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Background: Gliomas are one of the most common types of primary tumors in central nervous system.
Previous studies have found that macrophages actively participate in tumor growth.
Methods: Weighted gene co-expression network analysis was used to identify meaningful macrophage-
related gene genes for clustering. Pamr, SVM, and neural network were applied for validating clustering
results. Somatic mutation and methylation were used for defining the features of identified clusters.
Differentially expressed genes (DEGs) between the stratified groups after performing elastic regression
and principal component analyses were used for the construction of MScores. The expression of
macrophage-specific genes were evaluated in tumor microenvironment based on single cell sequencing
analysis. A total of 2365 samples from 15 glioma datasets and 5842 pan-cancer samples were used for
external validation of MScore.
Results: Macrophages were identified to be negatively associated with the survival of glioma patients.
Twenty-six macrophage-specific DEGs obtained by elastic regression and PCA were highly expressed in
macrophages at single-cell level. The prognostic value of MScores in glioma was validated by the active
proinflammatory and metabolic profile of infiltrating microenvironment and response to immunothera-
pies of samples with this signature. MScores managed to stratify patient survival probabilities in 15
external glioma datasets and pan-cancer datasets, which predicted worse survival outcome.
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Sequencing data and immunohistochemistry of Xiangya glioma cohort confirmed the prognostic value of
MScores. A prognostic model based on MScores demonstrated high accuracy rate.
Conclusion: Our findings strongly support a modulatory role of macrophages, especially M2 macrophages
in glioma progression and warrants further experimental studies.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Background

Gliomas, a collective term referring to tumors originating from
neuroglial cells, are categorized into astrocytoma, gangliocytoma,
oligodendroglioma, ependymoma and others. They are one of the
most common types of primary tumors in central nervous system
[1]. They can be generally inferred by the WHO grades, with grade I
being the most benign and grade IV (glioblastoma, GBM) the most
malignant type. There are increasing molecular markers identified
for prediction of patient survival rate, including mutational status,
DNA methylation, and members of pathways involved in tumor
suppression, proliferation and migration [2,3]. As a result, WHO
proposed an updated grading system for CNS tumors integrating
molecular diagnosis [4].

Macrophages are phagocytic cells critical for host defense
against endogenous or exogenous pathogens in innate immunity.
They can develop from circulating monocytes or are seeded in
various tissues during embryogenesis, the latter being named res-
ident or tissue macrophages. Inflammatory stimuli are potent
inducers of the activation of macrophages. Depending on the
types of stimuli and cytokine profiles, it is proposed that macro-
phages can differentiate into the classically activated M1 or alter-
natively activated M2 type [5]. M1 macrophages are induced by
stimuli such as lipopolysaccharide and interferon c, and are cap-
able of secreting pro-inflammatory cytokines. In contrast, M2
macrophages are activated by interleukin-4 (IL-4), -10, -13,
colony-stimulating factor-1 (CSF-1) and tumor growth factor-b
(TGF-b). They are connected to tissue remodelling, angiogenesis
and allergy response. A plethora of studies focusing on tumor
microenvironment (TME) have identified the importance of non-
tumor cells in sustenance of tumor growth and response to
immunotherapy [6,7]. As a constitutive part of TME, tumor asso-
ciated macrophages (TAMs) account for up to 50% of the total
glioma noncancerous cell population, and are actively engaged
in promoting tumor progression and metastasis [8]. The exact
molecular profile of TAMs remains undetermined. It is empha-
sized that TAMs in glioma are in fact a heterogeneous group of
cells consisting of microglia, infiltrating blood borne macrophages
and monocytes coming through compromised brain blood barrier
(BBB) [9–11]. BBB has been proposed to be responsible for the
largely unsuccessful immunotherapies and other treatment
modalities in gliomas. Macrophages have a natural ability to tra-
verse the BBB, which macrophages could be loaded with anti-
cancer agents [12]. Macrophages are also found to mediate drug
resistance in glioma CSF-1 receptor inhibition immunotherapy
by switching to M1 type with enhanced phagocytosis that pro-
motes tumor cell death [13]. Moreover, it is demonstrated that
in gliomas, the grade of malignancy is associated with the num-
ber of infiltrating myeloid cells, which consist of microglias and
macrophages [14].

Macrophages have been shown to participate in tumor migra-
tion and invasion as well as angiogenic switch [15,16]. In many
solid tumors such as ovarian, lung, liver and kidney cancers, high
levels of macrophages are associated with poor prognosis [17].
Similar finding was also noticed in gliomas [18]. In GBM with
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lower survival rate, microglias and macrophages upregulates their
expression of CD45, TIE2 and CD163 and facilitate angiogenesis
[19]. According to transcriptome profile, consensus clustering has
identified three subtypes of GBMs including classical (CL), mes-
enchymal (MES), and proneural (PN) [20]. MES GBMs, being the
subtype with less favourable outcome, and recurrent gliomas tran-
sitioning to MES both show higher levels of M2 macrophages than
the non-MES GBM subtypes [20]. The role of M2 macrophages in
the pathogenesis of gliomas remains unclear. Secretion of IL-10
through JAK2/STAT3 signaling by M2 macrophages participates in
the glioma tumorigenesis [21]. M2 macrophages also release
insulin-like growth factor-bind protein 1 (IGFBP1) and IL-6 to pro-
mote angiogenesis [22,23]. Likewise, M1 macrophages have
diverse roles in tumor microenvironment of gliomas. Suppressed
M2 polarization and increased M1 macrophages have been
reported to both inhibit tumor proliferation [24] and correlate with
poor prognosis [25] simultaneously. Currently, M0/M1/M2 macro-
phages are currently seen as a continuous spectrum of states. The
integrative analysis on these macrophage subgroups together
would be promising.

