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Abstract
Tuberculosis (TB) remains broadly present in the Americas despite intense global efforts for

its control and elimination. Starting from a large dataset comprising spoligotyping (n =

21183 isolates) and 12-loci MIRU-VNTRs data (n = 4022 isolates) from a total of 31 coun-

tries of the Americas (data extracted from the SITVIT2 database), this study aimed to get an

overview of lineages circulating in the Americas. A total of 17119 (80.8%) strains belonged

to the Euro-American lineage 4, among which the most predominant genotypic family

belonged to the Latin American and Mediterranean (LAM) lineage (n = 6386, 30.1% of

strains). By combining classical phylogenetic analyses and Bayesian approaches, this

study revealed for the first time a clear genetic structuration of LAM9 sublineage into two

subpopulations named LAM9C1 and LAM9C2, with distinct genetic characteristics.

LAM9C1 was predominant in Chile, Colombia and USA, while LAM9C2 was predominant in

Brazil, Dominican Republic, Guadeloupe and French Guiana. Globally, LAM9C2 was char-

acterized by higher allelic richness as compared to LAM9C1 isolates. Moreover, LAM9C2

sublineage appeared to expand close to twenty times more than LAM9C1 and showed

older traces of expansion. Interestingly, a significant proportion of LAM9C2 isolates pre-

sented typical signature of ancestral LAM-RDRio MIRU-VNTR type (224226153321). Fur-

ther studies based onWhole Genome Sequencing of LAM strains will provide the needed

resolution to decipher the biogeographical structure and evolutionary history of this suc-

cessful family.

Introduction
With an estimated 9 million new cases (range: 8.6–9.4 million) and 1.5 million deaths yearly
(range: 1.3–1.7 million), tuberculosis (TB) remains a major public health problem globally [1].
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Integrated strategies for controlling the disease need to be implemented based on efficient diag-
nostics targeting recent transmission chains and outbreaks leading to adapted tailored therapy.
In such a context, knowing with great resolution the epidemiology at different spatial and tem-
poral scales is of prime importance for local and global TB control and a sine qua non condi-
tion for detection of fluctuations in TB population dynamics. Indeed,Mycobacterium
tuberculosis complex genotypic lineages have emerged during past several thousand years due
to co-adaptation with its human host, and the intricate relationship it maintains with its host is
largely responsible for its proven phylogeographical specificities.

Molecular genetic studies of circulatingM. tuberculosis strains using various genotyping
technologies allow to monitor strain dispersal and evolutionary adaptations, important to stem
bacterial and disease spread. These include classical genotyping tools such as IS6110-RFLP [2],
CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats)–based spoligotyping
[3], MIRU-VNTRs (Mycobacterial Interspersed Repetitive Unit—Variable Number of Tandem
Repeats) [4], and RD-LSPs (Regions of Differences—Large Sequence Polymorphisms) [5],
which defined six major lineages: Indo-Oceanic (lineage 1), East-Asian including Beijing (line-
age 2), East-African-Indian (lineage 3), Euro-American (lineage 4), West Africa orM. africa-
num I (lineage 5), and West Africa orM. africanum II (lineage 6). Furthermore, a new lineage
referred to as lineage 7 was recently described in Ethiopia and the Horn of Africa [6]. More
recently, based onWhole Genome Sequencing (WGS), a robust SNP (Single Nucleotide Poly-
morphism) barcode was developed to infer phylogenetic relationships both inter- and intra-
lineage to an unprecedented level of resolution [7].

