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ABSTRACT 19 
Integrating genome-wide association study (GWAS) and transcriptomic datasets can help identify potential 20 
mediators for germline genetic risk of cancer. However, traditional methods have been largely unsuccessful 21 
because of an overreliance on total gene expression. These approaches overlook alternative splicing, which can 22 
produce multiple isoforms from the same gene, each with potentially different effects on cancer risk. 23 
Here, we integrate genetic and multi-tissue isoform-level gene expression data from the Genotype Tissue-24 
Expression Project (GTEx, N = 108-574) with publicly available European-ancestry GWAS summary statistics 25 
(all N > 20,000 cases) to identify both isoform- and gene-level risk associations with six cancers (breast, 26 
endometrial, colorectal, lung, ovarian, prostate) and six related cancer subtype classifications (N = 12 total). 27 
Compared to traditional methods leveraging total gene expression, directly modeling isoform expression through 28 
transcriptome-wide association studies (isoTWAS) substantially increases discovery of transcriptomic 29 
mechanisms underlying genetic associations. Using the same RNA-seq datasets, isoTWAS identified 164% 30 
more significant unique gene associations compared to TWAS (6,163 and 2,336, respectively), with isoTWAS-31 
prioritized genes enriched 4-fold for evolutionarily-constrained genes (P = 6.1 x 10-13). isoTWAS tags 32 
transcriptomic associations at 52% more independent GWAS loci compared to TWAS across the six cancers. 33 
Additionally, isoform expression mediates an estimated 63% greater proportion of cancer risk SNP heritability 34 
compared to gene expression when evaluating cis-genetic influence on isoform expression. We highlight several 35 
notable isoTWAS associations that demonstrate GWAS colocalization at the isoform level but not at the gene 36 
level, including, CLPTM1L (lung cancer), LAMC1 (colorectal), and BABAM1 (breast).  These results underscore 37 
the critical importance of modeling isoform-level expression to maximize discovery of genetic risk mechanisms 38 
for cancers. 39 
  40 
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 1 

INTRODUCTION 1 

Over the past twenty years, genome-wide association studies (GWASs) have successfully linked hundreds of 2 

genetic variants associated with increased risks for common cancers, including breast, prostate, lung, and 3 

colorectal cancers1. For example, Zhang and Ahearn et al. identified 32 new loci associated with breast cancer 4 

risk in European ancestry individuals2, totaling over 200 loci identified for overall and subtype-specific breast 5 

cancer risk. Similarly, Wang and Shen et al. identified 187 novel risk associations in a multi-ancestry prostate 6 

cancer GWAS3. Despite these findings underscoring the potential of GWASs to uncover genetic risk factors for 7 

cancer, a significant challenge remains as most genome-wide significant variants are in non-coding regions of 8 

the human genome, making it difficult to understand the biological mechanisms underlying these genetic 9 

associations. 10 

 11 

To address this gap, transcriptome-wide association studies (TWASs) have emerged as a powerful 12 

complementary approach, providing valuable insights into the functional impact of genetic variants4–8. By 13 

focusing on the regulatory effects of genetic variants on gene expression, TWASs can identify potential target 14 

genes and pathways involved in disease processes. This integrated approach enhances our ability to translate 15 

genetic findings from GWASs into a deeper molecular understanding of disease etiology, which is necessary for 16 

improved diagnostics, prevention strategies, and therapeutic interventions in oncology. 17 

 18 

Despite the promise of TWASs and related approaches, recent work suggests that gene expression may be a 19 

poor mediator of genetic risk of complex traits, potentially owing to differences in evolutionary pressures on 20 

genetic variants with large effects on complex traits and those with large effects on molecular phenotypes9,10. It 21 

is possible that part of this poor mediation is due to an overreliance on total gene expression as a fundamental 22 

unit of measure of the transcriptome. Total gene expression does not account for alternative splicing that can 23 

produce multiple isoforms from the same gene, which are often under subtle genetic or environmental control. 24 

The mRNA and protein isoforms generated through alternative processing of primary RNA transcripts can vary 25 

in function and potentially affect cancer risk in different ways11,12. To address this limitation, we developed 26 

isoform-level TWAS (isoTWAS), a multivariate, stepwise framework that integrates genetic and isoform-level 27 

transcriptomic variation with GWAS summary statistics. This approach identifies both isoform- and gene-trait 28 

associations while controlling the false discovery rate, identifying transcriptomic associations at far more GWAS 29 

loci compared to traditional gene-level TWAS13,14.  30 

 31 

In this study, we utilized isoTWAS to assess the association between isoform expression and risk of six cancer 32 

types (breast15,16, endometrial17, colorectal18, lung19, ovarian20, and prostate21), and their subtype classifications 33 

where applicable. We used publicly available European-ancestry cancer GWAS summary statistics and multi-34 

tissue isoform- and gene-level expression data from the Genotype Tissue-Expression Project (GTEx, N > 100)22. 35 

isoTWAS reveals more associated loci than traditional TWAS, highlighting its potential to uncover novel genetic 36 

insights and enhance our understanding of cancer biology.  37 
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 1 

RESULTS 2 

Overview of isoTWAS 3 

We conducted isoform- (isoTWAS) and gene-level transcriptome-wide association studies (TWAS) for a total of 4 