Weighted gene co-expression network analysis (WGCNA) is a
systems biology method for identification of gene correlation and
iswidely used in cancer research. In the present study,we employed
WGCNA to identify meaningful macrophage-related gene modules
in glioma patients. Genes within the identified module were
extracted for clustering. Machine learning including prediction
analysis for microarrays (pamr), Support Vector Machines (SVM),
and neural network was used to validate the clustering results. Sig-
nificant differentially expressed genes (DEGs) between the stratified
groups after performing elastic regression and Principal component
analyses (PCA) were used for the construction of risk scores, there-
after called MScores. Pan-cancer analysis was performed to further
validate the prognostic value and define the function of MScores.
We confirm that MScores could also predict immunotherapeutic
efficiency. By using these multi-dimensional analyses, we have
established the prognostic value ofmacrophages in glioma patients,
with the special attention to the M2-like property.
2. Methods

2.1. Patient and cohort inclusion

This study collected 1991 diffuse glioma samples from two
databases: The Cancer Genome Atlas (TCGA) and Chinese Glioma
Genome Atlas (CGGA). For the TCGA cohort (672 glioma samples
of combined LGG and GBM), the RNA-seq data and corresponding
clinical information were retrieved from TCGA database
(http://cancergenome.nih.gov/). Three CGGA validation cohorts
were employed in this study, including two RNA-seq cohorts
(CGGA325 and CGGA693) and a microarray cohort (CGGAarray).
The RNA-seq and microarray data, clinical and survival information
were downloaded from the CGGA database (http://www.cgga.org.
cn). Single-cell expression matrices were obtained from the Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
GSE138794. Eight scRNA sequencing samples were used for analy-
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sis. Samples from 15 patient cohorts diagnosed with gliomas were
included in this study for external validation of MScores (Table S1).
Pan-cancer data for functional annotation and validation of
MScores were from the TCGA dataset.

2.2. WGCNA identifying macrophage related genes

The WGCNA package in R version 3.6.1 was used to perform
WGCNA. The expression profile of top 5000 genes from TCGA
cohort was applied as the input of WGCNA. The association
between individual genes and macrophage densities was quanti-
fied by gene significance, and the correlation between module
eigengenes and gene expression profiles was represented by mod-
ule membership. A power of b = 3 automatically calculated by
pickSoftThreshold function and a scale-free R2 = 0.85 automati-
cally calculated by softConnectivity function were set as soft-
threshold parameters to ensure a scale-free topology network
and produce a TOM matrix. After recalculating module eigengenes,
the module dendrogram depicting the relationship among the
eigengenes and the macrophages was plotted using plotEigen-
geneNetworks function. A total of seven modules including red
(33 genes), turquoise (1022 genes), yellow (291 genes), green
(135 genes), blue (658 genes), brown (648 genes), and grey
(2213 genes) were generated. The correlation between the tur-
quoise module and xCell-defined M2 macrophages, M1 macro-
phages, macrophages, monocytes were 0.64, 0.68, 0.66, and 0.62,
respectively, indicating a selective expression of the turquoise
module in monocyte-derived macrophages. Given the remarkable
correlation strength with the macrophage subgroups, turquoise
module was deemed as macrophages-specific and was selected
for further analysis. The correlation between module membership
and gene significance was visualized using verboseScatterplot.
Genes within the turquoise module were thus chosen for GO (gene
ontology) and KEGG (Kyoto Encyclopaedia of Genes and Genomes)
functional enrichment analyses.

2.3. Delineation and validation of immune subtypes

Univariate cox regression analysis was performed on the 1022
genes extracted from turquoise module to identify prognostic
genes with the criteria of P < 0.001. Based on the 945 prognostic
genes, we applied consensus clustering algorithm of partition
around medoids (PAM) to identify robust clusters of TCGA patients
[26]. The cumulative distribution function (CDF) and consensus
heatmap were used to assess the optimal K value of 2. To validate
the immune subtypes in three CGGA cohorts, we trained a pamr
classifier in the discovery cohort to predict the immune subtypes
for patients in the validation cohort (package pamr) based on the
434 intersected genes from TCGA and three CGGA cohorts. The
clustering results were further validated by SVM and neural
network.

2.4. Genomic alterations in immune subtypes

Somatic mutations and somatic copy number alternations
(CNAs) were downloaded from the TCGA database as previously
described [27,28]. Genomic event enrichment was determined
using GISTIC analysis. CNAs and altered peaks associated with
the two clusters were obtained using GISTIC 2.0 analysis
(https://gatk.broadinstitute.org). The R package TCGAbiolinks was
used for downloading the WES-derived somatic mutation data
acquired by Mutect2 [29]. The most differentially mutated genes
were detected using Fisher’s exact test. The co-occurrence and
mutually exclusive mutations were detected using CoMEt
algorithm.
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2.5. Genome-wide methylation array

The differentially methylated positions (DMPs) were stratified
per genetic feature/chromosome and compared to the total num-
ber of 450 k probes associated with the respective genetic fea-
ture/chromosome. Fisher’s exact tests were used to calculate the
probability that the number of DMPs of a specific genetic fea-
ture/chromosome was significantly different from the expected
number. Using the numbers of hypermethylated versus the
hypomethylated DMPs, a second Fisher’s exact test was performed
to assess whether the distribution was significantly different in any
genetic feature/chromosome. The threshold for statistical signifi-
cance was set to a Bonferroni-adjusted a value of 0.05. R package
ChAMP was used to analyze Illumina Infinium 450 k DNA methy-
lation array data. b values were normalized using peak-based cor-
rection. Differential methylation probes and regions were
identified using the limma package and Bumphunter algorithm
[30]. Correlation between probe signals and gene expression levels
was evaluated by Pearson correlation, and the same numbers of
probes as in the true DMP set were randomly selected from all
probes to construct 100 random sets. R package clusterProfiler
was used for GO analyses of the DEGs and DMP-associated genes
and Gene set enrichment analysis (GSEA).
2.6. Single cell sequencing

R package Seurat v3.1.2 was used to process the single-cell data
expression matrix. The data were first normalized by ‘Normal-
izeData’. ‘FindVariableGenes’ was then used to identify 2000 highly
variable genes. ‘FindIntegrationAnchors’ and ‘Integratedata’ were
used to merge 8 GBM sample data sets as previously described
[31]. After using ‘RunPCA’ to perform PCA, a K-nearest neighbor
graph was constructed by the ‘‘FindNeighbors” function, and the
‘FindClusters’ function was used to alternately combine cells
together with the highest resolution. Finally, ‘UMAP’ was used
for visualization. In single cell sequencing analysis, the cut-off
point was defined as the median value of gene expression levels.
2.7. Annotation of the immune infiltrating microenvironment

