
RESEARCH ARTICLE

L-carnitine infusion does not alleviate lipid-

induced insulin resistance and metabolic

inflexibility

Yvonne M. H. Bruls1,2, Yvo J. M. op den Kamp2, Esther Phielix2, Lucas Lindeboom1,2,

Bas Havekes3, Gert SchaartID
2, Esther Moonen-Kornips2, Joachim E. Wildberger1,

Matthijs K. C. Hesselink2, Patrick Schrauwen2, Vera B. Schrauwen-Hinderling1,2*

1 Departments of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research

in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands, 2 Departments of

Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism,

Maastricht University Medical Center, Maastricht, The Netherlands, 3 Division of Endocrinology, Department

of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht

University Medical Center, Maastricht, The Netherlands

* v.schrauwen@maastrichtuniversity.nl

Abstract

Background

Low carnitine status may underlie the development of insulin resistance and metabolic

inflexibility. Intravenous lipid infusion elevates plasma free fatty acid (FFA) concentration

and is a model for simulating insulin resistance and metabolic inflexibility in healthy, insulin

sensitive volunteers. Here, we hypothesized that co-infusion of L-carnitine may alleviate

lipid-induced insulin resistance and metabolic inflexibility.

Methods

In a randomized crossover trial, eight young healthy volunteers underwent hyperinsuline-

mic-euglycemic clamps (40mU/m2/min) with simultaneous infusion of saline (CON), Intrali-

pid (20%, 90mL/h) (LIPID), or Intralipid (20%, 90mL/h) combined with L-carnitine infusion

(28mg/kg) (LIPID+CAR). Ten volunteers were randomized for the intervention arms (CON,

LIPID and LIPID+CAR), but two dropped-out during the study. Therefore, eight volunteers

participated in all three intervention arms and were included for analysis.

Results

L-carnitine infusion elevated plasma free carnitine availability and resulted in a more pro-

nounced increase in plasma acetylcarnitine, short-, medium-, and long-chain acylcarnitines

compared to lipid infusion, however no differences in skeletal muscle free carnitine or acetyl-

carnitine were found. Peripheral insulin sensitivity and metabolic flexibility were blunted

upon lipid infusion compared to CON but L-carnitine infusion did not alleviate this.
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Conclusion

Acute L-carnitine infusion could not alleviated lipid-induced insulin resistance and metabolic

inflexibility and did not alter skeletal muscle carnitine availability. Possibly, lipid-induced

insulin resistance may also have affected carnitine uptake and may have blunted the insu-

lin-induced carnitine storage in muscle. Future studies are needed to investigate this.

Introduction

Type 2 diabetes mellitus is an increasing health problem worldwide. Type 2 diabetes patients

and individuals at risk of developing diabetes are characterized by insulin resistance and meta-

bolic inflexibility [1]. The latter is defined as an impaired capacity to switch from lipid oxida-

tion in the fasted state, towards carbohydrate oxidation in the insulin stimulated state [1].

Obesity and excessive availability of lipid substrate are strongly related to insulin resistance

and metabolic inflexibility [2]. The infusion of lipids in insulin sensitive subjects temporarily

causes lipid-induced insulin resistance and metabolic inflexibility, which is therefore a well-

appreciated model to investigate the mechanisms underlying the development of insulin resis-

tance and metabolic inflexibility [3, 4]. It is well known that exercise-trained individuals are

more insulin sensitivity and metabolically flexible compared to untrained BMI- and age-

matched individuals [4, 5]. Interestingly, when using a lipid infusion model, the degree of lipid

induced insulin resistance and metabolic inflexibility differs between exercise-trained and

untrained individuals. Exercise-trained athletes remained more insulin sensitive, reflected by a

reduction in insulin sensitivity of 29% in compared to 63% in untrained individuals [4]. Why

exercise-trained individuals remain more insulin sensitive and metabolic flexible upon lipid

infusion is mechanistically still unclear. Possible, the availability of skeletal muscle free carni-

tine might play a role in here.