12  cancer outcomes: (1-3) breast (BRCA; overall, estrogen receptor (ER)+, ER-)15,16, (4) colorectal (CRC)18, (5) 5 

lung (LUNG; overall)19, (6) lung adenocarcinoma (LUAD)19, (7) lung squamous cell carcinoma (LUSC)19 (8-9) 6 

ovarian (OVCA; overall, serous)20, (10-11) prostate (PRCA; overall, advanced)21, and (12) endometrial (UCEC)17. 7 

We integrated GWAS summary statistics (N = 63,053-228,951) with multi-tissue expression QTL data from 8 

individuals without cancer collected post-mortem from the Genotype Tissue-Expression Project (GTEx, N = 108-9 

574). GWAS and GTEx sample sizes and assignments of relevant tissues to cancer outcomes are provided in 10 

Supplemental Tables 1-2. See Methods for further details. 11 

 12 

We used univariate and multivariate penalized regressions (Figure 1A) to train gene and isoform expression 13 

models and map gene- and isoform-level risk associations for the 12 cancer outcomes using a weighted burden 14 

test (Figure 1B)5,23. In isoTWAS, we inferred gene-level associations by combining isoform associations via 15 

aggregated Cauchy association24. False discovery rate is controlled for via a Benjamini-Hochberg procedure, 16 

and family-wise error rates are controlled via Shaffer’s modified sequentially rejective Bonferroni (MSRB) for 17 

correlated isoforms. Post-hoc analyses include permutation tests and fine-mapping to identify isoform sets 18 

driving significant associations and credible sets of genes or isoforms (Figure 1C). See Methods for further 19 

details. 20 

 21 

Isoform-level analysis reveals cancer risk associations not detected at the gene-level 22 

In total, isoTWAS identifies 11,078 significant isoform associations across 6,163 unique genes, representing a 23 

~164% increase in gene identification as compared to traditional TWAS which identified 2,336 significant gene 24 

associations, (Figure 2A; Supplemental Table S3-5, Supplemental Data S1-2). Of the genes identified, 10% 25 

from isoTWAS and 7% from traditional TWAS are included in the OncoKB Cancer Gene List, representing a 26 

moderate enrichment of hallmark cancer genes among isoTWAS gene (P = 0.03)25,26. For both TWAS and 27 

isoTWAS, most identified gene associations are observed for BRCA, ER+ BRCA, and PRCA, which also are the 28 

three largest GWAS. Specifically, isoTWAS identifies 3.12 times as many associations for BRCA (3,889 29 

isoforms), 2.85 times more for PRCA (1,849 isoforms), and 2.39 times as many for ER+ BRCA (2,304 isoforms) 30 

as compared to TWAS, while showing relatively similar performance for LUNG; Manhattan plots of TWAS and 31 

isoTWAS results are shown in Supplemental Figures S1-S12. Given that the mean of the χ2 distribution is 32 

linearly related to power and sample size, the percent increase in the test statistic serves as a measure of power 33 

or effective sample size. For χ2 > 1, we calculated the percent increase for isoTWAS-based associations 34 

compared to TWAS-based associations (Figure 2B). Across the 12 cancer outcomes, there is an average 25.3-35 

37.4% increase in effective sample size for isoTWAS compared to TWAS, suggesting that isoTWAS may 36 

enhance discovery in real data as compared to traditional TWAS. Several key biological pathways are enriched 37 
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 3 

for cancer-specific sets of isoTWAS-prioritized genes, including cell cycle and mitosis regulation, DNA and RNA 1 

binding, immune pathways, as well as downstream targets of cancer-relevant transcription factors like ESR127, 2 

RUNX228, and YY129 (Supplemental Table S6, Supplemental Figures S13-S18).  3 

We further explored if cancer risk genes identified by TWAS and isoTWAS capture true disease signals by 4 

identifying genes under selective constraint. If a gene is constrained, selection will act to remove variants that 5 

diminish gene function from the population, such as loss-of-function (LOF) variants. Here, we used Bayesian 6 

estimates of the shet measure of constraint30, which, unlike traditional measures of constraint, is not biased 7 

towards longer genes. In total, 19.9% of isoTWAS gene associations (1,226 of 6,163) show shet > 0.1, compared 8 

to 12.5% of TWAS gene association (293 of 2,336) with shet > 0.1. Not only does this represent a significant 9 

enrichment of high shet among isoTWAS-prioritized gene associations compared to TWAS-prioritized gene 10 

associations (χ2 test P = 3.7 x 10-15), isoTWAS-prioritized genes are significantly enriched compared to the 11 

genome-wide proportion of high shet genes (14.7%, χ2 P < 2.2 x 10-16). In addition, we find significant enrichments 12 

of high shet genes among transcriptome-wide significant genes for ER- BRCA, LUNG, LUSC, PRCA, Adv PRCA, 13 

and UCEC (χ2 FDR-adjusted P-value < 0.05; Figure 2C, Supplemental Table S4).  14 

Lastly, isoTWAS identifies 52 genes (34 undetected by TWAS) that are associated with five or more cancer 15 

outcomes (Figure 2D), including multiple known oncogenes or tumor suppressor genes, such as MYC31, 16 

MUTYH32, GNAI233,34, ACO235, and BMI136. The 34 genes undetected by TWAS are enriched for multiple salient 17 

pathways: regulation of CD8-positive and T cells, regulation of membrane protein complexes, and phagocytic 18 

and autolysosome function. Additionally, these 34 genes are highly enriched for downstream targets of crucial 19 

oncogenic transcription factors, like ESR1, GATA4, YY1, and MYC, all of which were determined using ChIP-20 

