Mercer’s conditions, it corresponds to the 

inner product of one dimension. Such functions are called kernel functions, and the optimal 

discriminant function in this situation is changed to:  

* *

1

( ) sgn( ( , ) )i

n

i i

i

f x y K x x b


   (4)  

The kernel functions commonly used are the RBF kernel, MLP kernel and Multinomial kernel. 

However, the RBF described as }
||

exp{),(
2

2



xx
xxK i

i


  is used most widely. It will be described 

in detail in reference [16]. Because the RBF kernel performs better in recognition than the MLP kernel 

or Multinomial kernel, and the SVM algorithm has higher recognition accuracy and is more suitable 

than a BP neural network to deal with a small sample data set [15,16], this study employs the RBF 

kernel in the LS-SVM toolbox to diagnose the fault. 

 

2.2. Feature vector analysis of wavelet packets energy 

 

Using multiresolution analysis and the wavelet packet technique, signals can be decomposed into 

different frequency bands. Analyzing signals in these frequency bands is called frequency bandwidth 

analysis. Usually, based on the frequency range where signals of interest are located, users can 

decompose signals to a certain scale and obtain information from the corresponding frequency bands. 

Additionally, signals in different frequency bands can be further subject to statistical analyses to obtain 

feature vectors that represent signal characteristics. Analyzing the signal energy in different frequency 

bands is called frequency band energy analysis. It is characterized by wide-frequency-range responses 

when processing nonstationary, transient signals with higher frequency resolution at low frequency 

and higher time resolution at high frequency. Compared to the FFT, it contains a great deal of  

non-stationary and nonlinear diagnostic information. 
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The theoretical basis for wavelet frequency bandwidth analysis is Parseval's theorem. The time 

domain energy of f(x) is 2 2|| || | ( ) |
R

f f x dx  ; the wavelet transform of f(x) is 

2( , ) (2 ,2 ) 2 (2 ) ( )
j

j j j

Rd j k W k x k f x dx


   ; and these two are linked by Parseval’s equation: 

2| ( ) |
R

f x dx = 2| |jk

j

d  (5)  

Thus, vibration signals are decomposed into independent frequency bands of different levels by 

using a conjugate quadrature filter. Not only are these decomposed signals in quadrature to each other 

in agreement with the law of conservation of energy, but they also contain a large quantity of non-

stationary and nonlinear diagnostic information compared to an FFT. Therefore, the signal energy in 

every frequency band can be used as a feature vector to represent the operation condition of the 

machine and is useful for machine fault diagnosis. 

The procedure for feature vector extraction using wavelets is the following: 

Step 1: process vibration signals for wavelet packet decomposition;  

Step 2: reconstruct each wavelet packet coefficient, and extract signals in different  

frequency ranges; 

Step 3: acquire Ej, the signal energy at different frequency bands and the total energy E. 

Ej=


n

k
jkx

1

2

||  and E=


l

j

jE
1

, where k = 1, 2, 3…n is defined as the discrete points at 

frequency band j; j is the number of frequency bands; and jkx represents the amplitude of 

the discrete points. 

Step 4: use the percentile ratio of the signal energy Ej at each decomposed frequency band and the 

total energy E as elements to construct feature vectors. 

 

3. Wavelet Lifting Scheme 

 

The wavelet lifting transform includes two stages: decomposition and reconstruction. 

Decomposition consists of splitting, predicting and updating. As shown in Figure 2(a), given data 

series }),({ ZkksS  , the decomposition stage of the wavelet lifting transform based on the lifting 

scheme is shown below: 

(1) Split: the data series }),({ Zkks  is split into an odd sample series )(kso and even sample  

series Se(k)  

Zkkskso  )12()(  (6)  

Zkkskse  )2()(   (7)  

(2) Predict: suppose )(P is the predictor; then use )(kse to predict )(kso , and define the predictive 

deviation as the detail signal )(kd : 
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ZkksPkskd eo  )]([)()(  (8)  

Then, the detail signal series is }),({ ZkkdD   

(3) Update: assume )(U is the updater, then )(kse is updated based on the detail signal )(kd . Its 

result is defined as the approximation signal )(kc : 

ZkkdUkskc e  )]([)()(  (9)  

Then, the approximation signal series is }),({ ZkkcC   

Reconstruction of the wavelet lifting is the reverse process of decomposition, and is composed of 

recovery prediction, recovery updating and merging: 

ZkkdUkckse  )]([)()(  (10)  

ZkksPkdks eo  )]([)()(  (11)  

The reconstruction signal s is obtained by merging the odd and even sample series, as shown in  

Figure 2 (b). 

