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A B S T R A C T

Autism Spectrum Disorder (ASD) is a brain disorder that is typically characterized by deficits in social com-
munication and interaction, as well as restrictive and repetitive behaviors and interests. During the last years,
there has been an increase in the use of magnetic resonance imaging (MRI) to help in the detection of common
patterns in autism subjects versus typical controls for classification purposes. In this work, we propose a method
for the classification of ASD patients versus control subjects using both functional and structural MRI in-
formation. Functional connectivity patterns among brain regions, together with volumetric correspondences of
gray matter volumes among cortical parcels are used as features for functional and structural processing pipe-
lines, respectively. The classification network is a combination of stacked autoencoders trained in an un-
supervised manner and multilayer perceptrons trained in a supervised manner. Quantitative analysis is per-
formed on 817 cases from the multisite international Autism Brain Imaging Data Exchange I (ABIDE I) dataset,
consisting of 368 ASD patients and 449 control subjects and obtaining a classification accuracy of
85.06 ± 3.52% when using an ensemble of classifiers. Merging information from functional and structural
sources significantly outperforms the implemented individual pipelines.

1. Introduction

Autism Spectrum Disorder (ASD) is a neurological disorder char-
acterized by persistent deficits in social communication (APA, 2013)
that tends to evolve in severity over time (Gotham et al., 2012; Szatmari
et al., 2015). The symptoms generally appear in the first two years of
life and include difficulty with communication and interaction, re-
stricted interests and repetitive behaviors, as well as the degraded
ability to function properly in various areas of life. The estimated
prevalence of ASD in the United States is 1.47%, with average lifetime
costs exceeding one million dollars per patient (Buescher et al., 2014).

The cause of the disorder, as suggested by the research, is a result of
a combination of factors that include genetics, brain structure and
function, as well as environmental influences (APA, 2013; Ha et al.,
2015). Current diagnoses are interview-based and are most commonly
performed by conducting the Autism Diagnostic Observation Schedule
(Lord et al., 1989) or the Autism Diagnostic Interview - Revised
(Lord et al., 1994). Although these methods are quite accurate, they are
unable to point out the biological basis behind behavioral symptoms
since the neuroanatomy is unclear (Riddle et al., 2017; Subbaraju et al.,
2017). Nevertheless, in the last few decades there has been an increase
in works focusing on magnetic resonance imaging (MRI) structural and

functional brain abnormalities that would be symptomatic for the
autism spectrum. However, the findings typically do not hold over the
entire set of ASD subjects, although MRI studies have provided many
implications of neurodevelopmental characteristics underlying ASD
(Ecker et al., 2015). Structural MRI studies usually focus on volumetric
and morphometric analyses to examine abnormal brain anatomy, while
functional MRI studies have tried to investigate connectivity patterns in
the brain, both locally and globally.

The vast majority of methods in structural MRI, instead of solving
the inherent classification problem, try to point out common patterns
among ASD patients versus the control group. For instance, voxel-based
morphometry analysis (Riddle et al., 2017) showed an increase in total
brain volume in children aged 2 to 4 with ASD, as well as an enlarge-
ment of the left anterior superior temporal gyrus. However, the picture
is not so clear at a later age. While Aylward et al. (2002) observed no
volumetric differences between ASD and control adult subjects, other
studies concluded that the increase in total brain volume was still ob-
servable (Herbert et al., 2003; Palmen et al., 2005). Other works in-
vestigated volumetric changes in particular regions of interest (ROIs) in
the brain, but failed to reach strong conclusions. Palmen et al. (2005)
reported an increase in gray matter in all lobes of the brain, whereas
Courchesne et al. (2007) observed an increase in gray matter volume
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particularly in temporal lobes. In contrast, Herbert et al. (2003) re-
ported findings on increased white matter, while Palmen et al. (2005)
noted no difference in ASD versus control subjects regarding white
matter volume. Conversely, Jou et al. (2011) reported a decrease in
white matter volume in ASD patients. These inconsistent findings are
likely due to the small sample sizes or because data were collected at a
single site in each case (Riddle et al., 2017), and the choice of acqui-
sition site has significant effects on the basic image properties
(Nielsen et al., 2013). A promising study to solve the classification
problem based on structural information was performed by
Kong et al. (2019) based on the construction of an individual brain
network for each subject in order to extract connectivity features be-
tween each pair of regions of interest. These features were then ranked
and used to perform ASD versus control classification via a deep neural
network classifier.