The aim of the present study was to get an overview of strains circulating in the Americas
where TB remains broadly present despite intense global efforts for its control and elimination.
TheM. tuberculosis strains currently circulating in Americas were brought by Europeans with
the Euro-American lineage 4 being the most predominant [8], highlighting past and present
European colonial and cultural influence on the current TB situation [9,10]. Among the large
and heterogeneous lineage 4, the Latin American Mediterranean (LAM) family was first sug-
gested based on the phylogenetic analysis of a large spoligotyping dataset and its name reflects
the strains’ origin [11]. LAM lineage comprising several sublineages is the largest and most
widespread within the Euro-American lineage 4; the phylogenetical inclusion of some subli-
neages within this group has been recently questioned [12,13]; however, only few studies have
been conducted on genotypic structure and phylogenetic history of this efficient genogroup.
Consequently, this study aimed to get a first detailed overview of LAM lineage genetic specifici-
ties circulating in the Americas, and further provides novel evidence regarding LAM9 genetic
structuration as two subpopulations categorized by distinct evolutionary histories and demo-
graphic characteristics.

Materials and Methods

Data collection
This study made use of genotyping information ofM. tuberculosis clinical isolates fully avail-
able without restriction. All data used in our study are either available at: http://www.pasteur-
guadeloupe.fr:8081/SITVIT_ONLINE, or in published studies [8,9,13–15,30–55]. This data-
base currently centralizes data on 120000M. tuberculosis complex strains from 170 countries.
Spoligotype International Type (SIT) and MIRU International Type (MIT) designates an iden-
tical pattern shared by two or more patient isolates by spoligotyping and MIRU-VNTRs,
whereas “orphan” designates patterns reported for a single isolate not reported before in the
database. Phylogenetic clade assignation follows rules of SITVITWEB in which the LSP-based
Euro-American lineage (lineage 4) [5] is split in LAM, ill-defined T, Haarlem (H), X, and S
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lineages; the LSP-based “indo-Oceanic” lineage is named East-African Indian (EAI) by spoligo-
typing, while EAI by LSPs corresponds to Central-Asian (CAS) in the SITVIT2 database. Line-
ages were subdivided into sublineages as described recently [15]. For the purpose of this study,
we exclusively focused on spoligotyping and 12-loci MIRU-VNTRs ofM. tuberculosis isolated
in the Americas in 31 countries.

Phylogenetic inferences
BioNumerics software 6.6 (Applied Maths, Sint-Martens-Latem, Belgium) was used to com-
pare spoligotypes and 12-loci MIRU-VNTR patterns ofM. tuberculosis isolates from Americas,
by drawing Minimum Spanning Trees (MSTs) in order to visualize evolutionary relationships
between the clinical isolates in our study. MSTs are undirected graphs in which all samples are
connected together with the fewest possible connections between nearest neighbors.

Exploration of LAM9 sublineage population structure
After an initial analysis of lineage 4M. tuberculosis isolates, the available evidence suggested a
possible subdivision of LAM9 strains into two distinct subpopulations. To confirm this
hypothesis, population structure of all LAM9 isolates with data available on 12-loci MIR-
U-VNTRs (n = 450) was inferred by using a Bayesian model approach implemented in the soft-
ware STRUCTURE 2.3 [16]. An admixture model was implemented in 10 parallel Markov
chains for K values ranging from 1 to 5, with a burn-in of 100000 iterations and a run length of
106 iterations following the burn-in. This admixture model can deal with complexities of real
data and considers that individuals may have mixed ancestry and may have inherited part of
their genome from ancestors in population k. To estimate the number of population among
LAM9 isolates, delta K was calculated by the Evanno method [17] implemented in the program
STRUCTURE HARVESTER [18]. Medians were then calculated from 10 replicates for K = 2
by using the FullSearch algorithm implemented in CLUMPP 1.1.2 software [19] to guarantee
the optimum clustering. A cutoff of 0.75 was fixed for clustering of LAM9 isolates to subpopu-
lation 1 or 2. Finally, estimated membership coefficients were visualized using the software
DISTRUCT 1.1 [20]. A new MST analysis was then performed using BioNumerics software 6.6
and identifying LAM9 strains belonging to subpopulation 1 or 2 defined by STRUCTURE
analysis.