Recently, carnitine has been suggested to play a role in maintaining insulin sensitivity and

metabolic flexibility [6–8]. Although carnitine is best known for its function in the transport of

long-chain fatty acyl-units into the mitochondrial matrix, allowing subsequent β-oxidation [9,

10], it exerts other functions as well. The function of carnitine to conjugate with acetyl-CoA to

form acetylcarnitine is gaining increasingly interest as it may be relevant in preserving insulin

sensitivity and metabolic flexibility [6]. This conjugation to acetylcarnitine is facilitated by the

enzyme carnitine acyl transferase (CrAT) in the mitochondria. With reduced acetylcarnitine

formation, acetyl-CoA may accumulate inside mitochondria, especially during conditions of

high substrate load (i.e. exercise or high-fat feeding). A rise in acetyl-CoA could inhibit the

activity of pyruvate dehydrogenase (PDH), which is a rate-limiting step in the conversion of

pyruvate into acetyl-CoA. As a consequence, mitochondria may be less able to maintain high

rates of glucose oxidation, which may infer metabolic inflexibility. The availability of carnitine

is therefore crucial in acetylcarnitine formation and may be actively involved in maintaining

metabolic flexibility, insulin sensitivity and glucose homeostasis [6–8].

Animal studies indeed explored the link between metabolic inflexibility and changes in car-

nitine status but results are inconclusive [6, 7, 11–13]. While some studies did not reveal a link

between metabolic flexibility and changes in carnitine status [12, 13], Noland et al. showed

that a reduction in free carnitine availability in rats was associated with decreased metabolic

flexibility and that the consumption of a high-fat diet even could lower free carnitine availabil-

ity [7]. Interestingly, increasing carnitine availability via supplementation in these rats resulted

in complete restoration of metabolic flexibility, as well as remaining high PDH activity and
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consequently insulin sensitivity [7]. Furthermore, observational data showed that obese mice

are characterized with low acetylcarnitine concentrations, which could underlie the insulin

resistant state [6, 11]. Interestingly, these animals benefit from improved carnitine availability

as acetylcarnitine levels restored concomitantly with improved metabolic flexibility, PDH

activity, insulin sensitivity, as well as blood glucose levels [11]. The latter suggest better glucose

homeostasis and therefore may be a pivotal mechanism to further explore in type 2 diabetes.

In patients with type 2 diabetes, lower skeletal muscle acetylcarnitine concentrations were

detected using magnetic resonance spectroscopy [14], which possibly indicate low carnitine

availability. Carnitine supplementation has been shown to improve glucose tolerance in insu-

lin resistant subjects with low carnitine status [15]. Some, although not all studies, reported

beneficial effects of carnitine administration on plasma glucose, insulin and lactate levels [16–

20]. Furthermore, markers of insulin resistance such as glucose infusion rate (GIR) [19, 20]

and M-value [21] were reported to improve upon intravenous carnitine administration. How-

ever, it still remains elusive what is underlying these beneficial effects of carnitine

administration.

We hypothesize that free carnitine availability in skeletal muscle tissue might be crucial in

maintaining metabolic flexibility and insulin sensitivity. Especially when lipid availability is

increased, free carnitine availability might become limiting. Therefore, in the current study we

aimed to investigate if L-carnitine infusion during simultaneous lipid infusion could alleviate

lipid-induced insulin resistance and metabolic inflexibility in healthy young males.

Methods

Ethical approval

Study procedures were approved by the Medical Ethical Committee in accordance with the

declaration of Helsinki. The full name on the ethics committee is the medical-ethical review

committee of the academic hospital Maastricht (azM) and Maastricht University (UM),

METC azM/UM. Trial monitoring was performed by the Clinical Trial Center Maastricht.

The study was registered at clinicaltrials.gov with identifier NCT02722902, full date of first reg-

istration was March 30, 2016. All subjects gave written informed consent after the protocol

was fully explained.