Seq experiments in human or mouse cancer cells or tumors (Figure 2E)37. Altogether, not only can isoTWAS 21 

identify constrained susceptibility genes for multiple cancers, but it can also reveal pan-cancer risk signals that 22 

TWAS is unable to detect.  23 

Isoform expression explains more GWAS loci and overall SNP heritability of cancer risk 24 

In addition to increasing the discovery of susceptibility genes across the genome, isoTWAS can identify far more 25 

transcriptomic mechanisms within independent, high-confidence genome-wide significant loci. Across all cancer 26 

outcomes, we identify 622 risk-associated GWAS SNPs (P < 5 x 10-8) in independent linkage disequilibrium (LD) 27 

blocks (see Methods). Among these 622 loci, 288 (46.3%) are tagged by TWAS, and 439 (70.6%) are tagged 28 

by isoTWAS, with 249 (40.0%) loci identified by both TWAS and isoTWAS (Figure 3A, Supplemental Table 29 

S7). In total, this represents an increase in significant associations in GWAS loci of 52.4% when using isoTWAS, 30 

rather than TWAS. Additionally, isoTWAS identified 2,911 unique significant genes outside of known GWAS loci. 31 

 32 

We also considered an orthogonal analysis to compare GWAS follow-up using both gene and isoform 33 

expression. We mapped cis-expression quantitative trait loci (eQTLs) for gene and isoform expression and 34 

conducted Bayesian colocalization analysis with GWAS signals using eCAVIAR38 to estimate the CoLocalization 35 
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 4 

Posterior Probability (CLPP; see Methods; Supplemental Table S8, Supplemental Data S3). Generally, 1 

isoTWAS exhibits higher CLPPs compared to TWAS, indicating a stronger likelihood of colocalization for isoform-2 

eQTLs with GWAS loci (Figure 3B), with the proportion of loci having isoform expression Quantitative Trait Loci 3 

(isoQTL) colocalizations with CLPP > 0.01 consistently higher across the 12 cancer outcomes (Supplemental 4 

Figure S19). Notably, in OVCA and UCEC, isoTWAS shows significantly higher CLPPs (median = 0.026, P = 5 

0.013) than TWAS (median = 0.001, P = 0.001), suggesting that isoTWAS more effectively captures colocalized 6 

signals in for these cancer outcomes. Additionally, we estimated the proportion of total SNP heritability (h2) 7 

mediated by gene- and isoform-level expression (h2
med), (Figure 3C and Supplemental Table S9). Overall, 8 

isoform-level expression explains 62.7% more of cancer risk SNP heritability (19.2 ± 10.3%) compared to gene-9 

level expression (11.8 ± 5.7%). Wald-type tests reveal that isoform expression mediates a significant proportion 10 

of cancer h2, with gene expression only explaining a significant portion for ER- BRCA  (isoTWAS: 0.291, FDR-11 

adjusted P = 0.005; TWAS: 0.133, P = 0.068), ER+ BRCA (isoTWAS: 0.173, P = 0.045; TWAS: 0.110, P = 0.102), 12 

LUNG (isoTWAS: 0.287, P = 0.044; TWAS: 0.181, P = 0.056), PRCA (isoTWAS: 0.314, P = 0.005; TWAS: 0.108, 13 

P = 0.164), and Adv PRCA  (isoTWAS: 0.358, P = 0.014; TWAS: 0.243, P = 0.046). These results indicate that 14 

not only does isoTWAS recapitulate an overwhelming majority of TWAS signals at GWAS loci, isoTWAS 15 

substantially increases discovery of candidate GWAS mechanisms and transcriptomic features that potentially 16 

mediate genetic effects on cancer risk. 17 

 18 

isoTWAS and isoform-eQTL colocalization prioritize undetected mechanisms at GWAS loci  19 

A main goal of isoform-specific analyses is to nominate a more granular hypothesis of transcriptomic regulation. 20 

Post-hoc transcript-level fine-mapping reveals nine loci where isoTWAS prioritization coincides with isoform-21 

eQTL colocalization (CLPP > 0.01) but no gene-eQTL colocalization (Methods; Supplemental Data S3), across 22 

BRCA (Figure 4, Supplemental Figures S20), ER- BRCA (Supplemental Figure S21-S22), CRC (Figure 5, 23 

Supplemental Figure S23), LUNG (Figure 6), PRCA (Supplemental Figure S24), and UCEC (Supplemental 24 

Figure S25). We highlight CLPTM1L, LAMC1, and BABAM1 here due to previously-reported pleiotropic 25 

associations across multiple cancers. CLPTM1L is located near the TERT locus, known for its pleiotropic links 26 

to various cancers39, the LAMC1 locus has shown associations with PRCA40, and BABAM1 is a recognized 27 

GWAS hit with broad implications for cancer risk. These three genes are prioritized using isoTWAS models 28 

trained in subcutaneous adipose tissue, with additional examples presented in the Supplemental Results.  29 

 30 

First, four isoforms of CLPTM1L (Chromosome 5p15.33, shet = 0.02, 16 total isoforms in GENCODE) are 31 

significantly associated with LUNG. We also find that isoforms of CLPTM1L are associated with BRCA, PRCA, 32 

LUAD, and LUSC. Fine-mapping prioritizes ENST00000511268.6 in the 90% credible set with Posterior Inclusion 33 