Allelic richness
For analyses on allelic richness,M. tuberculosis strains were grouped according to their clades
defined by the MST analysis, followed by structuration of LAM9 subpopulations as defined by
STRUCTURE software. Mean allelic richness of eachM. tuberculosis lineages was evaluated
where 12-loci MIRU-VNTRs were available for at least 25 samples using the software
HP-RARE 1.0 [21]. This approach uses the statistical technique of rarefaction which compen-
sates for sampling disparity.

LAM9 coalescence and demography
To explore the most probable past demographic changes, a Bayesian based coalescent approach
[22,23] implemented in the Msvar 1.3 algorithm was applied on LAM9 sublineage strains
(n = 450) using 12-loci MIRU-VNTR data. The loci are assumed to be evolving by a stepwise
mutation model (SMM) [24–26]. Posterior distribution of demographic and genealogical
parameters were inferred by Markov Chain Monte Carlo (MCMC) simulations. The assumed
demographic history is of a past population of size N1 that experienced a change in size at
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some time ta in the past to reach current effective population size N0. We tested hypothesis of
declining population (10−2 and 10−3 as a prior) where expansion ratio R = N0/N1<1, of stable
population where R = 1 and of expanding populations (101 to 103 as a prior) where R>1. The
analyses were performed assuming exponential demographic change. The prior mutation rate
value of each MIRU-VNTR locus ranged between 10−8 and 10−9 per locus and per generation,
according to previous studies [25,27,28]. The chain was run for 2 billion steps, recording
parameter values every 100000 steps. The MCMC output was analyzed using the software
Tracer [29] to obtain the posterior distribution and the effective sample size (ESS) of all param-
eters (which were all above 140) after a burn-in of 10%.

Ethics statements
None required since the genotyping data extracted from the SITVIT2 database was
anonymized.

Results and Discussion

Distribution ofM. tuberculosis lineages in the Americas
Majority of data regarding distribution ofM. tuberculosis lineages and sublineages in the
Americas has been published in earlier individual studies focusing on respective population
structures within a country [8,9,13–15,30–55]. However, to have a global overview of mapping
at the level of the continent, we hereby analyze metadata allowing greater resolution in order to
more deeply explore the genetic structuration of predominant lineages on a total of 21183M.
tuberculosis isolates from America (31 countries). Spoligotype profiles were available for all the
21183 strains studied, while 12-loci MIRU-VNTR profiles were available for a total of 4022
isolates.

Starting from 21183M. tuberculosis isolates, a total of 17119 (80.8%) strains belonged to
lineage 4 (Euro-American) according to spoligotyping [56] (Table 1). This widely predominant
lineage supports the hypothesis of a European dissemination from either early settlement or
trade associations [8–10]. Among the lineage 4 strains, a total of 6386 (30.1%) belonged to the
LAM lineage; 4843 (22.9%) belonged to the T lineage; 3699 (17.5%) belonged to the H (Haar-
lem) lineage; 1564 (7.4%) belonged to the X lineage; 1163 belonged to the EAI lineage; 1105
belonged to the Beijing lineage; 497 (2.3%) belonged to the S lineage; 162 (0.8%) belonged to
the CAS lineage; 102 (0.5%) belonged to the MANU lineage; 94 (0.4%) belonged to the AFRI
lineage; 67 (0.3%) belonged to the Cameroon lineage and 63 (0.3%) belonged to the URAL line-
age. Among predominant lineages LAM, T and H, the main sublineages were respectively:
LAM9 (33.7%), T1 (72.3%), and H3 (65.5%). LAM9 alone represented 10.15% of allM. tuber-
culosis strains (n = 21183) from the Americas (for distribution of predominant SITs in the
global database, readers may refer to S1 Table).