General characteristics

Eight young (18–40 years), healthy sedentary lean (BMI: 18–25 kg/m2) males participated in

this study. Participants were excluded in case of medication use interfering with glucose

homeostasis and/or study procedures, exercise engagement exceeding 3 hours a week, smok-

ing, unstable body weight (weight gain or loss > 5kg in the previous 3 months), alcohol and/or

drug abuse, impairments in kidney and/or liver function, uncontrolled hypertension, cardio-

vascular disease. Furthermore, significant food allergies/intolerances to the applied interven-

tion, participation in another biomedical study within 1 month before the first study visit, and

anaemia (haemoglobin levels<7.8 mmol/L) were exclusion criteria. Participants who intended

to donate blood during the study period or participants who have donated blood less than

three months before the start of the study were not included to minimize the risk of anaemia

due to repetitive blood sampling in this study. Participants were not included in case they did

not wanted their treating physician to be informed about participation in the study. Further-

more, if participants did not want to be informed about unexpected medical findings partici-

pation in the study was not possible. Finally, vegetarians were not included because of the

altered whole body carnitine status.
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Experimental design

The study was set up as a single blind, placebo-controlled randomized cross-over design. The

study was conducted at Maastricht University Medical Center, The Netherlands, between

December 2016 and June 2017. Participants were instructed to maintain their usual physical

activity patterns and to not change dietary behavior while participating in the study. During

visit 1, participants came in the morning after an overnight fast. Body composition (fat per-

centage and fat free mass) was determined. Subsequently, maximal oxygen uptake (VO2max)

and maximal power output were determined during an incremental cycling test on a station-

ary bike to determine training status. On each of the following visits (visit 2, 3 and 4), partici-

pants came in at 0600 h after an overnight fast. On each of these visits (visit 2, 3 and 4), a

hyperinsulinemic euglycemic clamp was performed to assess peripheral insulin sensitivity.

Two hyperinsulinemic euglycemic clamps were performed with simultaneous infusion of lip-

ids. In one of these lipid infusion study arms, subjects received simultaneously L-carnitine

infusion (=LIPID + CAR). In the other lipid trial, L-carnitine infusion was replaced by saline

infusion (=LIPID). During the third hyperinsulinemic euglycemic clamp, only saline was

infused as a control for the lipid infusion (=CON). The sequence of these different hyperinsuli-

nemic-euglycemic clamp conditions was randomly assigned. Block randomization with blocks

consisting of three items (1: CON, 2: LIPID, 3: LIPID+CAR) was performed by the researchers

as previously described by Snedecor and Cochran [22]. Participants were blinded for treat-

ment. The half-life of release of carnitine from skeletal muscle is 139 hours, therefore a wash-

out period of at least two weeks was used to prevent carry over effects of the L-carnitine and

lipid infusion. Primary outcome was the effect of additional L-carnitine in combination with

lipid infusion on insulin sensitivity and metabolic flexibility compared to only lipid infusion.

Secondary outcome measures were plasma and skeletal muscle acylcarnitine profiles.

Body composition

During the first visit, participants came in after an overnight fast. Body mass and body volume

were assessed using air-displacement plethysmography (ADP) using the Bod Pod (Cosmed,

Rome, Italy) according to the manufacturer’s instructions and as described previously [23, 24].

Thoracic gas volume was predicted based on equations included in the software. From these

data, body composition (fat mass, fat free mass and fat percentage) was calculated as described

by Siri [25].

VO2 max

Directly after the body composition determination during the first visit, all participants per-

formed a routine incremental exhaustive cycling test on a stationary bike to determine maxi-

mal oxygen uptake (VO2max) and maximal power output (Wmax) as reported previously [26]

for characterization of the participants and to confirm that the participants were not exercise-

trained. Briefly, after a five-minute warming-up period, the workload was increased every 2.5

minutes until exhaustion was reached. Oxygen uptake was measured continuously throughout

the test using indirect calorimetry (Omnical, Maastricht, The Netherlands).