ESTIMATE was performed to evaluate the immune cell infiltra-
tion level (immune scores) and stromal content (stromal scores)
for each sample. The enrichment levels of 64 immune signatures
were quantified by the xCell algorithm [32]. The relative fraction
of 22 immune cell types in tumor tissues were estimated using
CIBERSORT algorithm [9]. Gene set variation analysis (GSVA) was
performed to study GO pathways. Seven types of classified
immune checkpoints signalling pathways were investigated from
two previous published studies [33,34].
2.8. Identification of an immune-related signature

Univariate Cox regression analysis was performed to determine
the differentially expressed immune genes with prognostic signif-
icance with a p value <0.05 between subtypes. Elastic regression
analysis and PCA were further used to calculate the MScores of
patients. The extracted principal component 1 served as the signa-
ture score. The MScore of each patient after the prognostic value of
gene signature score was obtained by the following calculation:

MScore ¼ RPC1i� RPC1j

where i represented the expression of genes with HR > 1, and j the
expression of genes with HR < 1.

https://gatk.broadinstitute.org
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2.9. Prediction of immunotherapy response

The IMvigor210 cohort, which is an urothelial carcinoma cohort
treated with the anti-PD-L1 antibody atezolizumab was used for
prediction of patient response to immunotherapy [35]. Based on
the Creative Commons 3.0 License, complete expression data and
clinical data were downloaded from http://research-pub.Gene.-
com/IMvigor210CoreBiologies. The GSE78220 cohort, a melanoma
cohort receiving anti-PD-1 (pembrolizumab or nivolumab)
immunotherapy, was also included for prediction of immunother-
apy response [36]. Raw data were then normalized using the DEse-
q2 R package, and the count value was transformed into the TPM
value.

2.10. Construction and validation of a prognostic model

Ultimately, nomogram is a form of visualized multi-factor
regression analysis commonly used for cancer survival rate predic-
tion. Variables selected for construction of the nomogram included
the calculated prognostic scores, ages, pathological stages of
glioma and mutation status. Univariate and multivariate regres-
sion analyses were also used to evaluate the prognostic value of
these factors.

2.11. RNA sequencing of glioma samples

Tumor tissues from 48 glioma patients were collected for
sequencing as previously described. Briefly, 1 lg RNA was used
as input material for RNA sample preparations. DNA was sheared
followed by sequencing library preparation using NEBNext Ultra
RNA Library Prep Kit. PCR was then performed with Phusion
High-Fidelity DNA polymerase, Universal PCR primers and the
Index (X) Primer. After target region capture by biotin-labeled
probes, the captured libraries were sequenced on an Illumina Hiseq
platform to generate 125/150 bp paired-end reads. In-house perl-
scripts were used to process raw data (raw reads). Then reads con-
taining adapter and ploy-N, and low-quality reads were removed
to obtain clean data (clean reads). Reference genome and gene
model annotation files were obtained from the genome website
(http://genome.ucsc.edu). The reference genome index was built
using Hisat2 v2.0.5 and paired-end clean reads were aligned to
the reference genome. FeatureCounts v1.5.0-p3 was then used to
count the read numbers mapped to each gene. TPM of each gene
was calculated based on the gene length and reads count mapped
to this gene.

2.12. Immunohistochemistry

Immunohistochemistry (IHC) staining was conducted as previ-
ously described [27,28]. Paraffin-embedded tissues of 40 glioma
samples (25 LGG samples and 15 GBM samples) with the corre-
sponding sequencing data from the Xiangya Neurosurgey (XYNS)
cohort were used for immunohistochemistry (IHC). The patient
characteristics used for IHC were shown in Table S2. Sections were
boiled in sodium citrate buffer (pH 6.0) for antigen retrieval, and
endogenous HRP activity was blocked with 3% H2O2. Sections were
washed with 10% phosphate buffered saline (PBS) and marked with
PAP pen. After blockage with 5% BSA, sections of 4 lm thickness
were incubated with primary antibody against CD163 (Rabbit,
1:500, Proteintech, China) under room temperature for 12 h. The
target was detected using a two-step detection kit (PV-9000,
ZSGB-Bio, China), which the sections were incubated with horse
radish peroxidase conjugated secondary antibody and the antibody
reaction was visualized using 3, 30-diaminobenzidine (DAB) devel-
opment. Sections were then counterstained with hematoxylin and
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scanned with Pannoramic Scanner (Pannoramic DESK, P-MIDI,
P250, P1000, Hungary).
2.13. Statistical analysis

Kaplan-Meier curves with log-rank test were used to assess sur-
vival difference between groups. The univariate and multivariate
Cox regression analyses were performed to detect the prognostic
factors. Pearson correlation and distance correlation analyses were
used to calculate correlation coefficients. Contingency tables were
analyzed by v2 contingency test. The OS and MScores were calcu-
lated using the R package survival and cutoff values determined.
Based on the dichotomized MScores, patients were grouped as
with high or low MScore in each data set, and the computational
batch effect was reduced by the R package sva. Data were visual-
ized using the R package ggplot2. OncoPrint was used to delineate
the mutation landscape of TCGA by the maftools R package [37]. All
survivorship curves were generated using R package survminer.
Heatmaps were generated based on pheatmap. All statistical anal-
yses were conducted using R software. P < 0.05 was considered sta-
tistically significant.
3. Results

3.1. Identification of macrophage density as a potential prognostic
marker

The flow chart of our study design was shown in Fig. S1A. We
sought to determine the prognostic value of macrophages in
glioma by studying the macrophage-related genes using WGCNA.
After stratifying patients by high and low median levels of Macro-
phages, M1 macrophages, M2 macrophages calculated by xCell
algorithm, survival analysis revealed a clear distinction between
the two subtypes (Fig. S1B). To evaluate the potential prognostic
value of macrophages, we performed WGCNA with the expression
profile of top 5000 genes from TCGA cohort as the input to search
for macrophage-specific genes. A power b = 3 was selected as the
soft threshold for a scale-free network construction. Seven mod-
ules were identified by clustering dendrogram (Fig. S2A). Given
the close correlation strength with each macrophage subgroup
(M2 macrophages, r = 0.64, p = 2e�79; M1 macrophages,
r = 0.68, p = 1e�91; Macrophages, r = 0.66, p = 2e�86), turquoise
module was selected for subsequent analyses (Fig. S2B and S2C).
We investigated the correlation between the module membership
and macrophage-related gene significance, which reached 0.83 and
suggested that the expression levels of these macrophage-related
genes were slightly influenced by other cells (Fig. S2D). GO func-
tional enrichment analysis found that the genes were concentrated
in pathways involving neutrophil chemotaxis and chemokine-
mediated signalling (Fig. S2E). KEGG analysis showed that the
genes were enriched in the cytokine-receptor interaction (Fig. S2F).

