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Abstract: La0.9Sr0.1FeO3 perovskite, prepared by the microwave-assisted method, was capped
with cetyl trimethyl ammonium bromide (CTAB) cationic surfactant, and applied as a sorbent for
the removal of the anionic Congo red (CR) dye from aqueous solutions. X-ray diffraction (XRD)
patterns showed that the perovskite structure was not affected by capping; however, the particle
size increased. There was a hipsochromic shift in the value of λmax of the CR absorption spectrum
in the presence of CTAB, which indicated the formation of an oppositely charged dye–surfactant
complex. The adsorption efficiency of CTAB-capped La0.9Sr0.1FeO3 was independent of the pH of
the solution—equilibrium was reached after a few minutes. The value of the maximum adsorption
capacity, qm, was 151.52 mg·g−1, which was 10-times higher than that of the pure perovskite.
The proposed sorbent maintained its excellent sorption ability in the presence of the sample matrix;
therefore, it can be regenerated and reused with unchanged performance.
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1. Introduction

Surfactants are organic compounds that can be used to decrease the surface tension of liquids.
A surfactant consists of both hydrophilic (heads) and hydrophobic (tails) groups; therefore, it can be
used in detergents, wetting and foaming agents, dispersants, etc. It can be classified according to the
charge of its hydrophilic groups into cationic, anionic, non-ionic, and Zwitter-ionic surfactants [1].
Surfactants have various important applications in many fields, they can be added during the synthesis
of nanoparticles to prevent coagulation, since they act as a stabilizer. This is particularly important
in the synthesis of magnetic nanoparticles [2–5]. Surfactants and their composites can be used for
water and wastewater decontamination, where they can be used to remove oppositely charged toxic
metal ions and organic compounds via strong electrostatic attractions [6–8]. They can also be used for
the corrosion protection of metals that can from an oxide layer, where surfactants can be adsorbed
onto the oxide layer, providing a protective coating for the metal [9–11]. Surfactants were also used to
improve the electrochemical sensing performance of many compounds and drugs [12–15] and catalytic
processes [16–20].

Perovskites are mixed nano-oxides of the general formula ABO3, where A is a lanthanide or an
alkali earth metal and B is a transition metal. Perovskites are interesting materials because a wide
range of properties can result from a large number of possible metal ion combinations that can form the
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perovskite structure [21,22]. Perovskites have several important applications, for example in catalysis,
sensors [23–25], and as sorbents for water decontamination [26–28].

Organic dyes constitute a major source of pollution in wastewater produced from many industries,
which poses a threat to the water quality and the life of living beings [29]. The removal of organic
dyes using perovskite sorbents was reported in the literature. SrTiO3 nanoparticles were used for the
removal of the anionic congo red (CR) [30], and the cationic malachite green dye [31]. Silica-coated
LaMnO3 perovskite was used for the removal of cationic methylene blue and anionic methyl orange
dyes [32]. La0.5Pb0.5MnO3 [33] and La0.5Ca0.5NiO3 [34] were used for the removal of Eosin dye and
reactive blue, respectively.

Cetyl trimethyl ammonium bromide (CTAB) is a cationic surfactant, CTAB-modified materials
can be used for the removal of the anionic CR dye from aqueous solutions, such as CTAB/chitosan [35],
CTAB/chitosan hydrogel beads [36], CTAB/tea waste [37], CTAB/hectorite [38], CTAB/kaolin [39],
CTAB/bentonite [40], and CTAB/graphene oxide [41].

Most perovskites have a negative charge under neutral conditions [26]; therefore, a cationic
surfactant can be easily adsorbed onto the perovskite surface and used for the removal of negatively
charge ions or anionic dyes from water. The combination of CTAB and perovskites has not
been previously reported. Therefore, in this work, La0.9Sr0.1FeO3 perovskite, prepared by the
microwave-assisted method, will be capped by CTAB and then employed as an adsorbent for
CR dye from aqueous solutions and real samples. Factors affecting the adsorption process such as pH,
contact time, initial dye concentration, and temperature will be studied and optimized. The sorption
performance of CTAB-capped La0.9Sr0.1FeO3 perovskite is compared with the pure perovskite and with
other reported CTAB-capped materials. A method for the sorbent regeneration and reuse is examined.

2. Results and Discussions

2.1. Characterization of CTAB-capped La0.9Sr0.1FeO3 Perovskite

Structural characterizations of pure and CTAB-capped La0.9Sr0.1FeO3 perovskites were carried
out by XRD and FTIR, to show the effect of surfactant capping on the perovskite structure and to
prove that the modification was successfully performed. Figure 1A shows XRD patterns of pure and
CTAB-capped samples. Similar XRD patterns were noticed for both samples, indicating that surfactant
capping did not affect the perovskite structure. By comparing data to the standard LaFeO3, ICDD card
number: 88-641, all diffraction peaks were indexed to corresponding planes, as indicated in Figure 1A.