Functional connectivity in resting-state functional MRI is widely
used to describe remote relationships in studies of the cerebral cortex
parcellation and brain disorders (Du et al., 2018; Jiang and Zuo, 2016).
The principal idea is to detect brain networks among functionally in-
terconnected regions, which is done by using connectivity matrices that
contain the correlations from different regions of the brain (Heinsfeld
et al., 2018; Subbaraju et al., 2017). Recently, deep learning techniques
have emerged as the main trend in ASD classification (Calhoun and Sui,
2016; Iidaka, 2015; Ju et al., 2019; Plis et al., 2014). Popular ap-
proaches include simple multi-layer perceptron (MLP) networks com-
bined with the unsupervised training of stacked autoencoders (Guo
et al., 2017; Kim et al., 2016). Even though several methods managed to
obtain relatively high classification accuracy, there are some drawbacks
of the proposed strategies that need to be addressed. First, most of the
studies used a small number of subjects to perform the classification.
This tends to lead to unreliable results, because of poor generalization.
The real challenge is to replicate findings across large datasets. An ac-
curacy above 0.9 is obtained only when using dozens of cases
(Arbabshirani et al., 2017), and accuracy drops significantly when a
larger dataset is introduced (Heinsfeld et al., 2018). Second, most of the
studies used data acquired on a single site. This procedure also does not
generalize the problem efficiently since the image properties highly
depend on the imaging protocol conducted at each institution. In
summary, few studies used multisite data with a number of subjects
higher than 800. Moreover, these studies considered an approach in
which they focused only on functional findings while neglecting
structural information. In our knowledge, only one study conducted a
fusion approach, combining fMRI and diffusion tensor imaging (DTI)
information for ASD identification, although it only used a sample size
of 30 subjects in total (Deshpande et al., 2013).

In this paper, we propose an approach for the classification of ASD
versus control group that merges information from functional and
structural MRI evaluated on a large multisite dataset. Functional data
connectivity matrices contain information about correlation coeffi-
cients of mean blood-oxygen level dependent (BOLD) signals from pairs
of regions of interest. Structural data connectivity matrices contain
information about cortical gray matter volumes. The principal hy-
pothesis is that using multisite data and combining both structural and
functional information could potentially unveil patterns that have not
been exploited so far, while at the same time improving generalization
in terms of classification due to the lack of reliance on a specific pro-
tocol. Our proposed method consists of several steps that include
structural and functional data preprocessing, extraction of the features
represented by the connectivity matrices, utilization of the Fisher score
as a feature dimensionality reduction technique and, ultimately, clas-
sification of the data by means of an ensemble of autoencoders and
multilayer perceptrons. Specifically, our proposal was inspired by the
works of Heinsfeld et al. (2018) and Kong et al. (2019), which dealt
with the classification of ASD based on either functional or structural
data, respectively. The classification task itself was performed in a si-
milar manner in both of these papers, even though the approach of

Heinsfeld et al. (2018) did not include any dimensionality reduction
technique, and the approach of Kong et al. (2019) was only based on a
subset of images coming from a single screening site. Our approach is
evaluated using the large and international multisite Autism Brain
Imaging Data Exchange I (ABIDE I) dataset (Di Martino et al., 2014).
Moreover, we show the generalization of the proposed approach in-
cluding a leave-one-site-out cross-validation experiment.

2. Material and methods

2.1. Dataset

The ABIDE I dataset was used to conduct our study
(Di Martino et al., 2014). It was released in August 2012 as a result of a
collaboration involving 17 international sites and it consists of 1112
cases, including 539 from individuals with ASD and 573 from typical
controls. The subjects ages ranges from −7 64, with a median age of
14.7 years across the groups. The cases include structural MRI images
and resting-state fMRI series of images, along with clinical data not
utilized in this work.

Structural data and phenotypic information about the subjects were
obtained directly from the ABIDE I initiative. However, the pre-
processed dataset that includes functional information was acquired
from the Preprocessed Connectomes Project (PCP) (Craddock et al.,
2013). All rs-fMRI series were subjected to the processing pipeline
CPAC (Configurable Pipeline for the Analysis of Connectomes), which
includes slice time correction, motion correction, and intensity nor-
malization, bandpass filtering (0.01 Hz - 0.1 Hz) and spatial registration
to the MNI152 template space. Various derivatives of the functional
data are available at PCP, however, the one of interest for our classi-
fication pipeline is the time series of BOLD signals in different areas of
the brain. Two different, common used atlases are tested: the AAL
(Automated Anatomical Labeling) atlas (Tzourio-Mazoyer et al., 2002)
and the CC200 (Cameron Craddock’s 200 ROI) parcellation atlas
(Craddock et al., 2012). Notice, however, that functional data is ren-
dered useless in some cases, due to the motion artifacts, and it is
therefore not available from PCP. Motion artefacts were computed for
each individual case using mean framewise displacement, and if it
surpassed the value of 0.2, the corresponding subject was discarded.
Mean framewise displacement is a measure of head motion, which
compares the motion between the current and previous volumes. This
left us with a dataset of 884 rs-fMRI subjects, including 408 ASD pa-
tients and 476 control cases.

Regarding the structural information, cortical parcellation using the
Destrieux atlas (Destrieux et al., 2010) was performed for each MRI
volume. To achieve this, we employed the well-known Freesurfer
software (Fischl et al., 2002). The pipeline that was used to extract
useful information involves multiple stages, with the most notable ones
being intensity normalization, skull stripping, registration of the vo-
lumes to a common space, segmentation and, ultimately, cortical par-
cellation. Apart from the division of cortex, a series of statistical mea-
sures, such as gray matter volume, cortical thickness and curvature,
were computed for each of the parcels. However, due to artifacts that
are present in some of the structural MRI volumes, this processing was
not always possible. A total of 1014 cases were successfully processed,
including 475 ASD patients and 539 control subjects.