When focusing on geographical distribution of LAM sublineages in the Americas (Fig 1),
contrasted patterns of sublineages proportions were observed; briefly: (i) Guadeloupe, Venezu-
ela and Haiti presented quite similar distribution patterns with predominance of LAM9,
LAM2, LAM5 and LAM1 sublineages, and two related patterns in respectively, (ii) Dominican
Republic with absence of LAM1 and (iii) in French Guiana and Brazil with presence of LAM6;
four other distribution patterns were characterized by (iv) large predominance of LAM9 iso-
lates in Panama and Colombia, (v) predominance of LAM9 and LAM3 in USA, Cuba, Mexico,
Peru, Chile and Argentina, (vi) large predominance of LAM3 in Honduras, and (vii) predomi-
nance of LAM9 and LAM4 in Paraguay. Even if these differences could be caused by differ-
ences in sample size, the probable relationship to respective immigration history and
demographic expansion of the strains initially introduced should be further explored. For
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Table 1. Distribution of mainM. tuberculosis lineages and sublineages in Americas according to SITVIT2 database (n = 21183 strains) based on
spoligotyping.

Lineages N % vs total Sublineage N % intra lineage

LAM 6386 30,1 LAM9 2151 33,7

LAM3 1034 16,2

LAM2 762 11,9

LAM1 611 9,6

LAM6 549 8,6

LAM5 507 7,9

LAM NT 392 6,1

LAM4 316 5,0

LAM11-ZWE 29 0,5

LAM8 27 0,4

LAM12-Madrid1 8 0,1

T 4843 22,9 T1 3499 72,3

T2 434 9,0

T3 246 5,1

T NT 223 4,6

T4-CEU1 110 2,3

T5 89 1,8

T5-Madrid2 89 1,8

T4 52 1,1

T-H37Rv 29 0,6

T5-RUS1 27 0,6

T2-uganda 17 0,4

T3-ETH 10 0,2

T1-RUS2 7 0,1

T-tuscany 7 0,1

T3-OSA 4 0,1

H 3699 17,5 H3 2422 65,5

H1 993 26,9

H2 270 7,3

H NT 14 0,4

X 1564 7,4 X3 589 37,7

X1 534 34,1

X2 434 27,8

X NT 7 0,5

EAI 1163 5,5 EAI2-Manila 406 34,9

EAI5 336 28,9

EAI6-BGD1 132 11,4

EAI1-SOM 112 9,6

EAI3-IND 100 8,6

EAI4-VNM 31 2,7

EAI2-nonthaburi 23 2,0

EAI2 9 0,8

EAI7-BGD2 7 0,6

EAI8-MDG 5 0,4

EAI NT 2 0,2

Beijing 1105 5,2 - - -

(Continued)
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Table 1. (Continued)

Lineages N % vs total Sublineage N % intra lineage

S 497 2,3 - - -

CAS 162 0,8 CAS1-Delhi 95 58,6

CAS NT 49 30,3

CAS1-Kili 11 6,8

CAS2 7 4,3

MANU 102 0,5 MANU2 55 53,9

MANU1 32 31,4

MANU3 12 11,8

Manu_ancestor 3 2,9

AFRI 94 0,4 AFRI_2 42 44,7

AFRI_1 30 31,9

AFRI NT 16 17,0

AFRI_3 6 6,4

Cameroon 67 0,3 - - -

URAL 63 0,3 Ural-1 52 82,5

Ural-2 11 17,5

Unknown 1438 6,8 - - -

doi:10.1371/journal.pone.0140911.t001

Fig 1. Geographic distribution of LAM sublineages in various countries of Americas (when n>36).
Phylogenetic clade assignation using spoligotyping follows rules of SITVITWEB database. Country codes
are shown as ISO 3166–1 alpha-3 code.

doi:10.1371/journal.pone.0140911.g001
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having an overview of global distribution of allM. tuberculosis lineages in the Americas, readers
may refer to S1 Fig, which is an updated version of a distribution map published recently [30],
as well as distribution maps of two other predominant lineages T and H (S2 and S3 Figs).