We subsequently extracted 945 genes from module turquoise
by WGCNA for the subsequent generation of macrophage density.
PAM was performed for glioma patients with the corresponding
gene expression profiles in TCGA cohort (Fig. 1A). The optimal
number of clusters was evaluated by ConsensusClusterPlus pack-
age (Fig. S3A). Clustering results were most stable when the num-
ber was set to two (K = 2). The delineated groups based on the 945
genes showed distinct patterns of clinical traits and macrophage
levels (Fig. 1A). PCA managed to differentiate the samples from
the TCGA dataset (Fig. 1B). Survival analyses of the two clusters
confirmed an obviously lower survival probability curve for cluster
1 (Fig. 1C). Subsequently, combining the gene expression profiles
from three CGGA cohorts, 434 genes were identified from these
954 genes to validate the clustering results by pamr (Fig. 1D). Opti-

http://research-pub.Gene.com/IMvigor210CoreBiologies
http://research-pub.Gene.com/IMvigor210CoreBiologies
http://genome.ucsc.edu


H. Zhang, Yue-Bei Luo, W. Wu et al. Computational and Structural Biotechnology Journal 19 (2021) 4603–4618
mal threshold values were selected (Fig. 1E). Thirteen genes iden-
tified by pamr, including IGFBP2, TIMP1, EMP3, PTX3, CHI3L1, PDPN,
were identified as the ones with the strongest power to differenti-
ate the samples (Fig. 1F). Notably, TIMP1 and EMP3 are associated
with recruitment of macrophages to tumors [38,39]. IGFBP2 and
PDPN are also associated with M2 polarization [40,41]. PTX3 has
recently been reported to suppress the polarization of M2 macro-
phages. M2 macrophage-secreted CHI3L1 could promote gastric
and breast cancer metastasis [42], and CHI3L1 modulates an
immune suppressive microenvironment by reprogramming M2-
like TAM in GBM [43]. TNFAIP6, RBP1, FBXO17, and GPX8 promote
metastasis and invasiveness of tumor [44–47]. SLC43A3 and
ADAM12 have been revealed as the biomarker and therapeutic tar-
get in tumor patients [48,49]. RAB42 has been proved to be prog-
nostic marker in glioma [50]. Thus, these thirteen genes could be
regarded as reliable discriminatory markers of macrophage signa-
ture from the biological point of view. Samples were then clustered
into two groups with high or low death risk by pamr in three CGGA
cohorts, respectively (Fig. S3B-D). Neural network and SVM were
performed for validation of the clustering as well, which the con-
tingency table showed the consistency in clustering results among
pamr, SVM, and neural network (Fig. 1G, H). PCA also managed to
differentiate the samples from three individual datasets (Fig. S3E-
G). Survival analyses of the two clusters confirmed a lower survival
probability curve for cluster 1 (Fig. S3H-J).

3.2. Clinical traits and TME characteristics of the macrophage-
stratified groups

We then proceeded to investigate the TME characteristics of the
two clusters. The expression difference of the levels of 64 cell types
in two defined subtypes were investigated in TCGA (Fig. 2A). It was
found that increased cells such as fibroblasts, macrophages and
monocytes were related to cluster 1, i.e. worse survival probability.
Moreover, CIBERSORT algorithm showed that the expression of
several types of immune cells including M0/1/2 macrophages
and neutrophils were higher in cluster 1 (Fig. S4A). The association
between ESTIMATE scores of the immune infiltrating microenvi-
ronment, an indicator of the cancer biological behaviour, and clus-
ters, as well as levels of immune cells was examined in TCGA
cohort (Fig. 2B). ESTIMATEScores, ImuneScores and StromalScores
were all higher in cluster 1 than in cluster 2 (Fig. 2B). Given that
immune checkpoint molecules were critical in regulating tumor
immunity [28,51], we then compared the levels of several series
of immune checkpoint molecules related to antigen presentation,
cell surface receptor, coinhibition, ligand and cell adhesion
between the two clusters. Immune checkpoint markers tended to
be overexpressed in cluster 1 (Fig. 2C).

The pathological gradings of glioma were also significantly dif-
ferent between clusters 1 and 2 (p < 2.2e�16), with a higher grad-
ings in cluster 1 in TCGA (Fig. S4B). The proportions of samples
with IDH mutation and chromosome 1p/19q codeletion in cluster
1 were higher than those in cluster 2 (Fig. S4B), also indicating a
more malignant propensity in cluster 1. Results regarding the pro-
portion of patients with MGMT promoter methylation were less
universal, with data from the TCGA database showing the most sig-
nificant difference while data from the other three databases sta-
tistically insignificant difference (Fig. S4B). The proportions of the
four GBM subtypes in clusters 1 and 2 were significantly different
in TCGA (p < 2.2e�16), showing that the more malignant CL and
ME subtypes accounted for the majority of cluster 1 samples
(Fig. S4B).

The expression differences of hypoxia pathways in two clusters
were explored using GSVA. Investigated pathways included cell
response regulation, hypoxia-induced intrinsic apoptosis,
Hypoxia-Inducible Factor 1a (HIF1A) and others. These pathways
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were found to be more activated in cluster 1 in TCGA, suggesting
a tendency for cell hypoxia, which is a universal marker for malig-
nant tumor proliferation, in this group (Fig. S4C). We also interro-
gated the relationship between metabolic pathways, such as
pyrimidine synthesis and sulfur metabolism, and subtypes. The
metabolic pathways were overrepresented in cluster 1, proving a
more active proliferation of glioma cells in these samples
(Fig. S4D).