The phase identification showed that a single orthorhombic phase of LaFeO3 was formed, with
higher d-values than those of the standard LaFeO3 sample. This was due to the partial replacement
of the smaller La3+ ions with the larger Sr2+ ions [26]. However, two differences can be observed
between XRD spectra of pure and CTAB-capped perovskites, peaks were narrower and shifted to
higher d-values due to the surfactant modification, which indicated that the particle size is higher in the
CTAB-capped sample compared to that in pure CTAB. The calculated average particle sizes, using the
Schererr equation [42] were 30.8, 45.3 nm, for pure and CTAB-capped samples, respectively. The second
difference is the lower peak intensities in the case of the CTAB-capped sample, which indicated that
there was an interaction between the perovskite and CTAB, this interaction was also indicated in the
FTIR data.

Figure 1B shows FTIR spectra of pure and CTAB-capped La0.9Sr0.1FeO3 perovskites.
The characteristic Fe-O stretching band of the perovskite FeO6 octahedral group appeared in both
samples at 559 cm−1 [26]. Furthermore, a strong band at 3404 cm−1 can be observed, which was assigned
to the O-H stretching vibration of adsorbed water. Additional bands at 2918 and 2850 cm−1 appeared
only in the FTIR spectrum of the CTAB-capped sample. These bands were due to the C-H stretching
vibration of -CH3 and -CH2 groups of CTAB, respectively. A weak band appeared at 1468 cm−1,
which was assigned to N+-CH3 absorption—this band had a strong signal in the FTIR spectrum of
pure CTAB [6,43]. However, in the case of the CTAB-capped perovskite FTIR spectrum, the intensity
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of this band was weak, which indicated that there was an interaction between the perovskite and
CTAB through its ammonium moiety. The appearance of these bands proved that the CTAB surfactant
modification of La0.9Sr0.1FeO3 perovskite was successful. At a pH value > the point of zero charge,
the perovskite acquired negative charges, which can attract the ammonium moieties in CTAB, resulting
in the CTAB-capped perovskite [26,31].
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Figure 1. XRD patterns (A) and FTIR spectra (B) of pure and CTAB-capped La0.9Sr0.1FeO3.
Corresponding Miller indices and wavenumbers are indicated.

The measured BET surface area values for pure and CTAB-capped La0.9Sr0.1FeO3 were 3.9 and
2.3 m2

·g−1, respectively. The CTAB modification decreased the perovskite surface area.
The surface morphology of prepared samples was studied by SEM. Figure 2 shows SEM images of

pure and CTAB-capped La0.9Sr0.1FeO3 samples. The pure La0.9Sr0.1FeO3 consisted of an interconnected
bone-like network, Figure 2A. Upon the surfactant modification, SEM imaging, Figure 2B, shows that
perovskite grains were more conjoined, thereby reducing interfacial spaces, as compared to the pure
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sample, Figure 2A. This clearly showed the decreased porosity and, therefore, the decreased surface
area of the perovskite by the modification with CTAB.
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2.2. Application of CTAB-capped La0.9Sr0.1FeO3 Perovskite as a Sorbent for CR Dye

The absorption characteristic of the non-adsorbed CR dye in the solution was different when
different sorbents were used—pure and CTAB-capped La0.9Sr0.1FeO3 perovskites. Figure 3 shows the
visible spectrum of the remaining CR dye, non-adsorbed in the solution, after batch experiments were
performed using different sorbents. In the case of using the pure La0.9Sr0.1FeO3, the visible spectrum
was normal with a maximum wavelength, λmax, of 498 nm, as reported in the literature [26]. On the
other hand, the use of CTAB-capped La0.9Sr0.1FeO3 resulted in a decreased λmax value, at 466 nm,
showing a hipsochromic shift. CR dye is an anionic dye, while CTAB is a cationic surfactant; therefore,
an oppositely charged dye–surfactant complex is formed. This can cause a dye dimerization in the
presence of the surfactant and a decrease in the dye absorbance value. It was reported that the dye
dimerization could occur at a high dye concentration or in the presence of large molecules [44]. It can
be seen that in the presence of CTAD—the surfactant-capped perovskite—the absorbance value of
the non-adsorbed CR dye was largely decreased compared to that of the pure perovskite sorbent,
which reflected the enhanced sorption ability of La0.9Sr0.1FeO3 for the anionic CR dye as a result of
being capped with a cationic CTAB surfactant.