Hyperinsulinemic-euglycemic clamp

At visit 2, 3 and 4, insulin sensitivity was assessed during a 6-hour hyperinsulinemic-euglyce-

mic clamp. Participants refrained from strenuous exercise three days preceding the clamp and

monitored their food intake in a food diary. A standardized carbohydrate rich meal was con-

sumed by all participants the evening prior to the clamp. At the day of the clamp, participants
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reported to university at 0600 h after an overnight fast from 2000 h onwards. A fasted blood

sample was obtained and a primed constant 6-hour insulin infusion was started (40mU/m2)

with simultaneous infusion of variable amounts of glucose (glucose 20%) to maintain euglyce-

mia (5.0mmol/L). Next to the infusion of insulin and glucose, infusion of Intralipid or saline

and L-carnitine or saline were started. Intralipid (Fresenius Kabi, Zeist, Nederland) or saline

(Braun, Melsungen, Germany) was administrated at an infusion rate of 90ml/h. Intralipid con-

sisted of pure soya-oil including linoleic acid, linolenic acid, oleic acid, palmitic acid and stea-

ric acid. All included lipids are long chain triglycerides (LCT). A primed (4mg/kg) continuous

(4mg/kg/h) infusion of L-Carnitine (Carnitene, Alfasigma, Utrecht, The Netherlands) or saline

(Braun, Melsungen, Germany) was used. Indirect calorimetry (ventilated hood) was per-

formed and blood samples were taken in the basal state (t = -30-0 min) and the last 30 minutes

(t = 330–360 min) of insulin stimulation to determine metabolic flexibility and glucose and

lipid oxidation rates according to Peronnet et al. [27]. The respiratory exchange ratio (RER),

defined as VCO2/VO2, was used to determine metabolic flexibility (ΔRER). Metabolic flexibil-

ity (ΔRER) reflects the difference between the insulin stimulated RER (t = 330–360 min)

minus RER at basal conditions (t = -30-0 min).

Muscle biopsies

On the day of the hyperinsulinemic-euglycemic clamp (visit 2, 3 and 4), skeletal muscle biop-

sies were taken upon 6 hours of insulin stimulation. In the control arm, an additional muscle

biopsy was taken in the morning after an overnight fast. Muscle biopsies were taken from the

m. vastus lateralis muscle according to the Bergstrom method [28] under local anesthesia (1%

Lidocaine, Accord Healthcare Limited, Harrow, United Kingdom). Muscle tissue was immedi-

ately frozen in melting isopentane and stored at –80˚C until further processing. Skeletal mus-

cle acylcarnitine species were determined using mass spectrometry as described previously

[29]. Total short-chain acylcarnitine species included the sum of C3 until C5 carnitine species.

C6 until C12 acylcarnitine species were defined as medium-chain acylcarnitine species. Long-

chain acylcarnitine species represented C14 until C18-acylcarnitine species.

Blood sample analysis

During the hyperinsulinemic-euglycemic clamp, the hand was heated in a hot box (55˚C) to

allow arterialized venous blood sampling from the hand vein. The arterialized venous blood

samples were immediately centrifuged and plasma was frozen in liquid nitrogen and stored at

-80˚C until analyzed. Plasma free fatty acid (FFA) concentrations were determined at t = 120,

180, 240, 360 and 480 minutes via an enzymatic assay automated on a Cobas Dara/Mira ana-

lyzer (Wako Nefa C test kit, Wako Chemicals, Neuss, Germany). Plasma acylcarnitine species

were measured using tandem mass spectrometry as previously described [30] during the basal

and insulin stimulated steady state (t = 120 and t = 480 minutes) and at t = 180 minutes to

determine the expected increase in plasma acetylcarnitine levels. Total short-chain acylcarni-

tine species included the sum of C3 until C5 carnitine species. C6 until C12 acylcarnitine spe-

cies were defined as medium-chain acylcarnitine species. Long-chain acylcarnitine species

represented C14 until C18-acylcarnitine species.

Sample size calculation and study status

The sample size was calculated based on the results from previous carnitine infusion studies

reporting clinically significant improvements in insulin sensitivity after carnitine infusion of

0.5–1.4 mg/kg/min during a hyperinsulinemic-euglycemic clamp [19, 20]. The intraindividual

variation (SD) of the difference in insulin sensitivity in repeated measurements is reported to
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be 0.68 mg/kg/min [31–33]. To reach 80% power, assuming an improvement of 0.5 mg/kg/

min, and a significance level of 0.05, a minimal calculated sample size of N = 13 was needed.