Probability (PIP) = 0.90. Although there are many genome-wide significant SNPs within the gene body of 34 

CLPTM1L, no gene-eQTL signal is observed (P < 10-6), whereas a strong ENST00000511268.6 isoform-eQTL 35 

signal colocalizes with the GWAS signal (CLPP = 0.07). Additionally, there is no strong isoform-eQTL signal for 36 

the other three isoforms identified via isoTWAS in this region. The lead isoQTL rs414965 is in high LD with 37 
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 5 

multiple genome-wide significant SNPs (Figure 4A). The exons comprising ENST00000511268.6 overlap with 1 

those of ENST00000503534.5 and ENST00000506641.5 with significant isoform-eQTLs flanking 2 

ENST00000511268.6 (Figure 4B). However, rs414965 does not have significant effects on 3 

ENST00000503534.5, ENST00000506641.5, or ENST00000503151.5 expression (Figure 4C), despite its 4 

strong negative associations with LUNG and ENST00000511268.6 expression.  5 

 6 

Next, three isoforms of LAMC1 (Chromosome 1q25.3, shet = 0.10, six total isoforms in GENCODE) are associated 7 

with CRC. Fine-mapping prioritizes only ENST00000466964.1 in the 90% credible set with PIP = 1. Again, 8 

genome-wide significant CRC-associated SNPs within the gene body show no gene-eQTL signal (P < 10-6) but 9 

a strong ENST00000466964.1 isoform-eQTL signal that colocalizes with the GWAS signal (CLPP = 0.04) is 10 

observed. For the other two isoforms, ENST00000478064.1 and ENST00000495918.1, the lead isoQTL rs20558 11 

is in high LD with multiple genome-wide significant SNPs (Figure 5A). The exons of these three isoforms are 12 

generally distinct sets with significant isoform-eQTLs generally falling on the 3’ end of multiple exons (Figure 13 

5B). rs20558 shows a significant association with increased CRC risk, no effect on BABAM1 gene expression, 14 

and a significant decreasing effect on ENST00000466964.1 expression (Figure 5C). Interestingly, this same 15 

SNP has a significant increasing effect on the expression of ENST00000478064.1 and ENST00000495918.1, 16 

though only ENST00000478064.1 colocalizes with CRC risk at CLPP > 0.01. 17 

 18 

Lastly, nine isoforms of BABAM1 (Chromosome 19p13.11, shet = 0.05, 18 total isoforms in GENCODE) are 19 

associated with BRCA. In our study, isoforms of BABAM1 are also associated with OVCA, OVCA ser, LUSC, 20 

and ER- BRCA in isoTWAS.  Fine-mapping prioritizes ENST00000599474.5 in the 90% credible set and a PIP 21 

of 1. There are multiple genome-wide significant BRCA-associated SNPs (P < 5x10-8) within the BABAM1 gene 22 

body showing no gene-eQTL signal (P < 10-6). Only ENST00000599474.5 (CLPP = 0.44) and 23 

ENST00000359435.8 (CLPP=0.59) show strong isoQTL effects that colocalize with the GWAS signal. In 24 

addition, the lead isoQTL rs34084277 for ENST00000599474.5 is in high LD (LD > 0.8) with multiple genome-25 

wide significant SNPs (Figure 6A). The exon structure of these nine isoforms reveals a group of exons at the 3’ 26 

end of the gene body, which is flanked by the lead isoQTLs of ENST00000599474.5 (Figure 6B). Specifically, 27 

due to its exon structure, we followed up on this locus using a rare-variant analysis in UK Biobank whole exome 28 

sequencing data41 using the Variant Annotation, Analysis, and Search Tool  (VAAST2)42,43. We find three BRCA-29 

associated isoforms in BABAM1 enriched for risk-associated rare variants (MAF < 0.5%), with associations 30 

mainly concentrated in exons at the 5' end and first exon at the 3' end of the transcript (Supplemental Methods; 31 

Supplemental Figure 26; Supplemental Tables S10-S11). See Supplemental Results for further details. 32 

Lastly, rs34084277 has a strong protective effect on BRCA risk, no effect on BABAM1 gene expression, and a 33 

significantly increasing effect on expression of ENST00000599474.5 (Figure 6C). 34 

 35 

DISCUSSION 36 
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 6 

We show that integrating cancer risk GWAS summary statistics with isoform-level transcriptomic variation can 1 

greatly increase discovery of susceptibility genes for six cancers and their subtype classifications. By using 2 

isoTWAS rather than traditional gene-level TWAS, we identify nearly 2.5-fold more associations. More saliently, 3 

isoTWAS-identified genes are significantly enriched for evolutionarily constrained genes, which are more likely 4 

to contain clinically-relevant de novo or rare variants, predict drug toxicity, and characterize transcriptional 5 

regulation10,44. Isoform expression, rather than total gene expression, captures more risk-associated genetic 6 

variation and exhibits stronger colocalization with GWAS signals. Additionally, though isoform expression alone 7 

does not reconcile most of the SNP heritability of cancer risk, isoform expression is estimated to mediate nearly 8 

twice as much heritability as gene expression, and nearly three times of the SNP heritability signal in the case 9 

of PRCA. Most importantly, isoTWAS can find isoform associations at 249 of 288 GWAS loci tagged by TWAS-10 

identified genes and uniquely tag 190 additional GWAS loci that cannot be contextualized via TWAS. In 11 

aggregate, these findings underscore the utility of considering the transcriptome on the transcript-isoform, rather 12 

than gene-level. By modeling a different quantification of the same steady-state RNA-seq datasets with sample 13 

sizes of only up to ~800, isoTWAS increases discovery specifically at GWAS loci by ~52% without additional 14 

sequencing costs. 15 

 16 

Our isoform-level fine-mapping coupled with eQTL colocalization identifies nine gene candidates with GWAS risk 17 