Figure 2. Decomposition and reconstruction process of the wavelet lifting. (a) 

decomposition of the wavelet lifting; (b) reconstruction of the wavelet lifting. 

  
(a)                      (b) 

 

4. Fundamental Ideas of RBR Diagnostic Strategy 

 

4.1. Fuzzy reasoning mechanism of typical faults in RBR 

 

Because of the differences in machine working conditions, vibration signals can provide significant 

qualitative information. However, there is no one-to-one correspondence between fault features and 

conclusions because of the complexity of the machines. Therefore, in the diagnosis system used in this 

study, the fuzzy reasoning strategy was used to perfect rule-based diagnosis methods. The knowledge 

base is represented by the production rule. The fundamental ideas of fuzzy reasoning are as follows: 

Suppose G is a set of a fuzzy proposition, fuzzy characteristics and a fuzzy relation. For simplicity, 

the fuzzy proposition, fuzzy characteristics and fuzzy relation are together called the fuzzy assertion. 

Then, a piece of factual information can be presented by a binary group (P, β). 

P is the fuzzy assertion, P G ; β is the reliability of P, [0,1]  . 

One fault symptom may correspond to multiple causes, while one fault cause may also correspond 

to multiple fault symptoms. Therefore, the relationship between cause and symptom is complicated.  
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Table 1. The rules of knowledge. 

Fault cause 
Shaft 

imbalance 

Shaft 

misalignment 
Shaft bending 

Foundation 

deformation 

Gear Tooth 

profile error 
Gear wear 

Gear tooth 

breakage 

Damage of 

bearing 

fr 0.8 0.4 0.7 0.4 0.2 0 0.2 0.4 

2fr 0 0.3 0 0.2 0.1 0 0.1 0.1 

3fr 0 0.2 0 0.2 0.1 0 0 0.1 

6fr 0 0 0 0 0 0 0 0.1 

9fr 0 0 0 0 0 0 0 0.1 

fm 0 0 0 0 0.2 0.4 0.2 0 

2fm 0 0 0 0 0.1 0.2 0.1 0 

3fm 0 0 0 0 0.1 0.2 0.1 0 

xq >3 0 0 0 0 0.1 0.1 0.2 0.2 

Radial vibration direction 0.2 0 0.3 0 0.1 0.1 0 0 

Axial vibration direction 0 0.1 0 0.2 0 0 0 0 

fm divided by peak value < 0.4 0 0 0 0 0 0 0 0 
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For proper diagnosis, the membership degree between fault causes and fault symptoms needs to be 

pre-determined. The value of this membership degree can be obtained based on expert experience or 

theoretical research. Based on years of experience in our lab in field diagnosis, we summarize the rules 

and establish the knowledge base. 

The fuzzy rules of the knowledge base were used for fault cause reasoning to determine the reason 

for the faults. Then, according to the typical gearbox fault features, the rules of the knowledge base are 

constructed as shown in Table 1. In Table 1, fr, fm and xq are rotation frequency, gear meshing 

frequency and kurtosis, respectively. 

For gearbox fault diagnosis, a fuzzy matrix was established: 



































0002.00001.01.01.01.04.0

1.0002.01.01.02.00001.02.0

001.01.02.02.04.000000

001.01.01.01.02.0001.01.02.0

02.000000002.02.04.0

003.0000000007.0

01.000000002.03.04.0

002.0000000008.0

R  (12)  

In the fuzzy matrix for gearbox fault diagnosis, rows represent sets of fault causes, columns 

represent sets of faults symptoms, and the values in the matrix represent the membership degree 

between fault symptoms and causes. 

