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Abstract

The distribution of fitness effects (DFE) of new mutations is a key parameter of molecular evolution. The DFE can in principle be

estimated by comparing the site frequency spectra (SFS) of putatively neutral and functional polymorphisms. Unfortunately, the DFE

is intrinsically hard to estimate, especially for beneficial mutations because these tend to be exceedingly rare. There is therefore a

strong incentive tofindoutwhetherconditioningonpropertiesofmutations thatare independentof theSFScouldprovideadditional

information. In the present study, we developed a new measure based on SIFT scores. SIFT scores are assigned to nucleotide sites

basedontheir level of conservationacrossamultispeciesalignment: themoreconservedasite, themore likelymutationsoccurringat

this site are deleterious, and the lower the SIFT score. If one knows the ancestral state at a given site, one can assign a value to new

mutations occurring at the site based on the change of SIFT score associated with the mutation. We called this new measure d. We

show that properties of theDFE as well as theflux ofbeneficialmutations across classes covary withd and, hence, that SIFT scores are

informative when estimating the fitness effect of new mutations. In particular, conditioning on SIFT scores can help to characterize

beneficial mutations.
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Introduction

Surprisingly, given their pivotal role in evolution, many aspects

of mutations and of the mutation process remain poorly

known. Uncertainty prevails, even regarding mutation rates,

a property that is often taken for granted (Moorjani et al.

2016). Another crucial aspect of mutations where knowledge

remains insufficient is their effect on fitness.

Depending on their effect on fitness, mutations can be

classified as deleterious, neutral, or beneficial. Although it is

widely accepted that most new mutations are neutral, the
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exact proportions of deleterious, neutral, or beneficial muta-

tions remain highly contentious (Galtier 2016). This is far from

anecdotal as the distribution of fitness effect (DFE) of new

mutations is at the heart of all theories of molecular evolution

and comparative genomics. The fitness effect of a new mu-

tation will influence the frequency at which it segregates in a

population and therefore the amount and nature of genetic

variation present in a given species. This in turn will condition

the evolutionary trajectory of the species. It is therefore crucial

to be able to estimate the DFE accurately and to understand

the factors that influence it. For instance, to what extent does

the DFE reflect the biology of the organism and to what ex-

tent is it influenced by its recent demographic history?

Unfortunately, the DFE is far from trivial to estimate even

though there have been major improvements in available

methods (Keightley and Eyre-Walker 2007; Tataru et al.

2017; Huang and Siepel 2019) since the seminal work of

Eyre-Walker et al. (2006). These advances, combined with

the surge in available genomic data and the widespread avail-

ability of multispecies genome alignments, as well as full ge-

nome resequencing data sets across many species, offer a

unique opportunity to learn more about mutation effects.

There are various approaches to characterize the fitness

effect of mutations from sequence data. Two groups of meth-

ods that have been particularly popular over the last two

decades are based on site conservation across species and

on analysis of the site frequency spectrum (SFS), respectively.

The key idea behind the first group of methods is that

mutations at sites that are highly conserved across species

are likely to be deleterious (Ng and Henikoff 2003; Davydov

et al. 2010). Many methods were developed to classify sites

based on this principle and they use different data and have

different merits (Ng and Henikoff 2003; Adzhubei et al. 2010;

Davydov et al. 2010; Huang et al. 2017; Rentzsch et al. 2019).

This approach has recently been used to characterize the im-

pact on fitness of amino acid changing mutations in humans

(Henn et al. 2016), sorghum (Valluru et al. 2019), or mam-

mals, in particular endangered species (Grossen et al. 2020;

van der Valk et al. 2020). In this article, we will use the pro-

gram SIFT4G (Sorting Intolerant From Tolerant For Genomes)

(Ng and Henikoff 2003; Vaser et al. 2016) and also relate our

work to a recent simulation study carried out by Huber et al.

(2020) that was based on another conservation measure,

GERP (Genomic Evolutionary Rate Profiling) (Davydov et al.

2010). Both methods assign a score to the site that measures

how much the site departs from the variation that would be

observed in an alignment if the sites were evolving neutrally.

Hence the resulting score indirectly measures how deleterious

mutations at the site are. The pros of this general approach

are that it makes single sites predictions, is readily available for

an increasing number of species, can easily incorporate addi-

tional covariates from in-depth functional genomic studies

and does not depend on elusive population genetics param-

eters (e.g., effective population size, Ne). However, it can be

misleading for predictions on extant variation and does not

directly estimate fitness effects.

Methods from the second group are based on polymor-

phism within species and estimate the DFE of new mutations

from comparisons of the SFS of putatively neutral and se-

lected sites, for instance synonymous and nonsynonymous

sites. Because the SFS can also be affected by demography

one needs to correct for it and different ways of doing so have

been devised (Eyre-Walker et al. 2006; Keightley and Eyre-

Walker 2007; Galtier 2016; Tataru et al. 2017; Tataru and

Bataillon 2019). The latest implementations of this approach

are not confined to deleterious mutations and allow the con-

sideration of both deleterious and beneficial mutations, al-

though it should be noted that estimating the fraction of

beneficial mutations is intrinsically more difficult than estimat-

ing deleterious ones, simply because beneficial mutations are

exceedingly rare. Estimation of the DFE has often been carried

out, for instance to test predictions of the nearly neutral the-

ory of molecular evolution (Castellano et al. 2019; Chen et al.

2020; Galtier and Rousselle 2020; Rousselle et al. 2020). In

contrast to the methods of the first group, methods based on

the DFE make inference about current patterns of variation

and are based on minimal assumptions on the conservation of

effects across species. Recent implementations also allow test-

ing for invariance or change of the DFE across species (Tataru

and Bataillon 2019). However, all DFE estimation methods

require a neutral baseline that accounts for biasing effects

of demography and population structure and do not provide

inference at single sites because the SFS is built upon (many)

exchangeable nucleotide sites.