Since our goal is to propose a classification strategy dealing with
both structural and functional information, it is important to note that
cross-referencing the remaining cases after using the preprocessing pi-
pelines yields a total of 817 cases (368 ASD + 449 control) that are
present in both subsets of the original dataset. Table 1 summarizes the
details of the dataset used, including separate listings for every acqui-
sition site involved in the project.
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2.2. Functional data classification pipeline

Once the data has been preprocessed with the CPAC pipeline and
the time series of mean BOLD signals from different brain regions are
extracted, the next step is to build a connectivity matrix. Such a matrix
is constructed for each case individually and contains information
about the correlation of the BOLD series between each pair of the re-
gions defined by an atlas (the AAL atlas consists of 116 regions, whereas
the CC200 atlas consists of 200). Therefore, the dimensions of a con-
nectivity matrix are 116 × 116 or 200 × 200, depending on the atlas
used, and each element ij inside a matrix is the Pearson correlation
coefficient computed for the mean BOLD series from regions i and j. By
definition of the Pearson correlation coefficient, elements of the matrix
range from − 1 to 1, and all elements on the main diagonal are equal to
1 since they correspond to the correlation of a signal with itself.
Additionally, such a matrix is symmetrical because of the commutative
property of the correlation coefficient computation. Examples of con-
nectivity matrices are shown in Fig. 1. We are, therefore, only inter-
ested in the upper triangle of the connectivity matrix (also excluding
the main diagonal), as the remainder of the matrix is redundant. The
part of interest is then flattened into a 1-dimensional vector for further
manipulation. In the case of the AAL atlas, such a vector contains 6670
elements, whereas in case of using the CC200 atlas it contains 19, 900
elements.

Due to the high dimensionality of the feature vectors, we included a
dimensionality reduction technique in the pipeline. The advantage of
this step is that we avoid overfitting and make the model much more
generalizable. The technique used to achieve this goal is the Fisher
score computation, which ranks the features in order of distinctiveness
and, consequently, decides which of them are of lesser importance
(Chen and Lin, 2006). It measures the discrimination of two sets of real
numbers, the greater the score value is, the higher the rank of a certain
feature. Given training vectors xk, if the number of positive instances is

+n and the number of negative instances is −n (where positive and
negative instances indicate belonging to one class or the other), the
Fisher score of the ith feature is:
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where x̄ ,i +x̄i and −x̄i are the mean of the ith feature of the whole, po-
sitive and negative sets, respectively, +xk i, is the ith feature of the kth
positive instance and −xk i, is the ith feature of the kth negative instance
(Kong et al., 2019). The numerator indicates interset discrimination,
whereas the denominator indicates between-set discrimination.

What is left after application of the Fisher score is a reduced feature
vector that becomes the input vector for the classifier. The classification
step itself is performed in two stages. The first one consists of an un-
supervised training of stacked autoencoders. An autoencoder is a simple
network that tries to reconstruct the input as precisely as possible.
Given the input vector, it tries to learn a lower-dimensional re-
presentation of it, from which it can then reconstruct the original
vector. These two steps are referred to as encoding and decoding.
Simply, it has an input layer, a hidden fully connected layer that en-
codes the input and a fully connected output layer that decodes the
encoded representation. Parameters of the model are adjusted by back-
propagation until the difference between input and output has been
minimized. A stacked autoencoder basically consists of two or more
autoencoders and has a better learning ability than a single one. When
the stack consists of two autoencoders, the output of the first encoding
stage is given as input to the second autoencoder. Then, the decoding
stage is done in a two-fold manner again, the second autoencoder de-
codes its input, and then the first autoencoder decodes the original
input vector. An illustration of such a structure is shown in Fig. 2(b).

The end result of the autoencoder training is apparent in the second
stage of the classification step, which is a supervised training of a

Table 1
Summary of the number of subjects used from every screening site in the ABIDE
I dataset in each of the strategies conducted: functional, structural and com-
bined classification pipelines. For each center, we removed the cases that failed
the preprocessing step. ASD refers to Autism Spectrum Disorder patients and TC
to Typical Control.

Site ABIDE I Functional Structural Combined

ASD TC ASD TC ASD TC ASD TC

Caltech 19 19 19 18 17 18 17 17
CMU 14 13 3 2 14 12 3 2
KKI 22 33 12 27 20 32 11 26
Leuven 29 35 27 34 26 35 24 34
MAX MUN 24 33 18 24 21 31 17 22
NYU 79 105 73 98 74 103 69 96
OHSU 13 15 12 11 9 14 8 11
OLIN 20 16 14 11 17 16 11 11
PITT 30 27 22 23 27 24 20 20
SBL 15 15 14 12 14 14 13 11
SDSU 14 22 12 21 13 18 12 17
Stanford 20 20 17 19 19 16 16 15
Trinity 24 25 21 23 19 24 17 22
UCLA 62 47 36 39 50 43 34 37
UM 68 77 48 65 52 72 38 62
USM 58 43 38 23 56 42 37 23
Yale 28 28 22 26 27 25 21 23
Total 539 573 408 476 475 539 368 449
Total Cases 1112 884 1014 817

Fig. 1. Examples of connectivity matrices from two subjects in the Caltech
subset of the ABIDE I dataset constructed using the AAL atlas. (a) is from an
ASD patient while (b) is from a control.