An interim-analysis was performed after eight participants completed the entire study with all

three intervention arms (17 participants were recruited for screening by then), revealing no

effect of the carnitine treatment. Therefore, the study was terminated prematurely after eight

participants.

Statistics

The statistical analysis was performed using SPSS 24.0 software (SPSS, Chicago, Il.). All results

are presented as mean ± SEM. Statistical significance was set at P<0.05. A one-way ANOVA

was carried out to investigate differences in insulin sensitivity (M-value), metabolic flexibility

(ΔRER) and skeletal muscle acylcarnitine species between study arms. For the comparisons of

skeletal muscle acylcarnitine species in the insulin-stimulated states with the basal state, a Stu-

dent’s paired sample t-test was performed with Bonferroni correction for multiple testing and

therefore, p-values of 0.0125 was considered statistically significant. A two-way ANOVA for

repeated measures was performed to test differences in GIR, oxidation rates and plasma acyl-

carnitines. In case of a significant F-value, Bonferroni post-hoc analysis were performed.

Results

Participant characteristics

Eight healthy young lean male participants (body weight = 76.5±1.9 kg, BMI = 23.2±0.4 kg/

m2, age = 22±1 year) were included. No drop-outs were reported. All participants had a seden-

tary life style (not engaged in regular physical activity). Their maximal oxygen uptake

(VO2max) (42.4±2.5 ml/min/kg) and body fat percentage (17.1±1.9%) were within the normal

range for young, untrained males. Participant enrollment and allocation are presented in Fig 1

whereas characteristics are presented in Table 1. No adverse events of the Intralipid and/or

carnitine infusion have occurred in this study.

Insulin sensitivity

At baseline, plasma FFA levels were comparable between study arms (389±47 vs. 415±40 vs.

382±60 μmol/L in CON, LIPID and LIPID+CAR respectively, P = 0.885). In the lipid trial an

increase in FFA levels occurred over time and were significantly higher at all time points com-

pared to the control condition (P<0.01, Fig 2A). Simultaneous infusion of L-carnitine did not

alter FFA levels when compared to lipid infusion alone (P = 0.939, Fig 2A).

During the first three hours of the clamp, glucose infusion rates (GIR) were comparable

between all three study arms (P = 0.448 Fig 2B). From 3 hours onwards, glucose infusion rates

were lower in LIPID as well as in LIPID+CAR compared to CON (P<0.01, Fig 2B), consistent

with previous studies showing that lipid-induced insulin resistance occurs after 2–3 hours of

lipid infusion [4, 34]. No difference was found in GIR at any time point between LIPID and

LIPID+CAR (P = 0.897) indicating that L-carnitine infusion did not alter lipid-induced insulin

resistance (Fig 2B).

As a result, peripheral insulin sensitivity, expressed as the M-value, was blunted during the

lipid infusion compared to the control condition (26.0±3.1 vs. 52.5±3.8 μmol/kg/min,

P = 0.019 respectively). Lipid-induced insulin resistance was not alleviated by L-carnitine infu-

sion (M-value LIPID+CAR; 25.3±4.0 μmol/kg/min, P>0.99 compared to LIPID, Fig 2C).
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Fig 1. CONSORT flow diagram. Diagram of the progress through the phases of this randomized, controlled crossover study with young lean male

participants.

https://doi.org/10.1371/journal.pone.0239506.g001
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Metabolic flexibility and substrate oxidation

Basal glucose oxidation were comparable between study arms but glucose oxidation upon 6

hours of insulin infusion was increased in the control condition (from 5.4±1.8 to 19.6±1.5

μmol/kg/min, P<0.01, Fig 3A). However, glucose oxidation remained low during the infusion

of lipid (from 6.5±1.5 to 8.5±1.6 μmol/kg/min, P = 0.164, Fig 3A). Parallel infusion of

Table 1. Baseline participant characteristics.