Genetic structuration of LAM9 sublineage
Evolutionary relationships between all LAM lineage isolates pooled together for which both the
spoligotyping and 12-loci MIRU-VNTR data were available (n = 950) were investigated by
MST analysis. Spoligotyping alone showed a closely-structured phylogenetic tree of this super-
family (Fig 2A), with a huge central node made-up of the LAM9 sublineage; an observation
also confirmed on global spoligotyping data on all LAM9 strains (n = 2151 strains, data not
shown). However, it is common knowledge that mainly because of homoplasy, spoligotyping
has limited resolution power when inferringM. tuberculosis phylogeny and that discrepancies
can be obtained when comparing spoligotyping and other genotyping approaches as for exam-
ple MIRU-VNTRs, IS6110 and LSPs [8,12,13,31,57,58]. It is therefore of prime importance to
perform polyphasic analyses when exploringM. tuberculosis evolution for adequate discrimi-
nation. For this reason, we further looked in the genetic structuration of LAM lineage strains
by constructing a MST based on combined spoligotyping and MIRU-VNTR data (Fig 2B),
which globally conserved the overall structuration observed for all LAM sublineages with the
exception of LAM9 (n = 450 strains in total) which was clearly split into two distinct subpopu-
lations, an observation not yet reported in literature. To confirm this subdivision, a Bayesian
model approach using STRUCTURE 2.3 software [16] was performed on same LAM9 dataset
using 12-loci MIRU-VNTRs. The appropriate K value was selected by the Evanno method [17]
(S4 Fig). STRUCTURE identified a total of K = 2 deeply divergent populations, named LAM9
clusters C1 and C2 (Fig 3A); individual strains in this figure are represented by vertical lines
divided into two colored segments with the length of each segment being proportional to the
estimated membership in each of the two populations (cutoff = 0.75). By this analysis, a total of
226 isolates belonged to LAM9C1 and 208 isolates belonged to LAM9C2. We further checked
the congruence of these results by performing an additional MST analysis of strains prelabeled
as LAM9C1 and C2 based on STRUCTURE analysis. The resulting phylogenetic tree (Fig 3B)
showed congruent results between both approaches. Briefly, 99.6% (n = 225/226) of isolates
defined as LAM9C1 by STRUCTURE analysis were conserved in the same group by MST anal-
ysis, as well as 97.1% (n = 202/208) of LAM9C2 isolates. Last but not least, the star-like struc-
ture observed for both LAM9 subpopulations in Fig 3B is compatible with their recent clonal
expansion.

Geographical distribution, demography and genetic characteristics of
LAM9C1 and C2 subpopulations
When focusing on geographical distribution of LAM9C1 and C2 isolates (Fig 3A), it appears
that LAM9C1 is predominant in Chile (64.3%, n = 9/14), Colombia (74.2%, n = 118/159) and
USA (56.9%, n = 37/65), while LAM9C2 is predominant in Brazil (64.6%, n = 95/147), Domin-
ican Republic (83.3%, n = 10/12), Guadeloupe (86.4%, n = 19/22) and French Guiana (66.7%,
n = 8/12). These results suggest a phylogeographical specificity of these two subpopulations
even if differences could be caused by differences in sample size. Allelic richness of 12-loci
MIRU-VNTR markers was evaluated for LAM9C1 and C2 groups globally as well as at country
level in Brazil, Colombia and USA, using a rarefaction procedure implemented in HP-RARE
1.0 software [21] (Table 2). Both globally as well as for each of the countries studied, LAM9C2
was characterized by higher allelic richness than LAM9C1 isolates. Taking allelic richness as a
surrogate marker of diversification time, our results tend to suggest that LAM9C2 isolates are

Genetic Structuration ofMycobacterium tuberculosis LAM9 in Americas

PLOS ONE | DOI:10.1371/journal.pone.0140911 October 30, 2015 7 / 15



older than LAM9C1 ones. Furthermore, it is interesting to note that, allelic richness was
smaller for both LAM9 populations in Colombia as compared to Brazil and USA, probably
reflecting respective immigration histories—an observation also seen through the preponder-
ance of LAM9 representing 75% of allM. tuberculosis strains in Colombia (Fig 1).