Three major differences between the two approaches have

a direct impact on the way they can be combined. First, SFS-

based methods rely on population genetics assumptions and

directly provide estimation of (population-scaled) fitness dis-

tribution, whereas methods like SIFT4G only provide a con-

servation score that cannot directly be related to fitness, even

if qualitative inference are proposed (typically the tolerated/

deleterious classification). Second, SFS-based approaches,

only provide a statistical characterization of the DFE of a set

of mutations in a given population. The set can be the whole

genome or only a class of genes (e.g., with a specific genomic

location, a specific expression level, a specific gene ontology,

etc.). So nothing can be said about a specific variant (in the-

ory, the posterior probability of having a given selection co-

efficient could be obtained, however, there is almost no

information for a single mutation). In contrast, SIFT4G (and

related methods) does not provide a statistical description of

the DFE but attributes a score to every single position and

nucleotide state in a gene, including nonvariable positions

and allelic states that are not observed. In addition, it is not

population dependent as scores are given for a focal species

and are supposed to be valid for all individuals of the species.

The third and last difference relates to the second one but has

more subtle and technical implications. As already explained,
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SIFT4G gives a score to every possible state (nucleotide) at

every site. It is thus an absolute property of a site and we

could replace A, C, G, and T letters by SIFT scores, or more

practically by discrete categories, such as tolerated (TOL) and

deleterious (DEL). SFS-based methods, on the other hand, do

not consider states but mutations, so changes between two

states. Accordingly, the information used for inference is syn-

onymous and nonsynonymous changes, not states. A change

can be synonymous or nonsynonymous but a state at a given

position cannot. This leads to the problem of counting the

number of sites in such methods, where what can be counted

(or more properly, estimated) is not the number of synony-

mous and nonsynonymous sites but the number of opportu-

nities of synonymous and nonsynonymous mutations (see

extensive discussion of this problem in Bierne and Eyre-

Walker [2003]). A way to avoid this issue is to use mutations

at nucleotide sites that can be classified without ambiguity,

such as 0-fold and 4-fold degenerated codon positions, for

which there is only a single possibility of mutation so the state

can be characterized by the opportunity of mutation without

ambiguity.

Given these notable differences, making informed compar-

isons between these two groups of methods and predicting

when they will make converging predictions is challenging.

Recently, Huber et al. (2020) used computer simulations of

population genetics models of purifying selection to compare

the two approaches. More specifically, they related GERP

scores to the strength of purifying selection (measured as

the product of effective population size and selection coeffi-

cient, Nes). The GERP score is defined as the reduction in the

number of substitutions observed on the multispecies se-

quence alignment compared with the neutral expectation.

A high GERP score means that the observed number of sub-

stitutions is much less than expected and therefore that the

site is highly conserved. Mutations appearing at highly con-

served sites are accordingly given a high GERP score and this

agrees with the assumption that these mutations are strongly

deleterious. We would therefore expect high GERP scores to

be associated to highly negative values of Nes and low GERP

scores to be associated to values of Nes closer to zero. What

was observed, however, is that very highly negative values of

Nes are indeed associated to high GERP scores but values

closer to zero can basically take all possible GERP score values.

So, the GERP score may not be useful to detect selection

acting on individual mutations but it may be useful to separate

sites with moderately to strongly deleterious mutations from

mildly deleterious and nearly neutral ones. The study by Huber

et al. (2020) is important as it emphasizes the limits of using

methods based on evolutionary conservation to identify del-

eterious mutations in extant populations.

Here, we argue that although attempting to establish

equivalence of both approaches is not sensible, combining

estimates of the deleterious load obtained through both

SIFT4G and a DFE from SFS data is informative. We show

that previous approaches for inferring DFE conditional on cer-

tain type of mutations (e.g., AT to GC) can be leveraged to

build valid SFS for DFE estimation using SIFT score as covari-

ates. To test the robustness and range of applicability of our

approach, we apply it to an array of plant species varying in

effective population size and life history traits. In particular,

DFE estimation can be done for distinct classes of nonsynon-

ymous mutations defined from SIFT scores to quantify hetero-

geneity in DFE within genomes. Conditioning the DFE on a

measure, d, that captures the change in SIFT scores associated

with a mutation characterizes well the expected effect of the

mutation. We illustrate that changes in SIFT scores is a pow-

erful covariate to capture the expected effect of mutations

and we show that conditioning DFE on d leads to an improved

characterization of the properties of beneficial mutations and

may even allow us to identify mutations that are likely to be

beneficial.

Results

Combining DFE and SIFT Scores: Principle

How to properly combine the two kinds of information given

the differences between SIFT and DFE noted in the introduc-

tion? An overview of the different steps of our approach is

given in figure 1. SFS-based methods require the comparison

of at least two SFS, one serving as a neutral reference (typically

the synonymous SFS) and the other corresponding to the

mutations for which we want to infer fitness (typically the

nonsynonymous SFS). We may want to extend the approach

to other categories of mutations, for example, to take into

account the nature of nucleotides (A, T vs. G, C) to control for

the possible impact of GC-biased gene conversion (Rousselle

et al. 2019). If we want to infer the DFE for different SIFT

categories, the approach will be very similar. The example

below is given for two SIFT categories (TOL/DEL) as it is simpler

but this can be extended to any number of categories, as

shown in the next section. Variation at 0-fold and 4-fold sites,

respectively, is also used to avoid additional complications of

counting synonymous and nonsynonymous “positions.”

As a toy example, we consider a sequence with only three

codons and four individuals and a sequence representing the

ancestral states, so that mutations in the SFS can be polarized

as needed in PolyDFE (Tataru et al. 2017) (table 1).

The SIFT scores corresponding to this alignment and to all

possible alternative alleles are given in table 2. From this table

and the alignment, we can deduce the SFS (minimalist here)

for the different categories of SNPs. There are only four SNPs

in this example in positions 1, 3, 5, and 8, which can be clas-

sified as follows:

• Position 1: C! A: nonsynonymous TOL! TOL mutation

• Position 3: A! G: synonymous TOL! TOL mutation

• Position 5: G! T: nonsynonymous TOL! DEL mutation

• Position 8: A! C: nonsynonymous DEL! TOL mutation

DFE and SIFT Scores GBE
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Then we need to compute the total length for each cate-

gory of mutations, which is required for SFS-based methods.