1 
 

 

Figure 3. Visible absorption spectra of remaining CR dye in solutions by using (A) pure,
and (B) CTAB-capped La0.9Sr0.1FeO3 sorbents at pH = 6, the dye concentration = 10 ppm, contact
time = 24 h, at 25 ◦C.

2.2.1. Effect of pH on the Adsorption Performance

It is well known that the pH value can greatly affect the removal efficiency of a sorbent. For most
perovskites, the point of zero charge is about 5 [26,31]. Therefore, the perovskite is positively charged
at pH < 5, and it is expected to have its highest sorption ability for the anionic dye under acidic
conditions. Figure 4. shows the dependence of the removal % of CTAB-capped La0.9Sr0.1FeO3 for CR
on the pH of the dye solution. It can be shown that the adsorption performance was independent of
the pH. A high value of the removal % was noticed at any pH value. This can be explained on the
basis that the positively charged CTAB-perovskite sorbent can attract the negatively charged CR dye
regardless of the pH value. Therefore, the proposed sorbent is suitable to be used in applications as it
possesses a superior performance, irrespective of the operating pH. In the next sections, the optimum
pH value will be taken to be 6, since it is close to neutral conditions and shows a removal % of 98.8%.
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2.2.2. Kinetic Study

The effect of the contact time was examined by estimating the adsorbed dye concentrations at
different times, extended to 2 h, to identify the equilibrium position and to investigate the kinetics of
the adsorption process. Figure 5A shows the relation between the removal % of CR by CTAB-capped
La0.9Sr0.1FeO3 and the contact time. It can be shown that the equilibrium is reached very fast,
the removal % is ~97% at the start of the experiment. This reflected the possibility of applying the
present sorbent in the field use, as it offered a rapid dye uptake.

The 1st and 2nd order models are given by Equations (1) and (2), respectively [45–48]:

log(qe − qt) = logqe −
K1

2.303
t (1)

t
qt

=
1

K2qe
+

t
qe

(2)

where qe, qt were the adsorbed amounts in mg·g−1 at equilibrium, and at time t (min), respectively.
K1 and K2 were first- and second-order rate constants, respectively.

It was found that the adsorption data did not fit the pseudo 1st order model at all, while it perfectly
fitted the pseudo 2nd order model, as shown in Figure 5B. This implied that the surface reaction
between the positively charged surfactant-capped perovskite and the negatively charged dye was the
rate-determining step rather than the adsorption of dye on the sorbent active sites. In addition, it
reflected the possibility of a dynamic equilibrium between the adsorbate and surface sites during the
diffusion through the sorbent pores [49]. The experimental qe value calculated from the pseudo 2nd
order model matches well with the theoretical value, 5.21 and 5.16 mg·g−1, respectively. The calculated
value of the rate constant, K2, was 0.42 g·mg−1

·min−1.
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2.2.3. The Effect of the Initial Dye Concentration

Batch experiments were conducted by using different initial dye concentrations, 10–100 ppm, to
examine the effect of the dye concentration. Figure 6A shows the relation between the removal % and
the initial concentration of CR dye; the removal % increased as the dye concentration increased.

Adsorption data were fitted to Langmuir and Freundlich isotherms to deduce the mechanism
of adsorption and to estimate the maximum adsorption capacity, qm, of CTAB-capped La0.9Sr0.1FeO3

for CR dye. Langmuir and Freundlich isotherms can be expressed by the following equations,
respectively [35,45–48]:

Ce

qe
=

1
qmb

+
Ce

qm
(3)

lnqe = lnK f +
1
n

lnCe (4)

where b was Langmuir constant, Kf and n were Freundlich isotherm constants.
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Figure 6B,C represent Langmuir and Freudlich isotherms, respectively. Correlation coefficient
values were 0.9863 and 0.9994, respectively. This showed that the adsorption data were better fitted
using the Freundlich isotherm, i.e., the CR adsorption was a monolayer on heterogeneous sites of
the CTAB-capped perovskite. The calculated qm value was 151.52 mg·g−1. In a previous study, Ali
and Al-Oufi reported the qm value of pure La0.9Sr0.1FeO3 as 13.89 mg·g−1 [26], indicating that CTAB
modification enhanced the sorption performance of La0.9Sr0.1FeO3 for CR dye by approximately
10 times. Despite the decreased particle size, surface area, and porosity of the perovskite upon
surfactant capping, the CTAB-capped sample showed a superior adsorption ability with respect to the
pure perovskite.