When implementing fault diagnosis with the fuzzy reasoning approach, the fuzzy matrix R is 

established first. Given a fault symptom A, if the fault conclusion is B, then the fuzzy reasoning 

formula can be shown as the following: 

111 12 1

21 22 2 2

1 2

...

...
* *

... ... ... ... ...

...

m

m

n n nm m

ar r r

r r r a
B R A

r r r a

  
  
   
  
  

     

(13)  

The final diagnosis result includes the vectors with relatively large values upon conclusion of the 

diagnosis. If there are several relatively large values, the existing fault symptom should be considered 

for the final conclusion. 

 

5. Examples of Diagnosis 

 

In this study, SVM, wavelet lifting and diagnosis rules were used to analyze the vibration 

acceleration signal, according to a broken cog fault of the Z5 gear (tooth 31) in Shaft II  

of 22 gear-boxes of a high speed wire rolling mill. The gearbox transmission chain of a high-speed 

wire rolling mill is shown in Figure 3. 

 



Sensors 2010, 10                            

 

 

4611 

Figure 3. The gearbox transmission chain chart. 

 

 

Figure 4(a) shows the broken cog fault signals of one rolling mill. The fault happened in  

November 2006. The motor was running at 1,169 r/min. The sampling frequency was 5,000 Hz, the 

sampling number was 2,048, and the Z5/Z6 meshing frequency was 1,197.676 Hz.  

Figure 4. Comparison between waveform and spectrum with fault or fault-free.  

(a) time-domain waveform when the fault occurred; (b) spectrum when the fault occurred;  

(c) time domain waveform under normal condition; (d) spectrum under normal condition. 

 

(a)                                                                    (b) 

 

(c)                                                                      (d) 
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As seen in Figure 4(b), the spectrum on the day of the fault shows single frequency and double 

frequency, and the amplitude of the single frequency is very high, which indicates a severe gear 

problem at that time. Figure 4(c) shows the time domain waveform under normal condition and  

Figure 4(d) shows spectrum under normal condition. 

 

5.1. SVM estimation  

 

As mentioned in Section 2.2, the “db10” wavelet was used to decompose the signal into three layers 

and the energy of each of the eight decomposed frequency bands Ej and the total energy E were 

acquired. The feature vector can be established using the ratio between Ej and E. The horizontal axis 

represents energy of each of the eight frequencies after the signals have been decomposed. The vertical 

axis represents the ratio. 

Figure 5. Wavelet energy. (a) normal wavelet energy profile; (b) faulty wavelet energy profile. 

 

(a) (b) 

 

As shown in Figure 5, wavelet energy was concentrated in frequency bands 1 and 2 under normal 

conditions, and tended to move to higher frequency bands when a fault occurred. 

Figure 6. SVM Test Result. 

 

 

javascript:showjdsw('jd_t','j_')


Sensors 2010, 10                            

 

 

4613 

The wavelet energy from the hourly data obtained in early June is set to class 1, which indicates 

normal conditions; the wavelet energy from data obtained when the rolling mills experienced a fault is 

set to class 2. Fifteen sets of data were used as SVM input for training. The test data included data 

from June and September, and each had 15 sets of data. Because gears have different crack patterns, 

data from September were identified as fault class 2 by the SVM and were significantly different from 

data in the normal condition. Figure 6 shows the test results. 

 

5.2. Wavelet lifting analysis 

 

In order to verify the effectiveness of wavelet lifting on data analysis, the field data obtained 74 

days before the machine malfunction were analyzed. Through wavelet lifting, the original signals with 

the spectrum ranging from 0 to 2,500 Hz were decomposed at two levels, as shown in Figure 7. Two 

different bands can be obtained after carrying out decomposition at level 1, among which the spectrum 

range of c
0
 is 0~1,250 Hz, and that of d

0
 is 1,250~2,500 Hz. Four different bands can be obtained after 

carrying out decomposition at level 2, among which the spectrum range of c
1
 is 0~625 Hz, that of d

1
 is 

625~1,250 Hz, that of c
2
 is 1,250~1,875 Hz, and that of d

2
 is 1,875~2,500 Hz. The approximation 

coefficient of the wavelet lifting decomposition at level 2 c
1
, the approximation coefficient of the 

wavelet decomposition at level 2 c
2
, and the detail coefficient of the wavelet decomposition at level 2 

d
2
are shown in Figure 8. The approximation coefficient of wavelet lifting decomposition contains the 

low frequency information of the signals, and the detail coefficient contains the high frequency 

information of the signals. 