Recent demographic changes of LAM9C1 and LAM9C2 isolates were inferred from a Bayes-
ian-based coalescent approach available for MIRU-VNTR markers and implemented in the
Msvar 1.3 algorithm [22,23] (Fig 4). As prior we tested scenario for recent expansion, decrease
of bacterial population size or stable population size. We then calculated the time ta since last
expansion and mutation rate μ per locus and per generation. Although both subpopulations
were characterized by strong expansion, LAM9C2 expansion rate was twenty times higher
than LAM9C1 (expansion ratio R of 198.8 vs. 10.2). Furthermore, VNTR based dating esti-
mates suggested older traces of expansion dating to 480 years for LAM9C2 isolates vs. 300
years for LAM9C1 (Fig 4). Even if these results should be taken with caution considering large
confidence intervals and uncertainties in mutation rates, these dating estimates were synchro-
nous with immigration from the Old World to the NewWorld. Further WGS based studies
should help to better understand the past history of LAM sublineages in the Americas.

When focusing on MIRU-VNTR markers driving structuration of LAM9 isolates into two
subpopulations (Table 3), a total of four markers clearly present contrasted number of repeats
between sublineages: MIRU2, MIRU16, MIRU31 and MIRU40. Indeed, MIRU2 and MIRU40
were highly discriminatory. For MIRU2, 94.2% (n = 213/226) of LAM9C1 isolates presented a
single repeat vs. 0.5% (n = 1/208) for LAM9C2 isolates, and 96.2% (n = 200/208) of LAM9C2
isolates presented a double repeat vs. 5.3% (n = 12/226) for LAM9C1 isolates. For MIRU40,

Fig 2. Minimum Spanning Tree (MST) illustrating evolutionary relationships betweenM. tuberculosis
LAM lineage isolates (n = 950). The analysis is based on spoligotyping used alone (A), and combination of
spoligotypes and 12-loci MIRU-VNTRmarkers (B). The MST connects each genotype based on degree of
changes required to go from one allele to another; the complexity of the lines denotes the number of allele/
spacer changes between two patterns: solid lines (1 or 2 or 3 changes), gray dashed lines (4 changes) and
gray dotted lines (5 or more changes); the size of the circle is proportional to the total number of isolates
sharing same pattern.

doi:10.1371/journal.pone.0140911.g002
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86.1% (n = 179/208) of LAM9C2 isolates showed a single repeat vs. 0.4% (n = 1/226) for
LAM9C1. Interestingly, these same MIRU loci were shown to be highly discriminatory for
LAM-RDRio vs. “wild type” (WT) LAM isolates [59]: 100% of LAM-RDRio and just 2% of WT
LAM patient strains had a single copy at MIRU40 while 98% of LAM-RDRio had two copies at

Fig 3. Evolutionary relationships of the LAM9 sublineage isolates (n = 450). (A) Geographical
distribution and LAM9C1 and C2 isolates defined by Bayesian cluster analysis using STRUCTURE software
run on 12-loci MIRU-VNTRs. Each of the strains is represented by a thin vertical line, partitioned into black or
white segments that represent the strains estimated proportion of membership in clusters LAM9C1 and
LAM9C2 respectively. (B) MST analysis on combined spoligotyping and MIRU-VNTR data for strains
prelabeled as LAM9C1 (n = 226) and C2 (n = 208) based on previous STRUCTURE analysis (strains in
intermediate position between C1 and C2 are indicated as LAM9 Int, n = 16). The complexity of the lines
denotes the number of allele/spacer changes between two patterns while the size of the circle is proportional
to the total number of isolates sharing same pattern. Country codes are shown as ISO 3166–1 alpha-3 code.

doi:10.1371/journal.pone.0140911.g003

Table 2. Allelic richness ± standard deviation (SD) of LAM9C1 and C2 subpopulations according to
country of isolation.