To make the parallel with classical methods, this total length

corresponds to the total number of nonsynonymous and syn-

onymous “positions.” However, as already noted above,

these lengths do not correspond to physical positions but to

mutational opportunities. For example, in classical methods a

site at third codon position can typically be counted as 1/3

synonymous and 2/3 nonsynonymous (for a 2-fold degener-

ate amino acid). The same philosophy applies here but for SIFT

categories. To fully exemplify our counting procedure, calcu-

lations of the total length for the data in table 1 are given in

the lower part of table 2.

It is important to note that in this example, the three muta-

tions are equally likely, but transition/transversion ratio or

other bias can be incorporated if needed (as it is the case

for synonymous/nonsynonymous counts). In the above exam-

ple, eight SFSs can be defined. The natural choice is to use the

synonymous TOL! TOL SFS as the neutral reference and the

seven others SFS as potentially nonneutral categories for

which we want to infer separately a different DFE category.

Some SFS are likely to be empty or to contain very few counts:

typically, most synonymous mutations will be TOL ! TOL,

and categories DEL ! TOL or TOL! DEL will be empty for

synonymous mutations. However, to be more accurate it is

worth properly counting the length for each category.

Table 1

Sequences for the “Toy Example” Three-Codon Sequence

Ancestral Seq. C C A G G T C A G

Ind 1 — — G — — — — — —

Ind 2 A — — — — — — C —

Ind 3 — — G — — — — C —

Ind 4 A — — — T — — — —

Table 2

Sequences and SIFT Scores for the “Toy Example” Three-Codon Sequence

Codon 1 Codon 2 Codon 3

Nucleotides C C A G G T C A G

Degeneracy 0 0 4 0 0 4 0 0 4

SIFT for A TOL DEL TOL TOL DEL TOL TOL DEL TOL

SIFT for C TOL TOL TOL TOL DEL DEL TOL TOL TOL

SIFT for G DEL DEL TOL TOL TOL TOL TOL DEL TOL

SIFT for T DEL TOL TOL TOL DEL TOL DEL DEL TOL

Total

0 TOL! TOL 1/3 1/3 0 1 0 0 2/3 0 0 2.33

0 TOL! DEL 2/3 2/3 0 0 1 0 1/3 0 0 2.66

0 DEL! TOL 0 0 0 0 0 0 0 1/3 0 0.33

0 DEL! DEL 0 0 0 0 0 0 0 2/3 0 0.66

4 TOL! TOL 0 0 1 0 0 2/3 0 0 1 2.66

4 TOL! DEL 0 0 0 0 0 0 0 0 0 0

4 DEL! TOL 0 0 0 0 0 1/3 0 0 0 0.33

4 DEL! DEL 0 0 0 0 0 0 0 0 0 0

NOTE.—For each position, the SIFT score of the four possible nucleotides is given.
The nucleotides present in the alignment are in bold, with the score in italics corre-
sponding to the derived alleles. From this, each polymorphism can be assigned to a
degeneracy category (0 or 4) and a delta SIFT score category (TOL!TOL, TOL!DEL,
DEL !TOL, DEL !DEL). In the example, SNPs are thus classified as follows: 0-TOL
!TOL (pos. 1), 4-TOL!TOL (pos. 3), 0-TOL!DEL (pos. 5), and 0-DEL!TOL (pos. 8).
Each position also contributes to the length of the eight possible categories depend-
ing on the opportunity of mutations at this site. For example, at position 1, starting
from the ancestral nucleotide C (TOL), one possible mutation is TOL!TOL and the
two others are TOL!DEL, so this position contributes 1/3 the length of 0-TOL!TOL
category and 2/3 to the 0-TOL !DEL category. The contribution of all positions is
then summed across the ancestral sequence to obtain the total length of each
category.

FIG. 1.—Conceptual overview of the approach developed in the present study and of the steps (1–5) we take for conditioning SFS data on genomic

features. Here our genomic feature is the change in SIFT scores, d.
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Genome-Wide Characterization of Polymorphism, DFE,
and SIFT Scores

For all species, the distributions of SIFT scores are highly bi-

modal: sites are enriched at SIFT scores equal to 0 and 1 and

there is a dearth of intermediate values (supplementary fig.

S1, Supplementary Material online). Counts of polymor-

phisms, nucleotide diversity at 0-fold and 4-fold sites, p0

and p4, respectively, their ratio, p0=p4, and P0=P4, the ratio

of the counts P0 and P4 per class of change in SIFT score (see

Material and Methods), as well as DFE parameters estimated

with PolyDFEv2 are given for the 24 species in supplementary

file S1, Supplementary Material online. Because of the diver-

sity of life history traits and mating systems represented by the

24 species, there is a large range of synonymous nucleotide

diversity values and p0=p4 ratios. Classically pN=pS gives the

proportion of effectively neutral mutations and, as predicted

by the nearly neutral theory, pN=pS is negatively related to the

effective population size (Welch et al. 2008; Castellano et al.

2018; Chen et al. 2020). It is therefore a very informative

quantity which tends to covary strongly with the proportion

of mutations that fall in the class [�-1, 0] of Nes values in the

DFE. Throughout, we shall use P0=P4, measured from counts

and scaled according to their “lengths” as a proxy for pN=pS

(see Materials and Methods for details). Except for a few spe-

cies, the shape parameter of the gamma distribution of del-

eterious mutations is lower than 1, as already observed in

many other studies (Galtier 2016; Chen et al. 2020).

Conditioning on SIFT Score Change, d

To combine SIFT score and polymorphism data, we intro-

duced a new statistics. First, instead of considering the two

SIFT scores categories (TOL and DEL), we further divided the

scores into four discrete categories: fully conserved (FC, score

¼ 0), partly conserved (PC, score 2 (0, 0.05]), partly diverse

(PD, score 2 (0.05, 1)), and fully diverse (FD, score ¼ 1). Note

that the same principle can be applied to any number of cat-

egories. Then, we attributed the values, 0, �1, �2, and �3

for categories FD to FC. From this, we can define the change

in SIFT categories by simply taking the difference between

these values. For example, d ¼ �2 for change from FD to

PC, d ¼ þ1 from PC to FD, and d ¼ 0 if the two alleles

belong to the same category. We then analyzed the P0=P4

ratio and DFE characteristics for the different categories of

mutations defined by the change in SIFT categories (d).