Fig. 2. Graphical representation of (a) the simple and (b) stacked autoencoder
structures and (c) the multilayer perceptron (MLP). The colored weights of the
encoding part of stacked autoencoder (b) are used as initializing weights of the
MLP (c).
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multilayer perceptron (MLP) with two hidden layers and a binary
output layer. The number of nodes in the hidden layers corresponds to
the number of nodes in the encoding layers of the stacked autoencoder.
This ensures that the weights of the MLP can be initialized using the
weights from the trained autoencoder. Hence, the MLP is able to learn
hidden features from input vectors in the hidden layers and then clas-
sify the subjects accordingly in the ultimate layer with softmax acti-
vation. This is illustrated in Fig. 2(c), where the corresponding weights
initialized from the autoencoder are color-coded in the same manner as
in Fig. 2(b). To prevent overfitting, dropout is introduced in the hidden
layers, as well as additional regularization terms and batch normal-
ization that improves convergence.

To get more robust results, we use an ensemble of classifiers in the
last steps, so that each one can learn different feature representations.
Specifically, we trained an ensemble of a total of 5 classifiers obtained
by changing the number of nodes in the hidden layers of the auto-
encoders and MLPs. In this case, each subject’s feature vectors are given
as an input to all classifiers, and the label assignment is conducted by
averaging the softmax activation probabilities. The underlying hy-
pothesis is that additional classifiers with different ways of learning
feature representations can add a certain margin of improvement in
terms of classification accuracy and make the decision-making more
robust (Kamnitsas et al., 2017). As a summary, the complete functional
pipeline is illustrated in Fig. 3 (top), which shows all the notable steps,
including the flattening of connectivity matrices into vectors, di-
mensionality reduction, training of the stacked autoencoder and the
MLP classification.

2.3. Structural data classification pipeline

The approach for structural data classification is very similar to the
functional classification pipeline by design in order to obtain a sub-
sequent smooth integration of the two. Hence, again, a connectivity
matrix is built for each subject, and the upper triangular part is ex-
tracted and flattened to become a feature vector. The main difference
between the functional and structural pipelines is the way connectivity
matrices are built. Instead of computing the Pearson correlation coef-
ficient, we are interested in the relations between gray matter volumes
in each pair of the cortical parcels defined by the Destrieux atlas (148
regions, 74 in each hemisphere). Even though the features computed

after the Freesurfer pipeline are readily usable, the underlying idea was
to construct such a matrix so that the features reflect the volumetric
correspondences among regions for a particular subject. That way, the
networks represented by matrices and built for each subject become
comparable with each other, even though the dataset is highly-varying
and encompasses large age span among the subjects. Thus, each ele-
ment ij of the matrix is the volumetric correspondence between two
parcels i and j, which is defined by:

=
− +

c i j
gm i gm j

( , ) 1
| ( ) ( )| 12 (2)

where gm(i) and gm(j) are the gray matter volumes of ROIs i and j
(Kong et al., 2019).

As a result, the flattened vector extracted from the connectivity
matrix has 10878 features. Similar to the functional pipeline, the Fisher
score is used to reduce the dimensionality of the feature vectors, and
the new obtained ones were fed to the ensemble of 5 stacked auto-
encoders and the MLP for classification task. The structural pipeline is
illustrated in Fig. 3 (bottom).

2.4. Combined data classification pipeline

One of the main contributions proposed in this work involves
combining the two previously described pipelines into one, with the
goal of improving the classification results by accounting for different
types of information. Since the functional and structural pipelines learn
independent features, merging them together could mitigate errors to
some extent. Notice that only cases that successfully underwent both
preprocessing pipelines, functional and structural, can be considered as
part of the dataset for the combined classification pipeline. In the
ABIDE I dataset, this turns out to be a set of 817 cases.

The merging of functional and structural information was per-
formed using two different strategies. The first strategy involves con-
catenating the structural and the functional feature vectors after the
dimensionality reduction stage. This way, we merge the functional and
structural data and then perform the autoencoder training, so that the
autocander can decide which patterns are more informative. We opted
to do the merging after the dimensionality reduction step since the sizes
of the original feature vectors are dependent on the choice of atlas and
therefore different for structural and functional data, which introduces

Fig. 3. Graphical representation of the functional (top) and structural (bottom) data classification pipelines, together with combined strategies, including con-
catenation branch and label fusion after separate pipelines.
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a potential bias towards one side or the other. Subsequently, the clas-
sification was done using either the newly obtained vector (of length
6000) or reducing its dimensionality again with the Fisher score to get
another vector to be used as an input to the network. The classification
stage remained unchanged, consisting of the ensemble composed of the
unsupervised stacked autoencoder training followed by the supervised
training of an MLP (Fig. 3, concatenation branch). The second strategy
consists of using separate classification pipelines, as previously de-
scribed, followed by a decision-making method for choosing the final
labels. In other words, we independently trained the functional and
structural ensembles of autoencoders and multi-layer perceptrons using
the corresponding functional and structural training and validation
data, resulting in 10 softmax activations. The final output is obtained by
either averaging the 10 softmax activation probabilities or by a ma-
jority voting strategy. This approach is illustrated in Fig. 3 (label fusion
strategy).