3.3. Macrophage-enriched group showed more malignant genomic
features

Somatic mutation analysis and copy number variation (CNV)
were performed using the TCGA dataset to explore genomic traits
of the two clusters (Table S3). A global CNV profile was obtained by
comparing the two clusters (Fig. 3A, 3B, Table S4). According to
somatic mutation analysis, mutations in EGFR (29%), TP53 (27%),
PTEN (23%) and TTN (23%) were most highly enriched in cluster
1. In comparison, IDH1 (93%), TP53 (52%), ARTX (38%) and CIC
(25%) mutations were enriched in cluster 2 (Fig. 3C). Missense
mutation was the predominant gene alteration type in all these
genes except for ATRX, in which frame-shifting deletion was the
most common type.

Different types of somatic mutations, including the single-
nucleotide variant (SNV), single-nucleotide polymorphism (SNP),
insertion, deletion and intergenic region (IGR), were analyzed
using the R package maftools [52]. Silent, nonsense, missense,
intronic, 50 and 30 UTR mutations were more common in cluster
1 than in cluster 2 (Fig. S5A). Among the detected SNVs, C > T
appeared to be the most common mutation in cluster 1
(Fig. S5B). The T to A, C to T and C to A mutations occurred more
frequently in cluster 1 than in cluster 2. While the frequencies of
insertion and deletion were not statistically different between
the two clusters, SNPs were significantly more common in cluster
1 (Fig. S5C). The top 17 most mutated cancer-related genes were
listed in Fig. S5D. Common carcinogenic pathways were more
active in cluster 1 (Fig. S5E). The strongest co-occurrent pairs of
gene alteration were ATRX-TP53 and ATRX-IDH1, which was in
accordance with previous reports [53–55]. It was suggested that
acquisition of a second cancer-related gene alteration may dictate
the development of certain tumor types, and that TP53, IDH1, ATRX
are functionally linked [55,56] (Fig. S5F). On the other hand, the
most mutually exclusive pairs were CIC-TP53 and PTEN-IDH1.

3.4. DMPs in macrophage-enriched gliomas were associated with
tumor progression

By adopting a Dbeta value >0.4 and a p value <0.05, a total of
8359 DMPs were identified, among which 8301 DMPs were upreg-
ulated and 58 DMPs were down-regulated. The distribution of
identified DMPs in two clusters was exhibited by heatmap
(Fig. 4A). Genomes of cluster 1 demonstrated an overall
hypomethylation trend, with 84.2% of DMPs being hypomethy-
lated (Fig. 4B). In terms of the location in relation to genes, DMPs
were concentrated in IGRs and transcription start sites (TSSs). Focal
analysis showed the distribution of identified DMPs in human
chromosomes (Fig. 4C). GSEA of the DMP-associated genes showed
that the hypermethylated genes with highly positive b differences
have more essential contributions to tumor-associated biological
processes such as TGFb, tumor necrosis factor a (TNFa) and leuko-
cytotrophic process (IL-2, Fig. 4D). GO enrichment analysis also
revealed increased T cell activation, proliferation and differentia-
tion activities (Fig. 4E). Enrichment scores of the main immune cell
types in the two clusters were calculated and compared. Monocyte
and neutrophil levels were higher in cluster 1 than in cluster 2,
while B, NK and CD4+ T cell levels were higher in cluster 2 (Fig. 4F).



Fig. 1. Construction and validation of M2 macrophage-related clusters based on machine learning. A, clustering dendrogram demonstrating good separation of the two
clusters determined via PAM algorithm by traits. B, sample clustering by PCA in the TCGA dataset. C, Kaplan-Meier survival analysis of the two clusters. D, validation of
clustering by pamr. E, selection of optimal threshold and exhibition of misclassification error. F, heatmap illustrating the differentiation power of 13 genes, red dots and green
dots representing samples classified by genes. G, validation of clustering by neural network. H, validation of clustering by SVM. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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3.5. Generation of MScore and its functional annotation

By performing elastic net regression analysis and PCA algorithm
(Fig. S6A), 26 macrophage-related genes were derived from the
434 genes and their coefficients were obtained (Fig. S7A,
Table S5), with the highest coefficients being TIMP1, EMP3, IGFBP2,
PDPN and SSTR5. In accordance, regulation of TIMP1 and EMP3 in
macrophages is associated with extracellular matrix remodeling
and recruitment of macrophages to tumors [38,39]. IGFBP2 and
PDPN are also associated with M2 polarization [40,41]. SSTR5 has
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been identified as the receptor controlling activation on macro-
phages [57]. The encoded protein interaction network was con-
structed using the STRING database (Fig. S7B) [58]. Of these
genes, single cell RNA-sequencing results showed that PDPN,
EMP3 and F2RL2 were the ones most highly expressed in macro-
phages (Fig. S7C). UMAP plot showed that most of these 26 genes
were enriched in neoplastic cells and macrophages (Fig. S8). The
macrophage-related gene signature was used to calculate MScores
by PCA (Table S6). Sankey plot revealed a high consistency
between macrophage-related clusters and MScores (Fig. S6B). The



Fig. 2. Characterization of the two clusters. A, dendrogram correlating the levels of 64 cell types and clusters in TCGA. B, ESTIMATEScores, ImuneScores and StromalScores of
the two clusters in TCGA. C, molecule levels in the pathways involved in immune checkpoint pathways in TCGA.
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correlation of the expression levels of 64 cell types and MScores
was then evaluated. There was a positive correlation between the
scores and the levels of fibroblasts, macrophages and monocytes
(Fig. 5A). In the TGCA dataset, survival analysis demonstrated a
4609
good separation of patients with different death risks by high
and low MScores (Fig. 5C). The prognostic value of MScores was
further validated in CGGAarray, CGGA325, and CGGA693 datasets
(Fig. S6C). The separation was more significant in all or low-