SNPs within the gene body that colocalize with isoQTLs despite exhibiting no gene-eQTL signal at P < 10-6. We 18 

discuss three of these gene candidates. First, isoTWAS identifies an association between ENST00000511268.6, 19 

an isoform of CLPTM1L (16 total isoforms), and LUNG. Studies spanning back 15 years have identified multiple 20 

polymorphisms within the CLPTM1L gene body associated with LUNG, as well as pleiotropic associations with 21 

other malignancies45–49. In particular, an in vitro study provided evidence that CLPTM1L is oncogenic, specifically 22 

for Ras-driven lung cancers, in line with its effect on protecting tumor cells from genotoxic apoptosis50, and is a 23 

promising therapeutic target for therapy-resistant tumors51. CLPTM1L (Chromosome 5p15.33) is also local to 24 

TERT, which harbors pleiotropic associations with multiple cancers39. Our study identifies associations between 25 

CLPTM1L and PRCA, consistent with previous findings of SNPs in the 5p15.33 region associated with PRCA52,53. 26 

However, while TERT is known for its pleiotropic effects, we observed only gene-level associations for TERT in 27 

our analyses, with no isoTWAS associations detected for its specific isoforms. Further work is needed to fully 28 

interrogate this pleiotropy and assess tissue-specific isoform expression for both TERT and CLPTM1L, 29 

especially since TERT shows low expression across multiple tissues in GTEx22. We find a similar pattern for 30 

colorectal cancer and ENST00000466964.1, an isoform of LAMC1 (six total isoforms), a gene that regulates cell 31 

adhesion, differentiation, migration, and signaling, and lies at a pleiotropic locus for CRC, PRCA40, and obesity 32 

risk54. A previous study incorporating splicing measures has prioritized LAMC1 as a novel transcriptome-33 

mediated CRC locus55. Additionally, rs34295433 in LAMC1 was identified as a susceptibility SNP for PRCA in a 34 

Taiwanese population40. However, in our study, isoTWAS did not detect any associations between LAMC1 and 35 

PRCA. LAMC1 belongs to the laminin family of extracellular matrix proteins that are significantly involved in 36 

survival and proliferation of cancer cells, angiogenesis, migration and basement membrane breach by cancer 37 
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 7 

cells, and metastatic events56. Computational analyses of laminin proteins have shown their prognostic ability in 1 

colorectal cancer progression, placing higher weights for LAMC1 compared to other constituents of the family57.  2 

 3 

Lastly, isoTWAS detects an association between BRCA and ENST00000599474.5, an isoform of BABAM1 (18 4 

total isoforms), a gene involved in checkpoint signaling, regulation of DNA repair, and mitosis. BABAM1 has 5 

previously been implicated as a low-penetrance risk locus that interacts with BRCA1 in both triple-negative breast 6 

cancer and ovarian cancer risk58–60. Consistent with previous studies, isoTWAS also identifies associations within 7 

this region for OVCA, OVCA ser, and ER- BRCA. Additionally, our VAAST analysis for BABAM1 in UKBB 8 

indicates that a group of exons at the 3’ end of the gene harbor potentially disease-causing rare variants (MAF 9 

< 0.01, only in coding regions). The lead isoQTL for our isoTWAS-prioritized isoform of BABAM1 (MAF > 0.01, 10 

both coding and non-coding region) is upstream of these exons at the 3’ end, potentially influencing the splicing 11 

patterns specifically at the 3’ end of the gene. Further research is required to investigate how these isoQTLs 12 

influence splicing regulation and their specific role in tumorigenesis and cancer development, but a 13 

methodological opportunity may lie in integrating splicing- and isoQTLs with rare variants to identify 14 

transcriptomic mechanisms for cancer risk. These results underscore that the added resolution provided with 15 

isoform expression can lead to more specific mechanistic hypotheses for cancer risk and inform follow-up with 16 

functional studies, both in silico and experimental.  17 

 18 

We conclude with three limitations of our work. First, the complexity of the BABAM1 transcript structure and the 19 

sheer number of BABAM1 isoforms with strong isoQTL signals underscores a methodological opportunity. We 20 

applied the FOCUS framework which leverages a non-informative prior that may be insufficient61. Fine-mapping 21 

of isoforms is challenging due to horizontal pleiotropy of SNP-isoform effects shared across exons and strong 22 

LD patterns. This horizontal pleiotropy can reduce power and increase false-positive rates. Incorporating classes 23 

of isoforms with shared exon sets may lead to improved fine-mapping, thereby increasing coverage and 24 

resolution of credible sets of isoforms within a GWAS locus.  25 

 26 

Second, we derived isoform-level quantifications using Salmon, a method constrained by the limitations of short-27 

read RNA-seq where maximum-likelihood estimates are based on transcriptomic annotations, introducing some 28 

uncertainty. The limited diversity of tissue-specific annotated isoforms may affect the accuracy of these 29 

estimates. In contrast, long-read RNA-seq can capture splicing and structural variation missed by short-read 30 