2.5. Validation

Every model was validated by performing 10-fold cross-validation.
In each fold, 10% of the corresponding dataset was used to test the
classifier, while the remaining 90% of cases were used for training and
validation, where training encompassed 70% and validation 30% of the
available set. This strategy allowed for the evaluation of the model’s
robustness and behavioral effects when training and testing with dif-
ferent subsets of data. It is important to note that in each fold, the set
was split in such a way that the subsets retained class balance and
contained cases coming from all or almost all screening sites. This ap-
proach was utilized to keep the model as generalizable as possible.
Naturally, in the case of training 2 classifiers or an ensemble of clas-
sifiers in the combined approach, the split into training, validation and
testing sets was the same for all the classifiers in a certain fold.

The models were evaluated using accuracy as a metric, which is the
most common measurement in the state-of-the-art works. This allowed
for quantitative comparison of our results with previous models, al-
though there is no guarantee that the dataset used in our method is
identical to the ones of previous works. Additionally, due to the class
imbalance, we quantified sensitivity and specificity values for each of
the experiments. Ultimately, we also used the best model to perform a
leave-one-site-out cross-validation, in order to analyze the accuracy,

sensitivity and specificity obtained for each of the 17 screening sites
individually. This allowed for some qualitative and quantitative com-
parison of our results with other state-of-the-art works, especially since
some of the previous research was conducted using only the data col-
lected at one of the sites.

To statistically analyze the results obtained through the presented
models, we performed a one-way ANOVA (ANalysis Of VAriance) test,
together with a post hoc Tukey HSD (honestly significant difference)
test, with the goal of indicating which models were significantly dif-
ferent. ANOVA and Tukey HSD tests were conducted separately on each
of the three groups of models, functional data-based, structural data-
based and combined data-based. A 95% confidence interval was
chosen, meaning that a p-value less than 0.05 indicates a high statistical
significance of a certain result when compared to another. Notice that
the t-test estimation has inherent errors when evaluating the results of a
10-fold cross-validation procedure. However, it has a high statistical
discrimination power when analyzing the Type II errors (i.e. the failure
to detect a real difference between algorithms).

2.6. Qualitative analysis

According to Ha et al. (2015), the default mode network (DMN),
which is one of the most commonly analyzed functional brain networks,
shows a difference in brain activity between ASD and control subjects.
DMN generally tends to be hypo-connected in adults with the disorder
and hyperconnected in children with the same pathology. It comprises
several parts of the brain and includes the posterior cingulate gyrus,
retrosplenial cortex, lateral parietal cortex, medial prefrontal cortex,
superior frontal gyrus and temporal lobe. It has shown greater activity
during resting-state functional MRI than during task-based screenings
(Greicius et al., 2003), which is why it is of a particular interest for the
ABIDE I dataset.

To compare our method with common clinical findings, we propose
a qualitative test of feature ranking. Because the Fisher score ranks all
features by their distinctiveness, the idea is to analyze whether the top
ranked features correspond or do not correspond to discoveries ob-
served in previous clinical and scientific research and to check for the
presence of potential common patterns.

Table 2
Summary of the conducted experiments and the obtained results. Vec. dim. - dimensionality of the input feature vectors and indicative of whether dimensionality
reduction was used or not; Strategy - indication of whether the functional and structural feature vectors were concatenated prior to classification or classified
separately; Ensemble - indication of whether an ensemble of classifiers was or was not used, and if yes, how many classifiers were considered; * - label fusion was
performed using the average of softmax probabilities; ** - label fusion was performed by majority voting, using average softmax probabilities only in the case of a
tie). Values of mean accuracy and its standard deviation are shown in percentages. Sensitivity and specificity values are also shown. The best result is highlighted in
bold.

Exp. no. Pipeline Atlas Cases Vec. dim. Acc. mean Acc. std Sens. Spec.

Functional data classification
1 functional AAL 884 6670 64.46 4.73 0.53 0.72
2 functional AAL 884 3000 67.96 3.50 0.60 0.73
3 functional CC200 884 3000 70.37 4.88 0.64 0.75
4 ensemble of 5 CC200 884 3000 74.90 3.48 0.74 0.76
Structural data classification
5 structural Destrieux 1014 10,878 52.27 3.51 0.47 0.55
6 structural Destrieux 1014 3000 77.41 3.99 0.71 0.76
7 ensemble of 5 Destrieux 1014 3000 78.69 2.86 0.78 0.79
Combined data classification
Exp. no. Strategy Ensemble Cases Vec. dim. Acc. mean Acc. std Sens. Spec.
8 concatenate no 817 6000 70.38 2.17 0.62 0.76
9 concatenate no 817 3000 70.37 4.01 0.65 0.77
10 concatenate yes (5) 817 6000 73.44 4.84 0.69 0.77
11 concatenate yes (5) 817 3000 73.31 3.86 0.71 0.75
12 separate no 817 3000 82.97 3.72 0.82 0.84
13 separate* yes (5+5) 817 3000 85.06 3.52 0.81 0.89
14 separate** yes (5+5) 817 3000 84.45 2.90 0.80 0.88
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3. Results

Table 2 summarizes the conducted experiments and accuracies ob-
tained, providing additional details on standard deviations over folds in
cross-validation, as well as sensitivity and specificity values. We tested
the accuracy of the functional and structural pipelines alone and in
combination. The latter is obtained by either concatenating the former
two before the classification (i.e. training the neural network with
functional and structural information together) or optimizing func-
tional and structural pipelines independently and then combining the
results (separate pipelines).