Fig. 3. Genomic features of the two clusters. A, global CNV profile of the two cluster. B, distribution of gain or loss of function mutation in the two clusters. C, list of the most
frequently altered genes in clusters 1 and 2.
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grade glioma (LGG) groups than in GBM group. Pathways related to
macrophage activation and migration, dendritic cell differentiation
and negative regulation of T cell proliferation were more active in
the samples with higher scores (Fig. 5B). High MScores were asso-
ciated with higher expression of immune infiltrating cells such as
monocytes, neutrophils, and mast cells (S9A), as well as with sev-
eral immune checkpoint molecules (Fig. S9B). In 15 external inde-
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pendent glioma datasets, MScores were proved to significantly
stratify patients’ overall survival probabilities (Fig. 6). We then
subclassified patients from TCGA dataset as LGG and GBM, and
IDH-mutant and wildtype. Our results also confirmed the discrim-
ination ability of MScores in these subgroups (Fig. S10A), as well as
in astrocytoma, oligoastrocytoma and glioma patients from CGGA
dataset (Fig. S10B). Furthermore, the prognostic value of MScores



Fig. 4. Methylation characteristics of the two clusters. A, clustering dendrogram by DMPs showing good separation of the two clusters by clinical and genetic traits. B, volcano
plot of DMPs and their position in genes. C, Manhattan plot of the genome-wide DNA differential methylation. D, GSEA of the two clusters. E, GO functional enrichment
analysis. F, comparison of enrichment scores of several immune cell types in the two clusters. *** p < 0.001.

H. Zhang, Yue-Bei Luo, W. Wu et al. Computational and Structural Biotechnology Journal 19 (2021) 4603–4618
was explored in other types of cancers (Fig. S11), High- and low-
MScores properly discriminated patients’ overall survival. They
were detrimental in cancers such as pheochromocytoma and para-
ganglioma, kidney chromophobe and uveal melanoma, and protec-
tive in diffuse large B-cell lymphoma, prostate adenocarcinoma
and thyroid cancer (Fig. 5D), which is partly in accordance with
previous studies [59], while not compatible with others [60,61].
The protective role of MScore in some cancers indicated the
heterogeneity of the tumor microenvironment among different
cancer types. GO enrichment functional analysis of MScores in sev-
eral cancer types also showed that MScores were positively corre-
lated with macrophage activation, fibroblast proliferation,
regulation of mast cell activation, and regulatory T cell differentia-
tion, which indicated an immune-suppressive microenvironment
(Fig. 5E). In pan-cancer analysis, MScores were also correlated with
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higher expression of immune infiltrating cells (Fig. S9C). Finally,
we evaluated MScores in our glioma patients, and found that high
score patients had lower survival probabilities (p < 0.0001, Fig. 5F).
IHC staining of CD163, a marker of M2 macrophage, showed that
samples with high MScores had higher expression of CD163
(Fig. 5G).
3.6. Construction of a prognostic nomogram based on MScores

After establishing macrophage density as a suitable marker for
survival prediction of gliomas, we further investigated its predic-
tion efficiency by univariate and multivariate regression analysis.
MScores were identified as a hazardous factor in TCGA and CGGA
693 cohorts (Fig. S12A, S12B). A prognostic nomogram was then
developed by combing prognostic factors, including MScores,



Fig. 5. Characterization of the MScore. A, dendrogram correlating the MScores and 64 cell types. B, GO functional enrichment analysis correlating different immune
regulatory processes with MScores. C, survival analyses of MScores in pan-glioma, LGG and GBM groups from TCGA. D, Hazard ratios of MScores in different cancer types
based on univariate Cox regression analysis. GBM, Glioblastoma multiforme; LGG, Brain Lower Grade Glioma; CHOL, Cholangiocarcinoma; OV, Ovarian serous
cystadenocarcinoma; LIHC, Liver hepatocellular carcinoma; ESCA, Esophageal carcinoma; PAAD, Pancreatic adenocarcinoma; STAD, Stomach adenocarcinoma; COAD, Colon
adenocarcinoma; KIRC, Kidney renal clear cell carcinoma; READ, Rectum adenocarcinoma; PCPG, Pheochromocytoma and Paraganglioma; HNSC, Head and Neck squamous
cell carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; LUSC, Lung squamous cell carcinoma; KIRP, Kidney renal papillary cell carcinoma;
KICH, Kidney Chromophobe; BRCA, Breast invasive carcinoma; THCA, Thyroid carcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; SKCM, Skin Cutaneous
Melanoma; BLCA, Bladder Urothelial Carcinoma; SARC, Sarcoma; THYM, Thymoma; LUAD, Lung adenocarcinoma; UCEC, Uterine Corpus Endometrial Carcinoma; UCS, Uterine
Carcinosarcoma; ACC, Adrenocortical carcinoma; PRAD, Prostate adenocarcinoma. E, GO enrich functional analysis of MScores in several cancer types. F, MScore
discriminating survival probabilities in Xiangya glioma cohort. G, CD163 staining for 25 LGG samples and 15 GBM samples. IHC against CD163 molecule demonstrating the
different M2 macrophage densities in the two MScore groups.
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Fig. 6. MScores discriminating survival probabilities in the majority of glioma cohorts.
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patient ages, tumor grades, IDHmutation, and chromosome 1p/19q
codeletion (Fig. S12C). In TCGA dataset, predicted probabilities cor-
responded well with the actual one- to five-year overall survival
rates of glioma patients (Fig. S12D). The Kaplan-Meier survival
curve demonstrated a good discrimination of survival probabilities
of the two clusters (p < 0.0001) (Fig. S12E). The ROC curve con-
firmed the discriminative ability of this nomogram (AUC = 0.802,
Fig. S12F). The efficiency of the prognostic model was validated
in CGGA 693 cohort. Predicted probabilities corresponded well
with the actual four-year overall survival rates of glioma patients
(Fig. S12G). The Kaplan-Meier survival curve demonstrated a good
discrimination of survival probabilities of the two clusters
(p < 0.0001) (Fig. S12H). The ROC curve confirmed the discrimina-
tive ability of this nomogram (AUC = 0.737, Fig. S12I).
3.7. Macrophage-stratified groups predicted response to
immunotherapies

The potential immunogenic and tumorigenic features of MScore
was explored. A series of immunogenic and tumorigenic factors
were summarized (Table S7). Regarding the antigen presentation
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capacity, high MScore group exhibited higher level of leukocyte
fraction, stromal fraction, lymphocyte infiltration signature score,
and macrophage regulation, indicating the immune infiltration
characteristics of high MScore group (Fig. S13A-D). Besides, high
MScore group exhibited higher TCR diversity that was associated
with tumor immunogenicity (Fig. S13E-F). High MScore group pre-
sented higher neoantigens, silent mutation rate, number of seg-
ments, fraction altered, aneuploidy score, all of which correlated
with tumor malignancy (Fig. S13G-K). Notably, microsatellite
instability (MSI), an indicator of better immunotherapy response,
was found with lower level in high MScore group (Fig. S13L).