The calculated value of the Langmuir constant, b, was 0.0058 L·mg−1, and the Freundlich constants,
Kf and n, were 0.99 and 1.09, respectively. The separation factor, RL, (dimensionless) can be calculated
from the following equation [35]:

RL =
1

1 + bCo
(5)

The value of RL can indicate whether the adsorption was favored or not, where RL = 0 (irreversible),
1 > RL > 0 (favored adsorption), RL = 1 (linear), and RL > 1 (unfavorable). The calculated RL value was
0.63, which indicated the favorable adsorption of CR dye on the CTAB-capped La0.9Sr0.1FeO3 perovskite.

2.2.4. The Adsorption Mechanism

The proposed adsorption mechanism involved three steps: (1) the electrostatic attractions
between the positively charged CTAB heads and the negatively charged perovskite surface, forming
a monolayer of CTAB-capped perovskite with tails pointed outwards. (2) Formation of a surfactant
bilayer through tail–tail hydrophobic interactions, with positively charged heads pointed outwards.
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(3) Strong electrostatic attractions between positively charged heads and negatively charged CR
dye [37], Scheme 1.
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Scheme 1. Represented CR Adsorption mechanism by CTAB-capped La0.9Sr0.1FeO3.

In addition, a comparison with other CTAB-capped sorbents for CR dye is presented in Table 1.
It can be shown that CTAB-capped La0.9Sr0.1FeO3 perovskite exhibited a considerable high-sorption
performance. Although it did not show the highest qm value among the CTAB-modified materials
presented, the proposed sorbent maintained its high performance at all pH values and showed a rapid
dye uptake.

Table 1. A comparison of the sorption performance of CTAB-capped La0.9Sr0.1FeO3 with reported
CTAB-modified materials for the CR removal.

Sorbent qm (mg·g−1) Optimum pH Conditions Equilibrium Time/min. Reference

CTAB-chitosan beads 94.4 Acidic 240 [35]
CTAB-chitosan hydrogel beads 433.1 Acidic 240 [36]
CTAB-Tea waste 106.4 Independent 30 [37]
CTAB-Hectorite 182.0 Independent 120 [38]
CTAB-Kaolin 24.5 Alkaline 10 [39]
Bentonite-CTAB 210.0 Independent 90 [40]
graphene oxide-CTAB 2767.0 Acidic 60 [41]
CTAB-La0.9Sr0.1FeO3 151.5 Independent Less than 5 This work

The sorption performance of the proposed sorbent for CR dye in the presence of a real sample
matrix, taken from factory wastewater in Cairo, Egypt, was investigated. The calculated qm value was
143.23 mg·g−1; therefore, CTAB-capped perovskite maintained its excellent performance despite the
matrix interferences.

2.2.5. Temperature Effect

Figure 7A shows the dependence of the removal % of CTAB-capped La0.9Sr0.1FeO3 for CR on
temperature. The removal % continued to increase with the temperature increase.
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Standard enthalpy and entropy changes, ∆Ho and ∆So, therefore, can be calculated by constructing
the transition-state plot, according to the transition-state equation [35,45–48]:

ln K =
∆So

R
−

∆Ho

R
(

1
T
) (6)

K =
CAd
Ce

(7)

where K was the equilibrium constant, CAd and Ce were concentrations of adsorbed dye on the sorbent
and non-adsorbed dye in solution, respectively.

The transition-state plot is shown in Figure 7B. Calculated values of ∆Ho and ∆So were
10.95 kJ·mol−1 and 54.12 J·mol−1

·K−1, respectively. This indicated that the adsorption is exothermic
and the disorder is increased by the adsorption of CR on the CTAB-capped perovskite surface.

The value of the standard Gibbs free energy change, ∆Go, can be calculated using the
following equation:

∆Go = ∆Ho
− T∆So (8)

The calculated ∆Go value, was −4.91 kJ·mol−1, i.e., a spontaneous adsorption at room temperature.
The value of the activation energy, Ea, can be calculated from the slope of the Arrhenius plot,

which is shown in Figure 7C. The value was found to be 47.84 kJ·mol−1, which indicated that the
adsorption of CR on CTAB-capped La0.9Sr0.1FeO3 perovskite is a chemisorption—it involved an
electrostatic attraction between the positively charged sorbent and the negatively charged dye [26].
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2.2.6. The Sorption Performance by Repeated Use and its Regeneration

CTAB-capped La0.9Sr0.1FeO3 perovskite was used for several cycles to examine its sorption ability
with repeated use. Figure 8 shows the change of the removal % for CR dye with the number of use
cycles, indicated by the black columns. The removal % is decreased from 98.8 to 83.5% after the 5th
cycle, indicating a removal efficiency decrease by about 15.5% after five operating cycles. This reflected
an acceptable performance of CTAB-capped La0.9Sr0.1FeO3 sorbent.
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A possible sorbent regeneration can be performed by stirring the used sorbent in 1 mmol L−1 of
aqueous surfactant solution for 1 h, before each use. The change of the removal % with the number of
use cycles for the regenerated sorbent, is shown by the gray columns in Figure 8. It can be shown that
the regenerated sorbent maintained its excellent performance even after five cycles of use, as indicated
by the unchanged removal % values.