To test the pipeline for functional data classification, four experi-
ments were proposed. Two of those considered data preprocessed using
the AAL atlas, whereas the other two used data obtained with the
CC200 atlas. In both approaches, we considered two sizes for the input
feature vectors, both without and with the application of the di-
mensionality reduction method. When using the AAL atlas, accuracies
of 64.46% and 67.96% were reached without and with dimensionality
reduction, respectively. The accuracy was higher overall when using
the CC200 atlas. We report an accuracy of 70.37% when using the
Fisher score to reduce the size of the input vector. The last model, using
the CC200 atlas with dimensionality reduction, was further explored by
conducting the classification using the ensemble of classifiers. An im-
provement was reached, resulting in an accuracy of 74.90%. When
comparing the results among these strategies, all pairwise p-values
were lower than 0.05.

For structural information we also tested two scenarios, when using
the original feature vector and when using the reduced one. The two
obtained accuracies differ greatly. Using the entire feature vector we
only obtained 52.27% accuracy, while including the dimensionality
reduction, the accuracy was 77.41%. Furthermore, using the ensemble
classification on the latter approach, the accuracy increased, yielding in
an average accuracy of 78.69% over the 10 folds of the cross-validation.
All three pairwise p-values were statistically significant (p < 0.05)

The combined approach was split into two major strategies. The first
utilizes concatenation of the reduced vectors obtained via structural
and functional data preprocessing. The second considers separate
classification of the functional and structural data followed by the fu-
sion of the obtained labels, either by averaging the softmax outputs or
by majority voting. Several models were proposed for both strategies,
including additional dimensionality reduction of the concatenated
vector or classification using an ensemble of classifiers. The best result
was obtained when considering the separate classification strategy,
using an ensemble of 5 functional and 5 structural data classification
models, followed by averaging of all 10 softmax probabilities. A mean
accuracy of 85.06% was achieved with this approach. All pairwise
comparisons were significant (p < 0.05) except for Experiments 13 and
14, which differ only in the way the labels were fused together.

Fig. 4 shows how our best model for each functional, structural and
combined pipelines compared to previous state-of-the-art works. The
works reported in this figure were based on functional data only, since
the work by Kong et al. (2019) is the only one, as far as we are aware of,
that dealt with structural data-based classification task. Even though
the accuracy we obtained is not the highest, every other result that is
quantitatively better was based on a smaller dataset and often included
data only originating from a single screening site. Furthermore, the
works based on a larger dataset than ours yielded in a significantly
lower accuracy. However, the behavior of our model when tested on the
entirety of the ABIDE I dataset remains unknown since a portion of the
full subject set was discarded due to various artifacts. Notice also in
Fig. 4 the advantage of combining both functional and structural in-
formation, obtaining a significant improvement (p < 0.05) against the
individual pipelines.

Finally, with the best model obtained, we did a quantitative analysis
of the accuracy reached for each of the 17 imaging sites, by performing
a leave-one-site-out cross-validation. Table 3 summarizes the obtained

values, including sensitivity and specificity values reached. We ob-
tained a consistent accuracy over 70% for all but the CMU center,
where the accuracy was 60%. However, notice the small number of
cases used at this center, which potentially biases the classification
accuracy. This shows that the approach is able to generalize well to
unseen data coming from different screening sites, machines and/or
acquisition protocols.

3.1. Qualitative feature analysis

Since the Fisher score ranks features according to how discriminant
they are, we wanted to analyze whether or not the top features (i.e. top
functional connectivity patterns between pairs of regions) correspond
to common findings in clinical research based on functional

Fig. 4. Comparison of the results obtained using the functional, the structural,
and the merged classification pipelines with the ones reached in previous works
that dealt only with functional data-based classification task. Figure modified
from Du et al. (2018). The references are Anderson et al. (2011),
Murdaugh et al. (2012), Wang et al. (2012), Deshpande et al. (2013),
Nielsen et al. (2013), Uddin et al. (2013), Zhou et al. (2014), Chen et al. (2015),
Iidaka (2015), Plitt et al. (2015), Chen et al. (2016), Abraham et al. (2017),
Jahedi et al. (2017), Ktena et al. (2018), Sadeghi et al. (2017),
Bernas et al. (2018) and Heinsfeld et al. (2018)

Table 3
Classification accuracy obtained for each of the 17 screening sites by per-
forming leave-one-site-out cross-validation using the best model, which con-
siders a combined data classification approach with an ensemble of classifiers.
NoS - Number of subjects, Sens. - Sensitivity, Spec. - Specificity

Site NoS Accuracy [%] Sens. Spec.