We evaluated whether MScores were able to predict therapeu-
tic effects of immune blockade treatment in glioma patients. High
and low MScores failed to stratify patients by survival probability
from the IMvigor210 cohort (p = 0.18, Fig. 7A). Nevertheless, when
further stratified the patients according to immunotherapeutic
response types, the progressive disease, stable disease and partial
response groups showed different MScores, which partial response
and complete response correlated with lower MScore (Fig. 7B). The
progressive disease group and the stable disease group showed a
higher percentage of high MScore compared with the partial
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response group and the complete response group (Fig. 7C, D). We
also grouped the therapeutic response in a binary mode, and found
that the complete/partial response group had a higher percentage
of high scores than the stable/progressive disease group (Fig. 7E).
The levels of PD-L1 (CD274) were also higher in the high MScore
group, indicating the immune escape in tumor microenvironment
of high MScore group (Fig. 7F, p < 0.0001). The prognostic value
of MScores was also tested in GSE78220, a melanoma cohort under
PD-1 blockage treatment series. High MScore patients showed a
more favourable therapeutic response and experienced prolonged
survival (Fig. 7G-I).
4. Discussion

In the current in silico study, we interrogated the reliability of
macrophage density as a marker for glioma prognosis by using
WGCNA for the first time. Genes derived from the module of
WGCNA were used for glioma patient grouping. Machine learning
including pamr, neural network, and SVM were applied for validat-
ing the clustering results based on macrophage. For the validation
of the prognostic value of macrophages, we evaluated the compre-
hensive landscapes of tumor genomics, TME, metabolism, and
hypoxia pathways of macrophage density-stratified glioma
patients. A risk score based on the DEGs between macrophage-
related clusters was generated by PCA. We then investigated its
associated metabolic functions, biological functions, immunother-
apeutic response and immune cell expression (Fig. 7J).

TME refers to the stromal cell, cytokine and chemokine niche
that supports the tumor tissue. A previous study has found that
glioma TAMs partly overlap with either M1 or M2 polarized macro-
phages [62]. They express surface markers such as CD163, CD204,
CD206, and produce anti-inflammatory cytokines like IL-10 and
TGF-b, i.e. they demonstrate classic features of M2 macrophages.
In gliomas, M2 macrophages secrete IL-10 to activate JAK/STAT3
pathway, leading to tumor tissue growth [21].TGF-b promotes
glioma cell migration by upregulation of integrin and matrix
metalloproteinase-2 (MMP-2) as well as suppression of tissue inhi-
bitor of metalloproteinase-2 (TIMP-2) [63]. CSF-1, a growth factor
capable of promoting M2 polarization, is constitutively secreted
by glioma cells in order to recruit microglia [64,65]. Toll-like recep-
tor 2 (TLR2) can induce M2 polarization in schistosomiasis and can
be produced by macrophages under anti-inflammatory conditions
in turn [65,66]. Activation of TLR2 results in upregulation of mem-
brane type 1 matrix metalloprotease (MT1-MMP) in microglia and
subsequent glioma growth [67]. In summary, by assuming the
anti-inflammatory M2 polarization, TAMs are able to facilitate
tumor tissue growth and migration. Nevertheless, a recent multi-
omic study finds that TAMs have both the canonical M1 and M2
profiling, showing the complex composition of TAMs [68]. Myeloid
derived suppressor cells (MDSCs) are proposed as a group of potent
immune suppressors that develop from myeloid cells in response
to pathogenic stimuli [69]. They are categorized into two main
groups, polymorphonuclear (PMN-) and monocytic (M-) MDSCs,
the latter can differentiate into macrophages and dendritic cells.
More importantly, MDSCs shows strong potency to differentiate
into TAMs when homing to tumors [70]. We propose that the
macrophage entity as defined by the xCell algorithm in the present
study is very likely to encompass the M2 subgroup of TAMs and M-
MDSCs.

The genomic alteration related to macrophage entity was first
investigated. The IDH missense mutations confer better survival
outcome in glioma patients. Nevertheless, LGGs carrying the IDH
mutations are more prone to develop into secondary GBMs, espe-
cially when tertiary genetic alterations in oncogenes like PIK3CA
and PDGFRA occur in the same patient [71]. The present study finds
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that the IDH1 missense mutations are overrepresented in the clus-
ter 2 (93%) compared with the cluster 1 (9%), in accordance with
previous findings that IDH mutations are more enriched in LGGs
than in high grade ones [72]. Besides, TP53 (53% in cluster 2 vs
27% in cluster 1) is associated with low-grade gliomas and acts
as a tumor suppressor [73]. ATRX mutation, an important indicator
of telomere maintenance and benign glioma [74], is also over-
represnted in the cluster 2 (38%) compared with the cluster 1
(9%). In consistent with the previous findings, ATRX mutations
are mutually associated with p53 mutation and IDH mutation
but exclusive from 1p/19q codeletion in cluster 1, which is charac-
terized by better prognosis [75]. Likewise, EGFR, which is the most
enriched mutated gene in cluster 1 (29%) and whose alteration
occurs in less than 2% of cluster 2 cases as identified by somatic
mutation analysis, has been reported to be frequently activated
in GBM [76]. PTEN, another oncogene in GBM, is also more fre-
quently mutated in cluster 1 (23%) compared with cluster 2 (<2%).