To avoid having too much noise in the data, we filtered out

subsets with less than 100 0-fold SNPs and for which the

estimated polarization error rate was higher than 10%. We

also checked visually that the estimated polarization error rate

did not covary with the number of nonsynonymous SNPs in

the SFS or d (supplementary figs. S2 and S3, Supplementary

Material online). This left us with 23 species spanning n¼ 322

SFS distributed in the different d categories. P0=P4 ratio was

significantly correlated with d (P value ¼ 9:44e� 9). For

mutations in category 0-fold and d ¼ �3 P0=P4 ranges

from 0.043 to 0.1 at the 25–75% quantiles (0.078 at the

50% quantile) and increases with d. Especially for beneficial

mutations P0=P4 increases much faster, from 0.92 ((0.59,

1.50) for 25–75% quantiles) for slightly beneficial mutations

(0-fold and d ¼ 1) to 53.74 ((31.44, 131.7) for 25–75%

quantiles) for the most beneficial ones (0-fold and d ¼ 3)

(table 3). The relationship between P0=P4 and d is given in

figure 2. We used a series of linear mixed models to quantify

how much of the variation in P0=P4 can be accounted for by

variation in d. A linear model with d as predictor accounts for

ca. 72% of the variation in P0=P4 and a linear mixed model

with a random slope provides the best fit to the data (as

compared by AIC) although the gain in terms of R2 remains

very modest. We tested for the impact of the polarization

error, �, which was minimal (see supplementary file S3,

Supplementary Material online). Note that these analyses re-

main naive in the sense that they assume no phylogenetic

inertia among species included in our data set.

DFE Classes and d

We divided the deleterious portion of the DFE in four Nes

classes ([0, �1], (�1, �10], (�10, �100], and (�100, �1)

(table 4). Figure 3 provides an overview of the relationship

between the proportion of mutations in the different DFE

classes and d. The proportion of mutations belonging to the

strongly deleterious category falls regularly as d increases

whereas the proportion from the beneficial class follows the

opposite pattern. Mutations in the effectively neutral class [0,

�1] are mostly confined to negative d values as mutations

belonging to the (�1, �10] DFE class. In all three classes of

negative Nes, a nonnegligible proportion is still able to become

more beneficial, that is, be associated with a positive d, espe-

cially for the most deleterious class (�100, �1).

The Flux of Beneficial Mutations

Detecting beneficial mutations is notoriously difficult as they

are expected to be generally quite rare and therefore make a

modest contribution to SFS counts. d as a covariate is helpful.

The proportion of beneficial mutations (pb) increases with d
with a linear relationship for d ranging from �1 to 1 (pb, fig.

4A). Among the classes of mutations categorized as likely

deleterious (negative d), we have virtually zero flux of benefi-

cial mutations; however, as d increases, so does the flux of

beneficial mutations (pb � Sb, fig. 4B). For intermediate values

of d, the flux of beneficial mutations increases almost linearly

with d.

We used a series of generalized linear mixed models to

quantify how much of the variation in the proportion of ben-

eficial mutations can be accounted for by variation in d (see

supplementary text/report, Supplementary Material online).

To do so, we recorded whether each estimated DFE had a

proportion of beneficial mutation estimated to be above

DFE and SIFT Scores GBE
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10%, and used this as binary response variable (yes/no). A

logistic regression model with d as predictor provided the best

fit to the data (as compared by AIC) and it accounted for ca.

65% of the variation (as measured with the ratios of model

deviance). Here too, we tested for the impact of the polari-

zation error, �, which was minimal (see supplementary file S3,

Supplementary Material online). We note again that the gain

in fit provided by the random slope or random intercept in

terms of (pseudo) R2 remains modest. Note that this analy-

sis—as for the P0=P4 ratio variation—also assumes no phylo-

genetic inertia among species comprising our data.

Discussion

In the present study, we have explored the extent to which

conditioning SFS data on a measure of SIFT score change, d,

helps to parse further the variation in DFEs. Below we discuss

the salient features we uncovered, relate our findings to ear-

lier work and sketch a few directions where our new measure,

d, might be a useful covariate to further explore what drives

differences in DFE both among species and across genes or

types of mutations within species.

We have shown that our new measure based on SIFT

scores difference, d, explained up to 72% of the variation in

P0=P4 and up to 65% of the variation in properties of the DFE

such as the probability that the DFE will include more than

10% of beneficial mutations. The fact that a sizeable amount

of variation is explained by d is well illustrated by the substan-

tial covariation between d and the DFE classes. Because SIFT

scores reflect conservation across species and therefore long-

term evolution whereas the DFE is built on SFSs and reflects

the selective effect of mutations in extant populations, it was

not obvious that the two would be closely related. It suggests

that the DFE may well be altogether rather stable and

Table 3

P0=P4 as a Function of the Change in SIFT Score, d.

P0=P4

Fold d 25% 50% 75%

0 �3 0.043 0.078 0.10

0 �2 0.062 0.10 0.14

0 �1 0.14 0.18 0.29

0 0 0.20 0.34 0.51

0 1 0.59 0.92 1.50

0 2 1.55 3.75 8.25

0 3 31.44 53.74 131.70

FIG. 2.—Log(P0/P4) as a function of the change in SIFT scores, d: the

orange line denotes a least square regression, the blue curve a local re-

gression (loess). Data points are jittered horizontally for graphical conve-

nience. Shaded gray areas around the curves denote confidence bands

around each regression lines. Point size is proportional to the sample size

of each SFS (number of nonsynonymous SNPs).