According to the rotational speed of motor, the frequency of all parts in a rolling mill can be 

calculated, among which fm, the meshing frequency of high speed axis gear pair Z5/Z6 is 1,140 Hz, 

and the double frequency is 2,280.4 Hz. Both of the frequencies are included in the reconstructed 

spectrum d
1
 (625~1,250 Hz) and d

2
 (1,875~2,500 Hz) respectively, after decomposition at level one 

and level two. Thus the wavelet lifting only at level one and two are decomposed without any other 

more decompositions in this paper. 

Figure 7. Decomposition of the original signals (the spectrum range 0-2500Hz) through 

wavelet lifting. 

 

 

The frequency range of the 
original signal（0~2500Hz） 

 

         c0
（0~1250Hz） d0

（1250~2500Hz

） 

c1
（0~625Hz） d1

（625~1250Hz

） 

c2（1250~1875Hz

） 

d
2
（1875~2500Hz

） 
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The spectrum obtained from autoregressive spectrum analysis of signals in Figure 8 after wavelet 

lifting decomposition and reconstruction at level 2 is shown in Figure 9. The single frequency fm  

is 1,139.277 Hz, as shown in Figure 9(b), and the double frequency of the Z5/Z6 gear meshing 

frequency (fm) can be found in Figure 9(d). The spectrum of signals (the spectrum of c
0
 is 0~1,250 Hz) 

obtained by reconstruction of the approximation signal after wavelet lifting decomposition at level 1 is 

shown in Figure 10. There are the gear meshing frequency of the Z5/Z6-1,139.277 Hz, and the side 

frequencies of 37 Hz and 73 Hz around fm. The side frequencies of 37 Hz and 73 Hz are close to the 

single frequency and double frequency, respectively, of 36.751 Hz, which is the shaft-frequency  

of Shaft II. 

Figure 8. The time domain signals obtained at 1:00 on September 1st, 2006 through 

wavelet lifting analysis. Approximation signal and detail signal after decomposition 

through wavelet lifting at level 2. (a) the approximation coefficient c
1
; (b) the 

approximation coefficient c
2
; (c) the detail coefficient d

2
. 
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Figure 9. The time domain signals obtained at 1:00 on September 1st, 2006 through 

wavelet lifting analysis. (a) the spectrum range of c
1
 is 0~625 Hz; (b) the spectrum range 

of d
1
 is 625~1,250 Hz; (c) the spectrum range of c

2
 is 1,250~1,875 Hz; (d) the spectrum 

range of d
2
 is 1,875~2,500 Hz. 
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Figure 9. Cont. 
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    (c)                                           (d)  

Figure 10. Low frequency spectrum (0~1,250 Hz) of wavelet lifting level 1 decomposition 

(with the spectrum of c0 
ranging from 0~1,250 Hz). 
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5.3. Rule-based Reasoning analysis 

 

Through wavelet lifting analysis, the gear meshing frequency (fm) of Z5/Z6 and shaft-frequency (fr) 

of Shaft II are obtained 74 days before the machine malfunction. The ratio of the calculated frequency 

to the feature frequency is shown in Table 2. 

Table 2. Ratios of different frequency components to the feature frequency. 

 

Here, fm indicates the gear meshing frequency of Z5/Z6. The calculated frequency is 1,140 Hz 

obtained through rotational speed of field motor, while the feature frequency is 1,139.277 Hz obtained 

Type Calculated frequency(Hz) Feature frequency(Hz) Ratio 

fm 1,140.00 1,139.277 0.999 

fr 37.00 36.751 0.993 
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through monitoring spectrum. fr means shaft-frequency. The calculated frequency is 37.00 Hz obtained 

through rotational speed of the motor in the field, while the feature frequency is 36.751 Hz obtained 

through monitoring spectrum. 