RNA-seq, revealing more complex and rarer transcript-isoforms. As long-read RNA-seq becomes increasingly 31 

scalable, its comprehensive view of transcriptomes will allow for more precise quantification of isoforms 32 

potentially improving isoTWAS performance. Third, as current eQTL datasets are mostly generated in 33 

populations of European ancestry, we focused the current analyses on cancer GWAS summary statistics based 34 

on individuals of European ancestry. Previous research show that expression models trained on predominantly 35 

European-ancestry cohorts often fail to predict expression accurately in individuals of different ancestries62–65. A 36 

critical emphasis of future data generation should be to increase diversity in molecular datasets and for 37 
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methodological research to develop computational frameworks that can model multi-ancestry samples across 1 

eQTL and GWAS datasets. 2 

 3 

METHODS 4 

Data collection 5 

GTEx genotype and transcriptomic data 6 

For 48 tissues from GTEx22, we quantified RNA-seq data (all N > 100) using Salmon v1.5.2 in mapping-based 7 

mode66. We built a decoy-aware transcriptomic index in Salmon with GENCODE v38 transcript sequences and 8 

the full GRCh38 reference genome as decoy sequences67. Salmon was then run on FASTQ files with mapping 9 

validation and corrections for sequencing and GC bias. We then imported Salmon isoform-level quantifications 10 

and aggregated to the gene-level using tximeta v1.16.168. Using edgeR, gene and isoform-level quantifications 11 

underwent TMM-normalization, followed by transformation into a log-space using the variance-stabilizing 12 

transformation using DESeq2 v1.38.369,70. We then residualized isoform-level and gene-level expression (as log-13 

transformed CPM) by all tissue-specific covariates (clinical, demographic, genotype principal components (PCs), 14 

and expression PEER factors) used in the original QTL analyses in GTEx. 15 

 16 

SNP genotype calls were derived from Whole Genome Sequencing data from individuals of European ancestry, 17 

filtering out SNPs with minor allele frequency (MAF) less than 5% or that deviated from HWE at P < 10−5. We 18 

further filtered out SNPs with MAF less than 1% frequency among the European ancestry samples in 1000 19 

Genomes Project71. Due to limited sample sizes in other ancestry groups in GTEx, we focused solely on 20 

European ancestry for this study. 21 

 22 

GWAS summary statistics 23 

We obtained GWAS summary statistics for risk of 12 cancer outcomes, all from samples of European-ancestry 24 

individuals72: overall breast cancer (BRCA; 122,977 cases/105,974 controls)15, estrogen-receptor positive breast 25 

cancer (ER+ BRCA; 69,501 cases/95,042 controls)15, estrogen-receptor negative breast cancer (ER- BRCA; 26 

30,882 cases/110,058 controls)16, Colorectal cancer (CRC; 55,168 cases/65,160 controls)18, overall lung cancer 27 

(LUNG; 29,266 cases/56,450 controls)19, lung adenocarcinoma (LUAD; 11,273 cases/55,483 controls)19, lung 28 

squamous cell Carcinoma (LUSC; 7,426 cases/55,627 controls)19, overall ovarian cancer (OVCA; 22,406 29 

cases/40,951 controls)20, serous ovarian cancer (OVCA ser; 19,890 cases/68,502 controls)20, overall prostate 30 

cancer (PRCA; 79,166 cases/61,106 controls)21, advanced prostate cancer (Adv PRCA; 15,167 cases/58,308 31 

controls)21, endometrial cancer (UCEC; 12,906 cases/108,979 controls)17. 32 

 33 

Statistical analysis 34 

Code and data availability 35 

Sample scripts for analyses are available from github.com/bhattacharya-a-bt/MultiCancerIsoTWAS. Links to 36 

GWAS summary statistics are provided in Supplemental Table S1. isoTWAS and TWAS models are available 37 
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from https://zenodo.org/records/1104820173. GTEx genotyping and expression data were accessible from 1 

dbGaP accession number phs000424.v9. Supplemental Data Tables S1-S3 can be downloaded from 2 

https://zenodo.org/records/14010391. 3 

 4 

Isoform- and gene-level transcriptome-wide association studies 5 

We trained predictive models of gene and isoform expression using all cis-SNPs within 1 Mb of the gene body 6 

(Figure 1A). For gene expression, we implemented three methods: (1) elastic net regression74,  (2) linear mixed 7 

models using a ridge regression approximation75, and (3) Sum of Single Effects (SuSiE) regression76 (commonly 8 

used in FUSION5) and then selected the model with the best prediction based on 10-fold cross-validation5. For 9 

isoform expression, we considered the matrix of expression for all isoforms of a gene and implemented four 10 

multivariate methods: (1) multivariate elastic net regression, (2) multivariate LASSO with covariance estimation, 11 

(3) multivariate elastic net with a stacked generalization, and (4) multivariate sparse partial least squares. If a 12 

gene only had one isoform, we trained univariate penalized regressions, as done for gene expression. Again, 13 

we selected the best isoform model through a 10-fold cross-validation. We only retained genes and isoforms that 14 

could be predicted at cross-validation R2 > 0.01.  15 

 16 

Using these predictive models, we employed a weighted burden test to estimate the association between the 17 

genetically-predicted component of a gene or isoform with cancer risk (Figure 1B). We denoted 𝑤"  as the 18 

prediction weights for a gene or isoform model. We denoted 𝑍 as the vector of standardized effect sizes from the 19 

GWAS and Σ as the LD matrix between the SNPs represented in 𝑍. We estimated the standardized effect size 20 

of the genetically-predicted component of a gene or isoform’s expression on cancer risk as 𝑇 = !"#
!"!$	!"	