Table 4

Distribution of the DFE Categories, Nes, as a Function of Site (0-fold vs. 4-

fold) and Changes in SIFT Score, d

Nes

Fold d pb ½0;�1� ð�1;�10� ð�10;�100� ð�100;�‘Þ
0 �3 2.3e-6 3e-2 6.4e-2 0.18 0.70

0 �2 3.2e-5 4.8e-2 8.5e-2 0.18 0.66

0 �1 1.5e-4 0.12 0.13 0.21 0.42

0 0 0.11 2.3e-3 1.8e-2 9.2e-2 0.52

0 1 0.60 1.5e-12 5.8e-9 9.9e-6 0.30

0 2 0.99 9.3e-3 2.8e-6 3.3e-5 2.3e-4

0 3 0.99 9.8e-3 8.6e-5 5.4e-6 1.3e-8

NOTE.—pb is the proportion of beneficial mutations.

FIG. 3.—Overview of the proportion of DFE classes versus d. Shown

are the local regression (loess) curves depicting the trend in the observed

proportion of mutations falling in each Nes class in the inferred DFE versus

d. In orange, the class of beneficial mutations (Nes > 0), in red, strongly

and very strongly deleterious (Nes within (�10, to �1), in light gray,

slightly deleterious (Nes within (-1, 0)), and in darker gray, mildly deleteri-

ous mutations (Nes within (�1,�10)). Note that the data points underlying

the fitted curves are not pictured in the figure.
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somewhat immune to the stochasticities of population de-

mography and environment, but instead constrained by in-

trinsic properties of a species such as genome characteristics

or life-history traits. This is in line with the results recently

obtained by Huang et al. (2021) showing that DFEs are highly

correlated between populations of the same species or of

closely related ones, or by Chen et al. (2017) showing that pN

=pS is almost constant across populations of the same species

or between domesticated species and their wild relatives.

Nevertheless, a large amount of variation remains unex-

plained and the d¼ 0 category still contains, depending on

the species considered, a large variation in the DFE. Our results

are, in this respect, reminiscent of those obtained by Huber et

al. (2020) when they investigated via simulations the expected

relationship between GERP scores and DFE categories. Huber

et al. (2020) observed that very highly negative values of Nes

are associated with high GERP scores (corresponding to low

SIFT scores) but values of Nes closer to zero can basically take all

possible GERP score values. They concluded that GERP scores

maynotbeuseful todetect selectionactingon individualmuta-

tions although they may be useful to separate sites with mod-

erately to strongly deleterious mutations from mildly

deleterious and nearly neutral ones. Our analysis relies on ex-

amining the DFE of subsets of mutations characterized by the

same d scores, whereas Huber simulated the range of scores

obtainedgivena rangeof Nes values (essentially the converseof

what we did), so a direct comparison is difficult. Nonetheless,

our results are consistent and confirm the simulation based

intuition of Huber et al. (2020): very highly negative values of

Nes are associated with negative d, and positive values of Nes

are associated with positive d, whereas intermediate values of

Nes dominated d values around zero and below zero. Methods

based on conservation such as SIFT or GERP implicitly assume

that evolutionary forceshavebeenconstant throughdeepevo-

lution, something that can be questioned and this puts a limit

the utility of these methods for inferring sites that are currently

under selection. In particular, Huber et al. (2020) show that a

model with functional turnover under which sites oscillate be-

tween functional and nonfunctional states fits the distribution

ofGERP scores across thegenomebetter thanamodelwithout

turnover. Hence, many factors may limit the power of conser-

vation scores to predict current selection. Yet, as shown here,

measures derived from these scores have a nonnegligible pre-

dictive power. In particular, mutations with delta � 2 have

93% chance of being beneficial, which makes the delta statis-

tics an efficient way to individually identify beneficial mutation

candidates.

Our study is not the first attempt to combine DFE and

predictive genome features such as SIFT scores. For instance,

the method implemented in the program LASSIE (Huang and

(a) (b)

FIG. 4.—The proportion (pb) (A) and flux (pbSb) (B) of beneficial mutations covary with d. The curve in (B) is a loess regression line indicating the local

trend in the data. The gray-shaded area represents the 95% confidence interval around the regression lines. Point size is proportional to the sample size of

each SFS (number of nonsynonymous SNPs) used for estimating DFE parameters.
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Siepel 2019) relies on two components, an estimation of the

DFE via a Poisson random field framework, which is very sim-

ilar in essence to the polyDFE method used here, and a neural

network to exploit numerous predictive genomic features,

including SIFT scores. Our approach differs from that of

Huang and Siepel (2019) in three major ways. First, our aim

was to use SIFT scores to aid in the estimation of the DFE

rather than in the prediction of mutations associated with

diseases. Second, as it stands LASSIE was developed for spe-

cies like humans and other model organisms for which there is

a large amount of local genomic features data. Our aim was

to develop a flexible method that could be applied to a large

array of species. Hence our choice of SIFT scores, which can

easily be obtained for new species as a covariate of interest to

condition SFS counts. Third, by focusing on SIFT scores and

their relation to the selective values of mutations instead of

using a large number of genomic features and machine learn-

ing, an approach primarily geared toward prediction, we may

gain in intuition what we loose in predictive power.

Perhaps more similar in spirit to our approach are the studies

by Bergman and Eyre-Walker (2019) that conditioned the SFS

on amino acids properties or by Moutinho et al. (2019), which

conditioned on protein structure covariates. Bergman and

Eyre-Walker (2019) showedthat the rateofadaptiveevolution,

as well as the rate of neutral evolution, is highest among the

pool of nonsynonymous mutations that entail changes toward

amino acids that are more similar. In our case, the flux of ben-

eficial mutations was highest for d � �1 values but the varia-

tion was rather large within each category. As for conservation

scores, the predictive power of any of these genomic features,

taken on their own, remains limited.