n = 8

Age (y) 22 ± 1

Body mass (kg) 76.5 ± 1.9

BMI (kg/m2) 23.2 ± 0.4

Waist-Hip ratio 0.84 ± 0.02

Blood pressure

Systolic (mmHg) 118 ± 2

Diastolic (mmHg) 72 ± 1

Body composition

Fat mass (kg) 12.9 ± 1.6

Fat free mass (kg) 61.3 ± 2.1

Fat percentage (%) 17.1 ± 1.9

Physical fitness

VO2max (ml�min-1�kg bw-1) 42.4 ± 2.5

Wmax (W�kgbw-1) 3.3 ± 0.2

Glucose metabolism

Fasting glucose (mmol/L) 4.9 ± 0.1

Fasting insulin (pmol/L) 28.9 ± 3.9

HbA1c (%) 5.2 ± 0.1

Blood lipid profile

Total cholesterol (mmol/L) 4.1 ± 0.2

HDL cholesterol (mmol/L) 1.5 ± 0.1

LDL cholesterol (mmol/L) 2.2 ± 0.1

Triglycerides (mmol/L) 1.0 ± 0.1

Data are represented as mean ± S.E.M. Wmax, maximal workload, VO2max is normalized to body weight in kg

https://doi.org/10.1371/journal.pone.0239506.t001

Fig 2. Hyperinsulinemic-euglycemic clamp. Plasma FFA concentrations (A), glucose infusion rates (B) and insulin sensitivity expressed as M-value (C) in CON,

LIPID and LIPID+CAR during the hyperinsulinemic-euglycemic clamp (n = 8). Data are expressed as mean + SEM. �, Significantly different from CON (P<0.05).

https://doi.org/10.1371/journal.pone.0239506.g002
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L-carnitine did not change the lipid-induced suppression in glucose oxidation (P = 0.864). In

line with these findings, lipid oxidation was comparable between study arms at baseline but

was elevated after 6-hours of lipid infusion and suppressed in the control arm (1.8±2.7 and 0.6

±0.2 μmol/kg/min in LIPID and CON respectively, P<0.01, Fig 3B). Also here, L-carnitine

infusion did not affect lipid oxidation rates (P = 0.883, Table 2).

The RER measured under baseline conditions, so before the start of the infusions, was not

different between study arms, as expected (P = 0.881, Fig 3C). Metabolic flexibility, expressed

as ΔRERclamp-basal, was decreased upon lipid infusion compared to control (0.10±0.02 and

0.01±0.01 in CON and LIPID respectively, P<0.01, Fig 3D). L-carnitine did not change the

lipid-induced decrease in metabolic flexibility (0.01±0.01 in LIPID+CAR, P = 0.920).

Fig 3. Metabolic flexibility and substrate oxidation. Glucose oxidation (A), Lipid oxidation (B), respiratory exchange ratio (RER) (C) and metabolic

flexibility expressed as delta RER (D) assessed during a hyperinsulinemic-euglycemic clamp in CON, LIPID and LIPID+CAR (n = 8). Black bars

represent CON, white bars LIPID and grey bars represent LIPID+CAR. Basal clamp is measured from t = -30-t = 0, mid-way from t = 120–150 and

clamp from t = 330–360. Data are expressed as mean + SEM. �, Significantly different from CON (P<0.05).

https://doi.org/10.1371/journal.pone.0239506.g003
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Plasma acylcarnitine profiles

A time�treatment interaction was present for plasma free carnitine availability (P<0.01).

Plasma free carnitine levels were similar at baseline (35.8±2.0 vs. 36.3±2.8 vs. 34.4±1.9 μmol/L

in CON, LIPID, LIPID+CAR respectively, P = 0.829, Fig 4A and Table 3). One hour of

Table 2. Substrate kinetics and insulin sensitivity.