In Figure 10, there are many 37 Hz side frequencies around fm, which is 1,139.277 Hz representing 

the gear meshing frequency. These frequencies are defined as side frequency. In this case, the side 

frequency (37 Hz) is very close to the shaft-frequency (36.751 Hz) of Shaft II. 

The ratio can be obtained through the following calculation. The closer this ratio is to 1, the more 

consistent is the feature frequency of the monitoring spectrum with the calculating frequency of the 

fault part, and the more possibility there is of a part with some fault. The process of calculation is 

shown as follows: 1,139.277/1,140.00 = 0.999, 36.751/37.00 = 0.993. 

By analyzing September data in Table 2, it is noted that the single and double frequencies of the 

Z5/Z6 meshing frequency, as well as the double shaft-frequency of Shaft II, are outstanding. The 

calculated kurtosis is greater than 6. Compared to fault symptoms with kurtosis greater than 3, fault 

symptoms with a kurtosis over 3 are very likely. The fm, 2fm, fr and peak values are 0.2337, 0.3037, 

0.5685 and 0.9855 respectively. The ratio of the fm to the peak value is about 0.237, which is smaller 

than 0.4. The symptom can be quantified by combining the above values, and the phasor of this fault 

symptom A = [0.99, 0.99, 0, 0, 0, 0.99, 0.99, 0, 0.95, 0, 0, 0.9]. 

The calculation of the fault conclusion phasor B is shown below: 

0.8 0 0 0 0 0 0 0 0 0.2 0 0

0.4 0.3 0.2 0 0 0 0 0 0 0 0.1 0

0.7 0 0 0 0 0 0 0 0 0.3 0 0

0.4 0.2 0.2 0 0 0 0 0 0 0 0.2 0

0.2 0.1 0.1 0 0 0.2 0.1 0.1 0.1 0.1 0 0

0 0 0 0 0 0.4 0.2 0.2 0.1 0.1 0 0

0.2 0.1 0 0 0 0.2 0.1 0.1 0.2 0 0 0.1

0.4 0.1 0.1 0.1 0.1 0 0 0 0.2 0 0 0

B R

 
 
 
 
 
  
 
 
 
 

 

0.99

0.99

0 0.792

0 0.693

0 0.693

0.99 0.594
*

0.99 0.689

0 0.689

0.95 0.874

0 0.685

0

0.9

 
 
 
   
   
   
   
   
   
   
   
   
   
   
    
 
 
  

 

As calculated in the final result, the maximum value that the fault conclusion corresponds to  

is 0.874; thus, the corresponding fault cause can be confirmed to be a broken gear tooth. A broken cog 

was found in gearbox Z5 when the machine was disassembled in the field, which is consistent with the 

diagnosis conclusion. 

Together with the fuzzy reasoning approach in the above fault, we have proved that, in fault 

diagnosis, the application of fuzzy logic can effectively present some fuzzy information and construct 

a fuzzy matrix; furthermore, the fault type can be effectively diagnosed with fuzzy reasoning. 
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5.4. Analysis of the fault diagnosis ability 

 

In order to describe the ability of intelligent diagnosis method put forward in this paper, we carried 

out two cases and made comparative analysis with traditional method of Fourier transform. 

 

5.4.1. Case 1: fault diagnosis for tooth collision of helical gear 

 

At 14:00 on Nov. 30th, 2008, through Fourier Transform and wavelet lifting analysis of the original 

vibration signals, both of these two methods show that the gear meshing frequency of Z5/Z6 in  

Shaft III in the sixth rack of rolling mill in some factory was 45.9 Hz. Figures 11(a,b) shows the 

original signal and the spectrum after Fourier Transform. Figures 11(c,d) shows the spectrum after 

autocorrelation analysis about the approximation signals which were obtained after wavelet transform 

reconstruction and decomposition to the data at level three. It can be seen that the SNR of the wavelet 

transform is higher in the spectrum analysis. The device disintegrated four days later; the broken cog 

tooth is shown in Figure 12. 