Examining the DFE properties conditional on d reveals that

ancestral mutations that were fixed in the past (and deemed

deleteriousvia their SIFT score) createagenomiccontextwhere

newmutationsthatcanreachahigherSIFTscore,areverylikelyto

containasizeablenumberofbeneficialmutations.Inthatrespect

thesizeableamountofbeneficialmutationsthatwedetectwith

our SFS-based methods reveal that the flux of beneficial muta-

tions in a population might depend on its current load of fixed

mutations.Achangeofstatusofapopulationmightcomefroma

shift in environmental conditionsor a shift of thepositionof the

specieswithrespecttoitsfitnessoptimum.Thiscouldthenleadto

anincreaseinbeneficialmutationsthatcanmitigatetheeffectof

thefixedmutation loadwithout requiring thepresenceof com-

pensatory mutations (PoonandOtto2000; BataillonandBailey

2014;Castellanoetal.2019)thatrevertdeleteriousallelesbackto

theiroriginal, fitter versions.

Materials and Methods

Species Used and Inference of Ancestral State

In this study, we selected 24 plant genomes (8 herbaceous

and 16 woody species) and polymorphic sites at 4–20

chromosomes within each species were identified (see sup-

plementary file S1, Supplementary Material online). As noted

above, we wanted a diverse array of species varying in effec-

tive population size and life history traits but the aim of the

present study was not to compare them. This will be done in a

subsequent study. For 11 species, the ancestral state for each

polymorphic site was inferred with two or three outgroup

sequences using the program est-sfs (Keightley et al. 2016).

For the remaining 13 species, the ancestral state was inferred

using the fixed sites of the outgroup.

Classification of Sites Based on Degeneracy and SIFT Score

We used the Uniref database (Suzek et al. 2015), to build a

database of SIFT scores for each of the 24 plant genomes. SIFT

scores were assigned to each of the four states (A, T, G, and

C) at every position in the genome, which can be calculated

based on the conservation of clustered amino acid alignments

of high similarity. Default settings recommended by the

authors were used (Vaser et al. 2016). A score equal to 0

corresponds to the most conserved sites and a score equal

to 1 to the least constrained sites. Classically, and as in the toy

example above, the sites are classified as deleterious if the

score 2 (0, 0.05] and tolerated otherwise (Ng and Henikoff

2003; Vaser et al. 2016). Here, we further divided the scores

into four discrete categories: fully conserved (FC, score ¼ 0),

partly conserved (PC, score 2 (0, 0.05]), partly diverse (PD,

score 2 (0.05, 1)), and fully diverse (FD, score ¼ 1). For every

site at which the ancestral state has been inferred, one can

then assign 16 “changes in conservation status” to all poten-

tial state changes from the ancestral state to the derived state

(e.g., FC ! FD, PC !PD, and so on). Combining these

“changes in conservation status” with the degeneracy (0-

fold and 4-fold) and considering those that are possible one

obtains a total of 20 possible mutation directions (hereafter

called “MD,” see supplementary table S1, Supplementary

Material online for details) at each site in the coding regions

of the genome. (Sift score is based on amino acid so once one

finds that the category changes, e.g., from FD ! PD, only

nonsynonymous changes are possible.) Like other SFS-based

methods, PolyDFE requires a “length” for each category of

mutation, so we thus defined the MD weights of each site as

their counts across all three possible changes from ancestral

state (e.g., a site can be assigned with 1/3 to 0-fold FC!FD

and 2/3 to FC !FC). Then to obtain the total “length” of

each MD category i, Li, we summed weights up over all k

positions in the genome Li ¼
P

k Wi;k.

Estimation of DFE and P0=P4

For each genome, we counted the number of polymorphic

sites of each frequency class to generate SFS for all MDs. We

estimated the distribution of fitness effects for new mutations

in the genome using polyDFEv2 (Tataru et al. 2017; Tataru

and Bataillon 2019, 2020). Estimation of the DFE in polyDFEv2
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assumes a mixture model for the underlying DFE. A propor-

tion, pb, of beneficial mutations is drawn from an exponential

distribution of mean Sb and a proportion 1� pb of mutations

have a negative selection coefficient drawn from a gamma

distribution with shape parameter b and mean Sd. The SFS of

4-fold FD! FD was used as the neutral category and the SFS

of the other 19 MD was used to estimate 19, potentially dif-

ferent, DFEs separately. We used the total “length” of each

MD category (the Li defined above) to scale the SFS of the

neutral category (4-fold FD ! FD) and that of the other 19

categories. To insure that sites with different delta scores are

comparable in terms of possible confounding factors we took

SNPs with a given delta SIFT score, say þ1, and then calcu-

lated their DFE with the SFS of synonymous SNPs located in

the same genes, rather than SNPs elsewhere in the genome.

Hence the two types of SNPs have the same background and

this should minimize the possibility that the relationship be-

tween SIFT score and the DFE, or statistics derived from it, is

caused by other factors. The effect of using only synonymous

SNPs from the same genes or from all genes on the main

results was minor as shown, for instance, by the comparison

of the results obtained with the two approaches in tables 3

and 4 where synonymous sites from the same genes were

used and in supplementary tables S2 and S3, Supplementary

Material online, where synonymous sites from all genes were

used.

Finally, we also defined the ratio P0=P4 by calculating P0

and P4 and scaling them by Li for each MD class, respectively.

More specifically we have P0 ¼ ðn0 þ 1Þ=L0, where n0 is the

number of 0-fold polymorphic sites counted along a sequence

of length L0, and P4 ¼ ðn4 þ 1Þ=L4, where n4 is the number

of 4-fold polymorphic sites counted along a sequence of

length L4. We added 1 to the count of polymorphic site to

avoid possible dividing by 0 (see, e.g., Welch [2006]).

SIFT d Scores

In order to study the dynamics of changes in SIFT scores and

relate it to the DFE, we further assigned four values (�3 to 0)

to the four SIFT categories defined previously: FC (�3), PC

(�2), PD (�1), and FD (0). All 20 MD can then be ranked with

a SIFT “d” score, that is obtained by calculating the difference

between the values assigned to two mutation states (e.g., FC

! FD will have a “d” score of þ3). Mutations with higher d
values are more likely to be beneficial (i.e., less deleterious)

and mutations entailing low d score values are more likely to

be deleterious. The effectively neutral part of the DFE is

expected to harbor mutations characterized by d scores of

mixed sign and close to 0, so typically between �1 and þ1.

In theory, we could also study selection on synonymous muta-

tions by leveraging d scores but we decided to focus our

analyses on nonsynonymous mutations.