3. Materials and Method

3.1. Materials

La(NO3)3·6H2O (99.9%), Fe(NO3)3·9H2O (99.9%), Sr(NO3)2 (99.9%), and C6H8O7 (99%), NH4OH
(33%), HNO3 (65%), and CTAB (99%) were purchased from Sigma Aldrich. CR dye, C32H22N6Na2O6S2

(Brixworth, Northants, United Kingdom). All chemicals were used as-received.

3.2. Microwave-assisted Citrate Combustion Synthesis of La0.9Sr0.1FeO3 Perovskite

La(NO3)3·6H2O, Sr(NO3)2, and Fe(NO3)3·9H2O were mixed in a molar ratio of 0.9:0.1:1.0,
and dissolved in distilled water. Citric acid was added to the metal ion solution, the pH value
of which was previously adjusted to 8, at the same ratio to that of the total metal ions. The mixture was
heated until combustion occurred in a microwave oven (700 watt for 30 min.). The resultant black
powder was calcined at 900 ◦C for 3 h [26]. CTAB capping was performed by immersing the final
calcined powder in 1 mmol L−1 of aqueous CTAB solution for 1 h with stirring.

3.3. Adsorption Test

A quantity of 0.05 g CTAB-capped perovskite/25 mL dye solution was shaken at 150 rpm for 1 d
at an ambient temperature. The solution was then centrifuged at 3500 rpm for 1h. The concentration of
the remaining, non-adsorbed dye was calculated by measuring the absorbance of clear solution by the
UV-Vis spectrometer (Evolution 300, United Kingdom) at λMax of 466 nm.
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The removal % of the CR dye can be estimated according to the following equation [44–48]:

Removal % =
Co −Ce

Co
× 100 (9)

The adsorbed CR amount, at the equilibrium, qe (mg g−1), was calculated from the following:

qe =
(Co −Ce)V

W
(10)

where Co and Ce were the initial and equilibrium concentrations of the dye (mg L−1), V was the solution
volume (L) and W was the sorbent mass (g).

Uncertainties of adsorption experiment parameters were listed in Table S1.

3.4. Characterization Instruments

X-ray diffractograms were used for the phase identification (XRD-7000, Shimadzu), at 40 kV and
30 mA, using a CuKα incident beam (λ = 0.154 nm). FTIR spectroscopy was used for identification of
characteristic functional groups, (IRAffinity-1S, Shimadzu).

Scanning electron microscopy was used to examine the surface morphology (Superscan SS-550,
Shimadzu), with an accelerating voltage = 25 kV.

Micromeritics ASAP 2020 was used to evaluate Brunauer–Emmet–Teller (BET) surface area values,
with N2 adsorption isotherms at −196 ◦C at a relative pressure (P/Po) of 0.2.

4. Conclusions

La0.9Sr0.1FeO3 can be successively capped with a cationic surfactant CTAB. The capping did not
alter the perovskite chemical structure but resulted in a larger particle size with decreased porosity
and BET surface area. CTAB-capped La0.9Sr0.1FeO3 can be used as an excellent sorbent for anionic CR
dye, due to the formation of an oppositely charged dye–CTAB complex. The proposed sorbent has
many advantages over reported CTAB-capped sorbents; it maintained its high performance at any pH
value, showed fast dye uptake, and the removal % was high—approximately 97% at the start of the
adsorption. The adsorption followed the Freundlich isotherm, which indicated a monolayer chemical
adsorption of CR dye on heterogeneous CTAB-capped perovskite sites. The calculated qm value was
151.52 mg·g−1, which was 10 times higher than that of the pure perovskite. The calculated Ea value
was 47.84 kJ·mol−1, reflecting a chemical surface reaction. CTAB-capped La0.9Sr0.1FeO3 also showed
an unaffected performance in the presence of the sample matrix, qm = 143.23 mg·g−1, which highly
recommended it for applications in the field. It can be easily regenerated with unchanged removal
ability, thus, offering an economic benefit.

Supplementary Materials: The following are available online, Table S1: Uncertainties of adsorption
experiment parameters.
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