CON LIPID LIPID+CAR

RER (Arbitrary Units)

Basal (t = -30-0) 0.78 ± 0.02 0.78 ± 0.02 0.78 ± 0.03

Middle (t = 120–150) 0.90 ± 0.02 0.83 ± 0.03 0.83 ± 0.03

Insulin stimulated (t = 330–360) 0.91 ± 0.02 0.78 ± 0.02a 0.79 ± 0.03a

Δ clamp-basal 0.10 ± 0.02 0.01 ± 0.01a 0.01 ± 0.01a

CHO oxidation (μmol�kg-1�min-1)

Basal (t = -30-0) 5.4 ± 1.8 6.5 ± 1.5 6.3 ± 2.2

Middle (t = 120–150) 18.1 ± 2.3 12.6 ± 2.3 12.8 ± 3.3

Insulin stimulated (t = 330–360) 19.6 ± 1.5 8.5 ± 1.6a 8.5 ± 2.6a

Δ clamp-basal 9.5 ± 2.2 1.4 ± 0.8a 1.6 ± 1.2a

Lipid oxidation (μmol�kg-1�min-1)

Basal (t = -30-0) 1.7 ± 0.1 1.6 ±0.2 1.6 ± 0.2

Middle (t = 120–150) 0.8 ± 0.1 1.4 ± 0.2 1.4 ± 0.3

Insulin stimulated (t = 330–360) 0.6 ± 0.2 1.8 ± 0.2a 1.8 ± 0.2a

Δ clamp-basal -1.01 ± 0.11 0.18 ± 0.08a 0.19 ± 0.15a

M-value (μmol�kg-1�min-1) 52.5 ± 3.8 26.0 ± 3.1a 25.3 ± 4.0a

Data are expressed as mean ± S.E.M. (n = 8).
a significantly different from CON.

https://doi.org/10.1371/journal.pone.0239506.t002

Fig 4. Plasma acylcarnitine profiles. Plasma free carnitine availability (A), acetylcarnitine (B), C3 acylcarnitine (C), medium chain acylcarnitines (D) and long-

chain acylcarnitine concentrations (E) measured at baseline (t = 0), after one hour (t = 60) and at the of the 6-hour hyperinsulinemic-euglycemic clamp (t = 360)

(n = 8). Black dots represent the control group, white dots the LIPID group and light grey lines the LIPID+CAR group. Data are expressed as means ± SEM. �

significantly different from CON (P<0.05). Note: in A the lines of the control and lipid conditions are overlapping.

https://doi.org/10.1371/journal.pone.0239506.g004
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Table 3. Plasma acylcarnitine concentrations before, during and after the 6-hour hyperinsulinemic-euglycemic clamp.