The Flux of Beneficial Mutations

When it comes to estimating the effect of beneficial muta-

tions, focus has often been on a, the proportion of amino acid

changing mutations that are beneficial (Smith and Eyre-

Walker 2002; Galtier 2016). Most published estimates of a
are obtained by contrasting observed patterns of nonsynon-

ymous divergence with the ones expected given the deleteri-

ous DFE and the observed synonymous divergence. Doing so

implies that one assumes that the intensity of purifying selec-

tion remains constant during divergence. Violation of the as-

sumption of constant intensity of purifying selection during

divergence with the outgroup will automatically inflate or bias

downward the estimate of the contribution of beneficial

mutations (see Eyre-Walker 2002; Rousselle et al. 2018;

Tataru and Bataillon 2019). Testing for the presence of ben-

eficial mutations without relying on divergence counts is the-

oretically feasible (see, e.g., Schneider et al. 2011; Tataru and

Bataillon 2019; Moutinho et al. 2020) but has seldom been

done.

Likelihood ratio tests for the occurrence of beneficial muta-

tions relying solely on counts in the SFS and not divergence

counts are available but have limited power, unless large

amounts of SNPs are available in SFS data. How to increase

the power of these tests? One possibility is to focus on sets of

genes or genomic regions that are known to harbor more

beneficial mutations. These include, among others, genes in-

volved in immunity, sex-linked genes or genes encoding pro-

teins that contain proportionally more exposed residues

(Moutinho et al. 2020 and references therein). However, by

doing so there is a risk of circularity because we search for

beneficial mutations where we think we should find beneficial

mutations. Here, instead of first focusing on specific gene

sets, we propose to use SFS conditioned on d. In particular,

we test whether the DFEs estimated for each d covary with pb,

the proportion of beneficial mutations (irrespective of muta-

tion effect Sb), and with the product pb � Sb that corresponds

to the flux of (usable) beneficial mutations. The rationale for

using this composite product is 2-fold: under strong selection-

weak mutation (SSWM) limit it scales with the amount of new

mutations that are not lost early on through drift and there-

fore are available for adaptation. Second the product pb � Sb

is statistically better behaved than pb and Sb taken separately

as pb and Sb tend to strongly covary (Schneider et al. 2011;

Tataru and Bataillon 2019).

All statistical analyses were carried out using the statistical

language R (R Core Team 2013). To examine the covariation

between DFE properties and d, we used linear or generalized

(mixed) models where we used P0=P4 ratios or properties of

the DFE as response variables. We used R2 and pseudo R2 of

models to quantify the amount of variation in DFE properties

explained by d. We also checked that the amount of variation

explained by d was not confounded by �, the rate of SNPs

misorientation when building derived SFS, and by GC3
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content. To do so, both variables were used as predictors in

the models and variance inflation factors were computed us-

ing the vif() function of the R car package (Fox and Weisberg

2011) to check for co-linearity between d and � or GC3 con-

tent. Overall, models selection was insensitive to including/

excluding � or GC3 content in predictors along with d.

Moreover, the (pseudo) R2 of the best models were barely

affected by including � or GC3 content and variance inflation

factors where low (<1.2), so for simplicity we only report the

effect of d in the main text. A supplementary text,

Supplementary Material online describing the full statistical

analysis of the data is available as commented R markdown

documents (supplementary file S4, Supplementary Material

online).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.

Acknowledgments

This work was supported by a grant from the Chinese

Research Council to J.C. and a grant from the Swedish

Research Council to M.L. Jun Chen was financially supported

by National Natural Science Foundation of China (31972946).

We are grateful to Dr Jennifer James for editing and com-

menting the manuscript. Finally, we would like to thank Dr

Tim Sackton and Dr Russ Corbett-Detig for the invitation to

participate to this special issue and anonymous reviewers for

constructive comments on the manuscript.

Data Availability

Data and code are deposited on a Github site: https://github.

com/tbata/delta-sift-polydfe.

Literature Cited
Adzhubei IA, et al. 2010. A method and server for predicting damaging

missense mutations. Nat Methods. 7(4):248–249.

Bataillon T, Bailey SF. 2014. Effects of new mutations on fitness: insights

from models and data. Ann N Y Acad Sci. 1320(1):76–92.

Bergman J, Eyre-Walker A. 2019. Does adaptive protein evolution proceed

by large or small steps at the amino acid level? Mol Biol Evol.

36(5):990–998.

Bierne N, Eyre-Walker A. 2003. The problem of counting sites in the es-

timation of the synonymous and nonsynonymous substitution rates:

implications for the correlation between the synonymous substitution

rate and codon usage bias. Genetics 165(3):1587–1597.

Castellano D, James J, Eyre-Walker A. 2018. Nearly neutral evolution

across the Drosophila melanogaster genome. Mol Biol Evol.

35(11):2685–2694.

Castellano D, Maci MC, Tataru P, Bataillon T, Munch K. 2019. Comparison

of the full distribution of fitness effects of new amino acid mutations

across great apes. Genetics 213(3):953–966. genetics.302494.2019.

Chen J, Gl�emin S, Lascoux M. 2017. Genetic diversity and the efficacy of

purifying selection across plant and animal species. Mol Biol Evol.

34(6):1417–1428.

Chen J, Gl�emin S, Lascoux M. 2020. From drift to draft: how much do

beneficial mutations actually contribute to predictions of Ohta’s

slightly deleterious model of molecular evolution? Genetics

214(4):1005–1018.

Davydov EV, et al. 2010. Identifying a high fraction of the human genome

to be under selective constraint using GERPþþ. PLoS Comput Biol.

6(12):e1001025.

Eyre-Walker A. 2002. Changing effective population size and the

McDonald-Kreitman test. Genetics 162(4):2017–2024.

Eyre-Walker A, Woolfit M, Phelps T. 2006. The distribution of fitness

effects of new deleterious amino acid mutations in humans.

Genetics 173(2):891–900.

Fox J, Weisberg S. 2011. An R companion to applied regression. 2nd ed.

Thousand Oaks (CA): Sage.