Figure 11. Comparison on the spectrum of Fourier Transform and wavelet lifting analysis 

of the original signals. (a) time domain waveform of the original signals; (b) spectrum of 

the original signals after Fourier Transform; (c) time domain waveform of approximation 

signal reconstruction after decomposition of wavelet lifting at level three; (d) spectrum 

analysis of wavelet lifting. 
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Figure 12. The real case of broken cog fault of Z5 (25-tooth) helical gear. 

 

 

5.4.2. Case 2: fault diagnosis for broken cog 

 

At 4:00 on Jan. 25th, 2008, through Fourier Transform and wavelet lifting analysis of the original 

vibration signals at low frequency, it is found that the shaft-frequency of Shaft II in gear-box in the 

second rack of rolling mill was 2.44 Hz. Figures 13(a,b) shows the original signal and the spectrum 

after Fourier Transform. Figures 13(c,d) shows the spectrum after autocorrelation analysis of the 

approximation signals which were obtained after wavelet transform reconstruction and decomposition 

to the data at level three. It can be seen that the wavelet transform had more apparent features in 

spectrum and of higher SNR. The device was opened and checked 18 days later. The broken cog tooth 

is shown in Figure 14. 

Figure 13. Comparison on spectrum of Fourier Transform and wavelet lifting analysis of 

the original signals. (a) time domain waveform of the original signal; (b) spectrum after 

Fourier transform of the original signal; (c) time domain waveform of approximation 

signal reconstruction after decomposition to wavelet lifting at level three; (d) spectrum 

analysis of wavelet lifting. 
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Figure 13. Cont. 
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 (c)                                                                                      (d) 

Figure 14. The real case of a broken cog fault of bevel gear Z2 (tooth 35). 

 

 

Some conclusions can be obtained through comparison of the above two cases, and are summarized 

in Table 3. It can be seen that the SNR of wavelet transform is higher, and the features extracted by 

wavelet transform is more apparent. 

Table 3. Improving SNR and extracting features ability compared between Fourier 

transform (FT) and wavelet transform (WT). 

Case  Fault type Position  
Effect of noise reduction 

Ability of picking-up 

features 

FT WT FT WT 

Case 1 

Broken cog 

fault of helical 

cylindrical 

gear 

Gear-box of 

blooming 

mill 

Non-reduction 

Mean-square 

difference 

σ/SNR S 

1.02/0.33 

General Good 

Case 2  

Broken cog 

fault of bevel 

gear 

Gear-box of 

blooming 

mill 

Non-reduction 

Mean-square 

difference 

σ/SNR S 

4.20/0.13 

General Good 
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6. Conclusions 

 

By using wavelet lifting, together with support vector machines and rule-based reasoning fault 

diagnosis methods, a real fault example of a broken cog in gearbox was analyzed and the following 

conclusions were drawn: 

SVM is suitable for pattern recognition of problems with small sample sizes. In this study,  

two-class pattern recognition of actual gearbox faults was accomplished for diagnosis using SVM as 

the classifier. Based on the second generation wavelet packet feature extraction technology, by taking 

advantage of the fact that resonance occurs in the high frequency bands in the early stages of a fault, 

interference from noise signals from other frequency bands is effectively avoided through the 

decomposition and reconstruction of signals at high frequency bands; thus, fault feature extraction was 

achieved. According to the features of gearbox faults, a fuzzy production approach was applied to 

reveal fault rules, and rule-based reasoning was achieved through the fuzzy matrix. As demonstrated 

with actual data, this approach effectively overcomes the difficulty that some rules are difficult to 

present precisely. 

Integrating different diagnosis technologies has become popular in intelligent diagnosis research. 

Taking advantage of each method in diagnosis inference such that the methods complement each other 

and create a hybrid diagnosis system is the goal for designing intelligent diagnosis technology. 
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