Caltech 34 73.53 0.76 0.71
CMU 5 60.00 0.67 0.50
KKI 37 75.68 0.82 0.73
Leuven 58 79.31 0.58 0.94
MAX MUN 39 82.05 0.88 0.77
NYU 165 86.67 0.96 0.80
OHSU 19 73.68 0.62 0.82
OLIN 22 86.36 0.73 1.00
PITT 40 85.00 0.75 0.95
SBL 24 66.67 0.46 0.91
SDSU 29 79.31 0.75 0.82
Stanford 31 80.64 0.88 0.73
Trinity 39 82.05 0.82 0.82
UCLA 71 90.14 0.85 0.95
UM 100 87.00 0.84 0.89
USM 60 86.67 0.97 0.70
Yale 44 93.18 0.95 0.91
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connectivity. Table 4 lists the top 15 pairs of regions whose connectivity
patterns are of the most interest in regard to the classification task.

According to the table, the most interesting correlation is between
the Right Superior Frontal Gyrus and the Right Middle Temporal Gyrus.
On the other hand, the Right Middle Frontal Gyrus appears in 3 of the
15 correlations, while the Left Inferior Frontal Gyrus, the Left Superior
Frontal Gyrus, the Right Calcarine Gyrus, the Right Inferior Parietal
Lobule, and the Right Insula Lobe each appear in two of the correla-
tions.

We conducted an analogous analysis to examine top features in the
case of structural data. There are some observations and recurring
patterns of note. For instance, in the top 15 features (i.e. top 15 most
discriminant correlations between pairs of cortical regions), left trans-
verse temporal sulcus appears in 5 of them. This can signify importance
of that particular cortical parcel in regard to ASD classification, since it
is one of 148 possible parcels and appear in total in five of the top 15
features. Other recurring regions on the list are the left intraparietal
sulcus and the transverse parietal sulci, appearing four times, as well as
the right subcallosal gyrus, which appears in three features.

4. Discussion

In this work, we aimed to improve ASD detection by means of
combining structural and functional MRI information. In particular, we
implemented and combined two baseline implementations based on the
approaches developed by Heinsfeld et al. (2018) for functional data
classification and Kong et al. (2019) for structural data classification,
obtaining comparable results as the ones presented in these two works.
Indeed, discrepancies between our results and the reported ones were
expected since there is no guarantee that the cases used for classifica-
tion were the same, the split between training, validation and testing
was randomly generated and, finally, some details of the original im-
plementations were not available. When designing our baselines

implementations, it is important to note that we kept the best para-
meters analyzed in those works. Therefore, the number of nodes in the
hidden layers of the default autoencoder and the MLP (1000 and 600 in
two layers) were the ones used in the work of Heinsfeld et al. (2018).
The same architecture was preserved for the structural data classifica-
tion pipeline. On the other hand, the choice to lower the input vectors’
dimensionality to 3000 was shown to be the best by Kong et al. (2019)
(different models were tested by varying dimensionality of the input
vectors from 2000 to 5000), and, consequently, we applied the same
reduction constraint when conducting the functional data classification
strategy. Additionally, an analogous test was performed on functional
data (by varying dimensionality of input vectors from 2000 to 5000
with a step of 200) and it was shown that 3000 elements was an optimal
choice indeed.

Using the Fisher score as a dimensionality reduction technique im-
proved the results, both when considering the functional and structural
pipelines separately as well as in the combined approach. It prevents
overfitting the classifier by selecting the most discriminant features
from the defined set of features. Consequently, it minimizes re-
dundancy. Dimensionality reduction is particularly beneficial in regard
to structural data classification. From Table 2, we observe a significant
increase in the classification accuracy by removing the redundant fea-
tures (p < 0.05). This may be due to the fact that the shallow archi-
tecture of the proposed stacked the autoencoder is not able to handle
such long original feature vectors, thus Fisher score served as a pre-
processing step to reduce its size. This accuracy difference is much
lower in regard to the functional data classification, but that pipeline
also shows variation in the results as a consequence of the atlas choice.
As shown in the functional pipeline, we used both the AAL and CC200
atlases to preprocess the functional data. When comparing the obtained
results, CC200 outperformed AAL in all of the conducted experiments
(p < 0.05). This may be because the CC200 atlas has 200 defined re-
gions, whereas AAL only has 116. We think that the additional regions
unveil more information and connectivity patterns, which may not have
been present or distinctive when using the AAL atlas alone.

If we consider separate approaches for the structural and functional
data classification, we can conclude that the structural pipeline sig-
nificantly outperforms the functional one in terms of the obtained ac-
curacy (p < 0.05). This could be because there were more cases
available for classification after the structural preprocessing pipeline.
Furthermore, even though the features are defined independently in the
two pipelines, they come from separate modalities, thus, it is shown
that the dimensionality reduction technique has a greater effect on the
structural data classification than on the functional, which is another
justification for the difference in the quantitative results. In other
words, the improvement in terms of classification accuracy is higher in
the structural pipeline than in the functional pipeline when the Fisher
score is applied. In regard to the implementation using an ensemble of
classifiers, there is a statistically significant improvement in classifica-
tion accuracy in both the functional and structural pipelines (p< 0.05).
Each classifier in the ensemble is able to learn different representations
of the input feature vectors, and by fusing the output labels, errors can
be mitigated up to a certain extent. This compensation of errors is much
more significant in the case of the combined classification pipeline
because the input vectors encompass more information from different
modalities. Regarding label fusion, we tried both majority voting and
averaging the softmax activations. As it turns out, the latter approach
slightly outperforms the former. When conducting majority voting, all
the labels are given the same weight, whereas when considering
softmax probabilities, the classifiers that output probabilities with
higher certainty are given more weight in the decision making than the
ones with lower certainty. However, this improvement was not statis-
tically significant.