Galtier N. 2016. Adaptive protein evolution in animals and the effective

population size hypothesis. PLoS Genet. 12(1):e1005774.

Galtier N, Rousselle M. 2020. How much does Ne vary among species?

Genetics 216(2):559–572. genetics.303622.2020.

Grossen C, Guillaume F, Keller LF, Croll D. 2020. Purging of highly dele-

terious mutations through severe bottlenecks in Alpine ibex. Nat

Commun. 11(1):1001–1012.

Henn BM, et al. 2016. Distance from sub-Saharan Africa predicts muta-

tional load in diverse human genomes. Proc Natl Acad Sci U S A.

113(4):E440–E449.

Huang X, et al. 2021. Inferring genome-wide correlations of mutation

fitness effects between populations. Mol Biol Evol. Advance Access

published May 27, 2021, doi:10.1093/molbev/msab162.

Huang Y-F, Gulko B, Siepel A. 2017. Fast, scalable prediction of deleterious

noncoding variants from functional and population genomic data. Nat

Genet. 49(4):618–624.

Huang Y-F, Siepel A. 2019. Estimation of allele-specific fitness effects

across human protein-coding sequences and implications for disease.

Genome Res. 29(8):1310–1321.

Huber CD, Kim BY, Lohmueller KE. 2020. Population genetic models of

GERP scores suggest pervasive turnover of constrained sites across

mammalian evolution. PLoS Genet. 16(5):e1008827.

Keightley PD, Campos JL, Booker TR, Charlesworth B. 2016. Inferring the

frequency spectrum of derived variants to quantify adaptive molecular

evolution in protein-coding genes of Drosophila melanogaster.

Genetics 203(2):975–984.

Keightley PD, Eyre-Walker A. 2007. Joint inference of the distribution of

fitness effects of deleterious mutations and population demography

based on nucleotide polymorphism frequencies. Genetics

177(4):2251–2261.

Moorjani P, Gao Z, Przeworski M. 2016. Human germline mutation and

the erratic evolutionary clock. PLoS Biol. 14(10):e2000744.

Moutinho AF, Bataillon T, Dutheil JY. 2020. Variation of the adaptive

substitution rate between species and within genomes. Evol Ecol.

34(3):315–338.

Moutinho AF, Trancoso FF, Dutheil JY. 2019. The impact of protein

architecture on adaptive evolution. Mol Biol Evol.

36(9):2013–2028.

Ng PC, Henikoff S. 2003. SIFT: predicting amino acid changes that affect

protein function. Nucleic Acids Res. 31(13):3812–3814.

Poon A, Otto SP. 2000. Compensating for our load of mutations: freezing

the meltdown of small populations. Evolution 54(5):1467–1479.

R Core Team 2013. R: A language and environment for statistical com-

puting. Vienna (Austria): R Foundation for Statistical Computing.

Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. 2019. CADD:

predicting the deleteriousness of variants throughout the human ge-

nome. Nucleic Acids Res. 47(D1):D886–D894.

Chen et al. GBE

10 Genome Biol. Evol. 14(1) doi:10.1093/gbe/evab151 Advance Access publication 26 June 2021

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab151#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab151#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab151#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab151#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab151#supplementary-data
https://github.com/tbata/delta-sift-polydfe
https://github.com/tbata/delta-sift-polydfe


Rousselle M, et al. 2020. Is adaptation limited by mutation? A timescale-

dependent effect of genetic diversity on the adaptive substitution rate

in animals. PLoS Genet. 16(4):e1008668.

Rousselle M, Laverr�e A, Figuet E, Nabholz B, Galtier N. 2019. Influence of

recombination and GC-biased gene conversion on the adaptive and

nonadaptive substitution rate in mammals versus birds. Mol Biol Evol.

36(3):458–471.

Rousselle M, Mollion M, Nabholz B, Bataillon T, Galtier N. 2018.

Overestimation of the adaptive substitution rate in fluctuating popu-

lations. Biol Lett. 14(5):20180055.

PSchneider A, Charlesworth B, Eyre-Walker A, Keightley PD. 2011. A

method for inferring the rate of occurrence and fitness effects of ad-

vantageous mutations. Genetics 189(4):1427–1437.

Smith NGC, Eyre-Walker A. 2002. Adaptive protein evolution in

Drosophila. Nature 415(6875):1022–1024.

Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH. 2015. UniRef clusters:

a comprehensive and scalable alternative for improving sequence sim-

ilarity searches. Bioinformatics 31(6):926–932.

Tataru P, Bataillon T. 2019. polyDFEv2. 0: testing for invariance of the

distribution of fitness effects within and across species.

Bioinformatics 35(16):2868–2869.

Tataru P, Bataillon T. 2020. Statistical population genomics. Methods Mol

Biol. 2090:125–146.

Tataru P, Mollion M, Gl�emin S, Bataillon T. 2017. Inference of distribution

of fitness effects and proportion of adaptive substitutions from poly-

morphism data. Genetics 207(3):1103–1119.

Valluru R, et al. 2019. Deleterious mutation burden and its association with

complex traits in sorghum (Sorghum bicolor). Genetics

211(3):1075–1087.

van der Valk T, de Manuel M, Marques-Bonet T, Guchanski K. 2020.

Estimates of genetic load in small populations suggest frequent purg-

ing of deleterious alleles. bioRxiv, 696831. doi: https://doi.org/10.

1101/696831.

Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. 2016. Sift missense

predictions for genomes. Nat Protoc. 11(1):1–9.

Welch JJ. 2006. Estimating the genomewide rate of adaptive protein evo-

lution in Drosophila. Genetics 173(2):821–837.

Welch JJ, Eyre-Walker A, Waxman D. 2008. Divergence and polymor-

phism under the nearly neutral theory of molecular evolution. J Mol

Evol. 67(4):418–426.

Associate editor: Tim Sackton

DFE and SIFT Scores GBE

Genome Biol. Evol. 14(1) doi:10.1093/gbe/evab151 Advance Access publication 26 June 2021 11

https://doi.org/10.1101/696831
https://doi.org/10.1101/696831