. As one 21 

gene is likely to carry multiple isoform associations, isoform-level mapping has an increased testing burden 22 

(Figure 1C). Accordingly, we used the aggregated Cauchy association to combine the 𝑡 test statistics 𝑇&, … , 𝑇' 23 

for isoforms of a single gene to estimate the isoTWAS gene-level association. For both TWAS and isoTWAS, we 24 

controlled for false discovery across all genes via the Benjamini-Hochberg procedure. For isoTWAS, we first 25 

identified isoforms for genes with an FDR-adjusted ACAT P < 0.05, and then employed Shaffer’s modified 26 

sequentially rejective Bonferroni procedure to control the within-gene family-wide error rate (FWER). At the end 27 

of these two steps, isoTWAS identified a set of genes and their isoforms that were associated with the trait. 28 

 29 

For significant genes (from TWAS) and isoforms (from isoTWAS), we tested whether the SNP-gene/isoform 30 

effects from the predictive models add additional information beyond the SNP-risk effects from the GWAS 31 

through a conservative permutation test. We permuted the SNP-gene/isoform effects in the predictive models 32 

10,000 times and generated a null distribution for the gene/isoform test statistic. We used this null distribution to 33 

generate a permutation-based P-value for the original test statistic for each gene/isoform. We only conducted 34 

this permutation test for genes from TWAS with FDR-adjusted P < 0.05 and isoforms from isoTWAS with FDR-35 

adjusted P < 0.05 and FWER-adjusted P < 0.05. 36 

 37 
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 10 

After permutation testing, we conducted isoform- and gene-level fine-mapping for isoTWAS and TWAS 1 

associations that overlap in a 1 Mb window using methods from the FOCUS framework61. We accounted for the 2 

correlation between genetically-predicted isoform or gene expression induced by LD and shared prediction 3 

weights and control for certain pleiotropic effects. Through Bayesian methods, we estimated the Posterior 4 

Inclusion Probability (PIP) for each isoform or gene and defined a credible set of isoforms or genes to explain 5 

the signal with 90% confidence. 6 

 7 

Gene-set enrichment analysis 8 

We conducted gene-set enrichment analysis using enrichR37 to investigate the gene ontologies enriched among 9 

genes identified by isoTWAS. The analysis queried multiple databases, including GO Biological Process 2023, 10 

GO Cellular Component 2023, GO Molecular Function 2023, KEGG 2021 Human, Reactome 2022, and ChEA 11 

2022. ChEA is a curated database of transcription factor targets across multiple ChIP-chip, ChIP-seq, ChIP-PET 12 

and DamID assays across a host of tissues and cell-types77. We extracted the top 10 most significant terms from 13 

each database (FDR-adjusted P < 0.1) and calculated the odds ratios to identify over-represented gene 14 

functions. 15 

 16 

Quantitative trait locus mapping and Bayesian colocalization 17 

For the same GTEx tissues that were used in TWAS/isoTWAS, we mapped cis-eQTLs for all genes and isoforms 18 

using all SNPs within a 1 Mb interval around the transcription start site. We used ordinary least squares to 19 

estimate the allelic effect of the SNP (coded as 0, 1, or 2 copies of the risk allele) on gene or isoform expression, 20 

adjusted for the same variables used in the original GTEx analyses (five principal components of the genotype 21 

matrix, 30-60 PEER factors depending on sample size for the given tissue, age at death, sex). We estimated the 22 

eQTL effect sizes, Wald-type standard errors, and P-values.  23 

 24 

Next, using GWAS summary statistics for each of the 12 cancer outcomes, gene- and isoform-eQTL summary 25 

statistics, and reference LD for European ancestry individuals from the 1000 Genomes Project71, we conducted 26 

Bayesian colocalization using eCAVIAR38 to estimate the CoLocalization Posterior Probability (CLPP) that the 27 

same SNP is causal for both cancer risk and the gene or isoform expression. We considered a gene or isoform 28 

to colocalize with a GWAS-significant locus if three conditions were met: a SNP has a (1) strong effect on cancer 29 

risk (GWAS P < 5 x 10-8), (2) strong effect on gene or isoform expression (eQTL P < 10-6), and (3) CLPP > 0.01, 30 

as is proposed in the original eCAVIAR paper. 31 

 32 

Estimation of expression-mediated SNP heritability 33 

We employed mediated expression score regression (MESC)9 to estimate the proportion of total SNP heritability 34 