We also explored the epigenetic modifications of glioma
patients. DNA methylation abnormalities have been strongly asso-
ciated with gliomas [77,78]. CpG islands hypermethylation in 50

promoter region is able to inhibit the transcription of tumor sup-
pressor genes [79], while hypomethylation in turn opens up nucle-
osome and activates expression of oncogenes [80,81].
Hypermethylation in the promoter region ofMGMT, which encodes
a DNA repair protein defending against mutagenesis, confers better
prognosis of GBM patients treated with radiotherapy and temo-
zolomide [82]. Indeed, gliomas patients in cluster 2 in our study
show a hypermethylation trend. Previous studies have proved that
IDH-mutant gliomas tend to be associated with hypermethylation,
which is also consistent with our findings [83].

Considering the vital role of macrophage in tumor microenvi-
ronment, we tried to establish a robust relationship between
macrophage signature and immune signatures. Hypoxia and
hypermetabolism are two vital regulators of tumor microenviron-
ment and determinants of tumor malignancy regarding their roles
in apoptosis, autophagy, DNA damage, and immunosuppression
[84,85]. In accordance, patients in cluster 1 are closely associated
with hypoxia pathways such as hypoxia inducible factor 1a signal-
ing pathway and hypermetabolism pathways such as pyrimidine
metabolism [86], purine metabolism [87] that have been proved
to be associated with tumor progression and metastasis. Immune
Score and Stromal Score serve to evaluate the infiltrating inflam-
matory cell density and stromal cell density within the tumor tis-
sue [88]. They have been shown to correlate with worse clinical
outcome in other types of tumors [89,90]. Patients with higher
MScores generally have higher ESTIMATE/Immune/Stromal Scores.
Besides, higher MScores are associated with a series of tumor
immunogenic factors. They also demonstrate an active antigen
presentation profile and higher immune infiltration level. This sug-
gests that tumor cells in these patients are in a more active state,
and may elicit a more robust phagocytosis and cytotoxicity
response by antigen presentation. Indeed, our analyses show that
higher MScore in glioma also denotes higher inflammatory cell
adhesion, trafficking, immune costimulatory and cytotoxicity
activity, exemplified by the increased expression of ICAM1, CXCL9,
CXCL10, CD27, BTN3A1, BTN3A2 and granzyme A molecules. On
the contrary, the elevated PD1, PDCD1LG2 and LAG3 levels sug-
gests that T cell anergy is activated to facilitate the glioma escaping
tumor surveillance system. Meanwhile, the potent vascularization
inducer VEGFA and the angiostatic molecule CXCL9 are both over-
expressed in high MScore samples, with the levels of VEGFA are
generally higher than those of CXCL9. Furthermore, M2 macro-
phage marker CD163 is more expressed in high MScore samples.
Overall, our analyses demonstrate active pro- and anti-
inflammatory processes, as well as angiogenesis and angiostasis
in patients with higher MScores, indicating an ‘escalated battle’



Fig. 7. Predictive value of MScore in immunotherapy response. A, Kaplan-Meier curve of high and low MScore groups in IMvigor210 cohort. B, rain-cloud plot showing
MScores of CR, PR, PD and SD groups. CR, complete response; PR, partial response; PD, progressive disease; SD, stable disease. C, the bar chart showing proportions of high and
low MScores. D, the bar chart showing proportions of CR/PR and SD/PD patients in high and low MScore groups. E, Constitution of the four therapeutic response types in high
and low MScore groups. F. comparison of collective CD274 levels in the two MScore groups. G, Survival analysis of MScores in a melanoma cohort. H, Proportions of high and
low MScores in different response groups. I, proportions of different response groups in high and low MScore groups. J, physiologic functions of M2 macrophages. CR,
complete response; NS, not significant; PD, progressive disease; PR, partial; SD, stable disease. * p < 0.05; *** p < 0.001.
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between tumor progression and suppression in this group of
patients that tilted toward tumor progression and the more M2-
like property. This also denotes that glioma with higher MScores
are populated by macrophages that encompass both the tradition-
ally defined M1 and M2 phenotypes, which further emphasizes
that M0/M1/M2 is a continuum instead of well delineated
categories.

Moreover, CD11+MHC-II+ macrophages are found to be capable
of removing anti-PD-1 antibodies from CD8+ T cells by Fc domain-
Fcc receptor interaction, thus neutralizing the therapeutic effect of
PD-1 antibodies [91]. Whether the same mechanism applies to
anti-PD-1L antibody remains to be determined. To support this
theory, our analyses show that the high MScore group has lower
MSI level and more frequent stable/progressive disease patients
than responsive patients, representing a worse response to
immunotherapies. Nevertheless, high MScore predicted increased
survival and better immunotherapy response. The different charac-
teristics of MScores in IMvigor cohort (urothelial carcinoma) and
GSE78220 cohort (melanoma) suggested the heterogeneity in
tumor microenvironment of different cancer types. Given that
anti-PD1/PDL1 immunotherapy relies on T cell activity, MScore is
presumably expected to exhibit better predictive value in TAMs
targeting immunotherapies. There are indeed several
macrophage-targeting immunotherapies on trial like DSP-0509
and Imiquimod. But after exhaustive searching, no publicly avail-
able dataset could be obtained to enable computational prediction
of MScores. It would definitely be interesting to investigate the
value of MScore in TAM-targeting immunotherapies in the future.

It should be noted that the macrophages in the present study
are still a heterogeneous group of cells that share a panel of similar
surface markers defined by cell type enrichment analysis tools. The
general hazardous role of MScores indicated a more M2-like prop-
erty. Considering the highly diverse and plastic nature of macro-
phages, further delineation and sub-classification of these
macrophages may serve to unveil the underlying role of macro-
phages in glioma ontogeny, thus conferring more accurate prog-
nostic prediction capabilities.
5. Conclusions

In conclusion, our in silico analyses have identified a macro-
phage gene signature consisting of 26 macrophage-specific genes,
and established their prognostic value in glioma. Our findings
strongly support a modulatory role of macrophages, especially
M2 macrophages, in glioma progression. This conclusion warrants
further experimental studies for validation.
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