Sublineages and country of isolation Mean allelic richness ±SD

LAM9C1 2,06 1

LAM9C2 2,25 0,9

LAM9C1 BRA 2,15 1,04

LAM9C2 BRA 2,4 0,91

LAM9C1 COL 1,62 0,7

LAM9C2 COL 1,83 1,08

LAM9C1 USA 2,04 0,96

LAM9C2 USA 2,21 0,97

Allelic richness is evaluated for 12-loci MIRU-VNTRs using a rarefaction procedure (when n>25 per lineage

and per country); countries names are defined by ISO 3166–1 alpha-3 code.

doi:10.1371/journal.pone.0140911.t002
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Fig 4. 12-loci MIRU-VNTR based demographic and dating estimates of LAM9 sublineages inferred by
a Bayesian approach on Msvar 1.3 algorithm. (A) 2D Kernel density plots producing a smooth estimate of
the density of the marginal posterior distribution of N0 the current effective population size, and N1 the
population size before expansion (in log scale) for LAM9C1 isolates. (B) Same figure for LAM9C2 isolates. ta,
time elapsed since last expansion began expressed in years (log scale); R = N0/N1 traduce median value of
expansion ratio; μ, mutation rate per locus and per generation. All estimates correspond to median values,
followed by 95% highest posterior densities indicated in parentheses.

doi:10.1371/journal.pone.0140911.g004

Table 3. Allele copy number of MIRU-VNTRmarkers in LAM9C1 and LAM9C2M. tuberculosis isolates.

LAM9 sublineages Tandem repeat copy number Number of Patients strains by MIRU-VNTR locus

2 4 10 16 20 23 24 26 27 31 39 40

LAM9C1 ND 0 3 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 119

1 213 2 2 0 7 0 226 1 2 4 1 1

2 12 216 2 18 218 5 6 0 172 222 22

3 1 5 21 207 1 1 29 217 49 2 1

4 189 1 1 22 4 0 18

5 12 7 164 3 0 19

6 0 192 4 39

7 18 0 6

8 2 0 0

9 1

LAM9C2 ND 0 0 0 0 1 1 0 0 0 0 0 1

0 0 0 1 2 1 1 0 0 0 0 0 1

1 1 1 0 33 18 0 208 0 2 0 7 179

2 200 202 14 123 188 2 7 35 24 197 1

3 7 5 42 47 0 13 25 165 176 4 23

4 135 3 2 40 4 5 3

5 15 24 114 2 3 0

6 1 156 18 0

7 8 2 0

8 1 2 0

9 0

ND: Not done

doi:10.1371/journal.pone.0140911.t003
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MIRU2. Indeed, the authors of this study proposed to combine these markers to identify RDRio

strains within databases listing MIRU-VNTR typed LAM strains and more specifically to iden-
tify the theoretical “founding MIRU-VNTR type” for RDRioM. tuberculosis (224226153321).
Because LAM9C2 isolates in our study present typical signature of LAM-RDRio strains, one
may hypothesize that LAM9C2 could be constituted by significant number of LAM-RDRio iso-
lates, and more precisely by 27.9% (n = 58/208) of the hypothetical ancestral RDRio MIR-
U-VNTR type (224226153321). This observation merits further investigation of LAM9C1 and
C2 subpopulations using specific markers of RDRio strains [59,60].

Conclusions
By analyzing “classical” genotyping results extracted from an international database, we were
able for the first time to reveal structuration of LAM9 sublineage into two distinct subpopula-
tions LAM9C1 and LAM9C2 in the Americas. These clusters are characterized by contrasted
geographical distribution, allelic richness, expansion ratios, and expansion dating estimates.
Considering the combination of these characteristics, one may hypothesize that two distinct
sublineages exist within the LAM9. Further studies based on WGS of LAM strains will allow
one to have the needed resolution to decipher the biogeographical structure and evolutionary
history of this successful family.
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