(h2)  mediated by the cis-genetic component of gene or isoform expression levels (h2
med). First, using the 35 

genotypes of all SNPs, expression of all genes or isoforms across all 48 tissues in GTEx, and the same 36 

covariates used in the eQTL analysis above, we estimated eQTL effect sizes in each tissue using LASSO 37 
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regression (./run_mesc.py --compute-expscore-indiv …). Next, we meta-analyzed expression scores 1 

across the 49 tissues and estimated h2
med for each of the 12 cancer outcomes by using GWAS summary statistics 2 

munged to the LD score regression .sumstats format. This analysis provided estimates of h2, h2
med, and 3 

h2
med/h2, each with standard errors and P-values for the hypothesis test comparing to the null value of no 4 

heritability. 5 
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FIGURES 

Figure 1: Overview of isoform- and gene-level TWAS. (A) Using multi-tissue GTEx data, isoform- and gene-level expression 
was quantified using Salmon and GENCODE v38 annotations. Univariate and multivariate predictive models for gene and 
isoform expression were trained. (B) Using the weighted burden test, predictive models of gene and isoform expression 
were used to map gene- and isoform-level cancer risk associations. For gene-level TWAS associations, FDR is controlled 
to 5% via Benjamini-Hochberg. (C) As isoTWAS presents an increased testing burden, stepwise hypothesis testing is 
conducted. Isoform P-values are aggregated to the gene-level via aggregated Cauchy aggregation. FDR is controlled at 5% 
via Benjamini-Hochberg procedure on gene-level P-values. For significantly-associated genes, FWER is controlled to 5% 
for correlated isoform associations using Shaffer’s MSRB procedure. Locus-level permutation is conducted to control of 
local LD patterns. Modified from Bhattacharya et al 2023.  
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Figure 2: Isoform-level analysis identifies substantially more gene associations with cancer risk across 12 
outcomes. (A) The number of unique transcriptome-wide significant genes identified with TWAS (red) and 
isoTWAS (green). (B) Percent increase in effective sample size with Wald-type 95% confidence interval using 
jackknife standard errors. (C) Proportion of transcriptome-wide significant genes identified with shet > 0.1. 
Asterisks indicate FDR-adjusted P-value of χ2 test for enrichment ratio of high pLI genes among all 
transcriptome-wide significant genes across method. (*) indicates FDR-adjusted P < 0.05, (**) P < 0.01, (***) P 
< 0.005. Black line shows the genome-wide proportion of genes with shet > 0.1.  (D) Scaled gene-level isoTWAS 
Z-score for 52 genes with isoform-level risk associations with at least 5 cancer outcomes across 12 outcomes. 
Genes are marked in green if no gene-level risk associations with any cancer outcome, and asterisk is shown if 
the gene association is significant for the given cancer outcome. (E) Log-enrichment ratio (X-axis) of over-
represented gene ontologies (Y-axis), across ChIP- seq identified transcription factor targets (ChEA), biological 
process (BP), cellular component (CC), or molecular function (MF) pathways for 34 genes with isoform-level risk 
associations with at least 5 cancer outcomes and no TWAS associations. 
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Figure 3: Isoform expression potentially mediates far more GWAS signal than gene expression.  (A) The number 
of independent GWAS loci tagged by TWAS (red) or isoTWAS (green) or both in common (gold). (B) Boxplots 
of CoLocalization Posterior Probability (CLPP, Y-axis, square-root axis) of GWAS and gene expression QTL (red) 
and isoform expression QTL (green) for genomic loci with a GWAS P < 5x10-8 and QTL P < 10-6. (C) Ratio of 
gene- (red) and isoform-level (green) expression mediated heritability (h2

med) and total SNP heritability (h2) with 
standard errors. Asterisks indicate FDR-adjusted P-value of Wald-type Z tests of h2

med/h2 = 0. (*) indicates FDR-
adjusted P < 0.05, (**) P < 0.01, (***) P < 0.005. 
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Figure 4: CLPTM1L isoforms may mediate lung cancer risk GWAS locus at Chromosome 5p15.33.  (A) 
Manhattan plot of GWAS effects, CLPTM1L gene-eQTLs, and isoform-eQTLs for all significantly associated 
isoforms of CLPTM1L, colored by LD to rs414965, the lead isoQTL for ENST00000511268.6. (B) Transcript 
structure of significantly associated isoforms of CLPTM1L. Vertical lines indicated significant isoQTLs of LD > 
0.8 to rs414965, strongest isoQTL of CLPTM1L isoforms. (C) SNP effect sizes on lung cancer risk (black), 
CLPTM1L gene expression (red), ENST00000511268.6 isoform expression (blue), and other expression of other 
isoforms (peach) for rs414965. 
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Figure 5: LAMC1 isoforms may mediate colorectal cancer GWAS locus at Chromosome 1q25.3.  (A) 
Manhattan plot of GWAS effects, LAMC1 gene-eQTLs, and isoform-eQTLs for all significantly associated 
isoforms of LAMC1, colored by LD to rs20558, the lead isoQTL for ENST00000466964.1. (B) Transcript 
structure of significantly associated isoforms of BABAM1. Vertical lines indicated significant isoQTLs of LD > 
0.8 to rs20558, strongest isoQTL of LAMC1 isoforms. (C) SNP effect sizes on colorectal cancer risk (black), 
LAMC1 gene expression (red), ENST00000466964.1 isoform expression (blue), and other expression of other 
isoforms (peach) for rs20558. 
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Figure 6: BABAM1 isoforms may mediate breast cancer risk GWAS locus at Chromosome 19p13.11.  (A) 
Manhattan plot of GWAS effects, BABAM1 gene-eQTLs, and isoform-eQTLs for isoforms of BABAM1, either 
prioritized through isoTWAS or with an isoQTL with P < 1e-6. (B) Transcript structure of BABAM1. Vertical lines 
indicated significant isoQTLs of LD > 0.8 to rs34084277, strongest isoQTL of BABAM1 isoforms. (C) SNP effect 
sizes on breast cancer risk (black), BABAM1 gene expression (red), expression of isoTWAS-prioritized isoforms 
(blue), and expression of other isoforms (peach) for rs34084277 (lead isoQTL). 
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