Quantitative analysis per site was performed to test the robustness
of the best model and its generalization capability. The idea was to
collect misclassified samples over 10 folds of the cross-validation and,

Table 4
Top 15 most discriminant pairs of regions for the classification task,
corresponding to the top 15 functional connectivity features. The la-
bels are defined by the AAL atlas.

Feature rank Pair of brain regions

1 Right Superior Frontal Gyrus
Right Middle Temporal Gyrus

2 Left Superior Medial Gyrus
Left Superior Frontal Gyrus

3 Right Middle Frontal Gyrus
Right Insula Lobe

4 Right Inferior Frontal Gyrus
Left Middle Occipital Gyrus

5 Right Caudate Nucleus
Right Insula Lobe

6 Right Inferior Parietal Lobule
Right Middle Frontal Gyrus

7 Right Anterior Cingulate Cortex
Right Calcarine Gyrus

8 Left Inferior Frontal Gyrus
Left Cerebellum

9 Right Fusiform Gyrus
Left Insula Lobe

10 Right Middle Frontal Gyrus
Left Subcallosal Gyrus

11 Right Inferior Parietal Lobule
Left Cuneus

12 Right Thalamus
Left Inferior Frontal Gyrus

13 Right Angular Gyrus
Left Superior Frontal Gyrus

14 Left Thalamus
Right Calcarine Gyrus

15 Left Precuneus
Left Angular Gyrus
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consequently, determine which screening site from where they were
originated. Then, the classification accuracies were computed for each
of the 17 sites. The lowest accuracy of 60% was obtained for the CMU
site, however, the total number of cases considered from that particular
site is only 5, which is much lower than the number of cases coming
from the other sites. Having more available cases would arguably in-
crease this site’s accuracy in an individual site analysis. In the rest of the
centers, the classification was over 75%, and we even obtained an ac-
curacy of more than 90% in 3 of them.

Another analysis we performed investigated whether the top dis-
criminant features ranked by the Fisher score correspond to the
common findings in functional brain connectivity, particularly in the
research related to default mode network connectivity (Greicius et al.,
2003; Ha et al., 2015). By comparing the DMN regions with the regions
corresponding to the top ranked features (shown in Table 4), some si-
milarities can be observed. There is a presence of superior frontal gyri
and temporal lobe in both, but there are also pairs of regions that the
classification network is able to discriminate between, that are not
present in DMN. The reasoning is that functional connectivity patterns
are observed globally, not by focusing on one particular brain network.
Our method quantifies the connectivity of all ROI pairs and, conse-
quently, selects the most distinct connections in order to optimize
classification accuracy. Instead, the DMN analyses only focus on the
connectivity of regions that fall under the definition of DMN, dis-
regarding the rest. This selection of the most discriminant features can
justify the improvement in accuracy when conducting the combined
approach; we consider two different modalities, with two separate types
of features, and select the most distinguishable ones from both. When it
comes to the analogous analysis we performed on the structural-based
features, we presented some common findings among the top 15 fea-
tures (i.e. pairs of regions with distinct volumetric correspondence).
However, there is no standardized network or model like DMN that
would provide grounds for comparison and deriving conclusions.

A total of 295 cases out of 1112 in the original dataset did not meet
the required preprocessing criteria, either in the functional or structural
datasets, or, in some cases, both. This is one of the main limitations of
our work, because the reported results are not obtained using the entire
ABIDE I dataset. Furthermore, this restriction obstructs the comparison
with some of the other works on the same topic because the subset we
used does not necessarily correspond to the ones used in other papers.
However, we were able to obtain high classification results in com-
parison to the other works, even though the data originated from 17
different screening sites and was acquired using different protocols.
This means that our method has a good generalization ability and does
not rely on a specific protocol.

5. Conclusions

In this paper, we proposed a method for the classification of Autism
Spectrum Disorder versus a control group. The proposed method, based
on a network consisting of autoencoders and multilayer perceptrons,
was tested on both functional and structural data (in both separate and
combined manner) available from the ABIDE I dataset. We showcased
the importance of the multimodal approach by analyzing the obtained
results qualitatively and quantitatively. By encompassing different
types of information in our classification algorithm, we were able to
improve the results in a statistically significant manner. The highest
classification accuracy obtained, 85.06%, was a result of a multimodal
strategy that included an ensemble of classifiers for both structural and
functional data classification.

Current diagnosis of ASD is based on two main criteria: impairments
in social communication and interaction and a restrictive, repetitive
range of interests, behaviors and activities (APA, 2013). An in-
experienced clinician is likely to incorrectly apply the criteria for
autism and related conditions, which is a major concern in diagnostics.
Another significant problem in current clinical practice is delayed

diagnosis since early initialization of treatment increases the prob-
ability for a favorable outcome. Taking this into consideration, our
method may provide additional insight in regard to ASD diagnosis.
Even though the neuroimaging studies in the field yielded inconsistent
results and are still not considered robust enough for a diagnostic tool,
our method may be used as a second opinion system for ASD detection,
as it may potentially unveil some useful patterns and findings for dis-
crimination of the disorder.
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