CON LIPID LIPID+CAR

C0 t = 0 35.79 ± 2.02 36.32 ± 2.82 34.40 ± 1.87

t = 60 36.84 ± 2.09 36.96 ± 2.64 155.38 ± 4.94a,b,c

t = 360 33.78 ± 2.04 31.55 ± 2.16 183.33 ± 6.28a,b,c,d

C2 t = 0 5.38 ± 0.71 5.65 ± 0.65 5.13 ± 0.65

t = 60 3.56 ± 0.34c 4.16 ± 0.37c 5.70 ± 0.62a,b

t = 360 2.27 ± 0.10c,d 6.31 ± 0.69a,d 15.11 ± 1.04a,b,c,d

C3 t = 0 0.36 ± 0.03 0.35 ± 0.03 0.36 ± 0.05

t = 60 0.36 ± 0.03 0.33 ± 0.03 0.48 ± 0.06a,b,c

t = 360 0.22 ± 0.02c,d 0.17 ± 0.01a,c,d 0.47 ± 0.05a,b,c

C4 t = 0 0.20 ± 0.01 0.18 ± 0.01 0.20 ± 0.02

t = 60 0.19 ± 0.02 0.17 ± 0.01 0.22 ± 0.02b,c

t = 360 0.15 ± 0.01c,d 0.14 ± 0.01c,d 0.28 ± 0.03a,b,c,d

C5:1 t = 0 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

t = 60 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

t = 360 0.00 ± 0.00 0.00 ± 0.00c 0.01 ± 0.00

C5 t = 0 0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.01

t = 60 0.09 ± 0.01 0.09 ± 0.01 0.11 ± 0.01a,b,c

t = 360 0.05 ± 0.01c,d 0.04 ± 0.01c,d 0.06 ± 0.01b,c,d

C4-3OH t = 0 0.03 ± 0.00 0.04 ± 0.01 0.04 ± 0.01

t = 60 0.02 ± 0.00c 0.03 ± 0.00c 0.05 ± 0.02

t = 360 0.01 ± 0.00c,d 0.06 ± 0.01a,c,d 0.14 ± 0.03a,b,c,d

C6 t = 0 0.04 ± 0.00 0.04 ± 0.00 0.03 ± 0.00

t = 60 0.03 ± 0.00c 0.03 ± 0.00c 0.04 ± 0.01a

t = 360 0.02 ± 0.00c,d 0.04 ± 0.00a,c,d 0.08 ± 0.01a,b,c,d

C5OH t = 0 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00

t = 60 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

t = 360 0.00 ± 0.00 0.01 ± 0.00d 0.01 ± 0.00

C8 t = 0 0.09 ± 0.01 0.09 ± 0.01 0.08 ± 0.01

t = 60 0.06 ± 0.00c 0.07 ± 0.01c 0.08 ± 0.01

t = 360 0.03 ± 0.00c,d 0.07 ± 0.01a 0.10 ± 0.01a,b,c,d

C3 DC t = 0 0.03 ± 0.00 0.04 ± 0.00 0.04 ± 0.01

t = 60 0.03 ± 0.00c 0.03 ± 0.00a,c 0.03 ± 0.00c

t = 360 0.01 ± 0.00c,d 0.03 ± 0.00a 0.04 ± 0.00a,d

C10:1 t = 0 0.06 ± 0.01 0.06 ± 0.01 0.05 ± 0.01

t = 60 0.04 ± 0.01c 0.09 ± 0.01a,c 0.10 ± 0.02a,c

t = 360 0.01 ± 0.00c,d 0.19 ± 0.01a,c,d 0.27 ± 0.02a,b,c,d

C10 t = 0 0.07 ± 0.01 0.08 ± 0.01 0.07 ± 0.01c

t = 60 0.05 ± 0.01c 0.05 ± 0.01c 0.06 ± 0.01

t = 360 0.01 ± 0.00c,d 0.04 ± 0.00a,c 0.06 ± 0.01a,b

C4 DC t = 0 0.04 ± 0.00 0.04 ± 0.01 0.03 ± 0.01

t = 60 0.04 ± 0.00 0.04 ± 0.01 0.03 ± 0.01

t = 360 0.04 ± 0.00c 0.04 ± 0.00 0.03 ± 0.00

C5 DC t = 0 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

t = 60 0.02 ± 0.00 0.02 ± 0.00 0.03 ± 0.00a

t = 360 0.02 ± 0.00c 0.02 ± 0.00a 0.03 ± 0.00a

C12:1 t = 0 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.01

t = 60 0.02 ± 0.00 0.02 ± 0.00c 0.02 ± 0.00c

(Continued)
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Table 3. (Continued)

CON LIPID LIPID+CAR

t = 360 0.00 ± 0.00c,d 0.03 ± 0.00a,d 0.05 ± 0.00a,b,d

C12 t = 0 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.01

t = 60 0.02 ± 0.00c 0.02 ± 0.00c 0.03 ± 0.00c

t = 360 0.01 ± 0.00c,d 0.02 ± 0.00a,c 0.03 ± 0.00a,b,d

C6 DC t = 0 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00

t = 60 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

t = 360 0.01 ± 0.00 0.02 ± 0.00a 0.02 ± 0.00a,b,c,d

C12:1OH t = 0 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

t = 60 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

t = 360 0.01 ± 0.00 0.01 ± 0.00a 0.02 ± 0.00a,b,c,d

C12OH t = 0 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

t = 60 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

t = 360 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

C53M3OH DC t = 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 360 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

C14:2 t = 0 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

t = 60 0.01 ± 0.00c 0.03 ± 0.00a,c 0.03 ± 0.00a,c

t = 360 0.00 ± 0.00c,d 0.12 ± 0.02a,c,d 0.21 ± 0.04a,b,c,d

C14:1 t = 0 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01

t = 60 0.03 ± 0.00c 0.03 ± 0.00c 0.03 ± 0.01

t = 360 0.01 ± 0.00c,d 0.06 ± 0.01a,d 0.10 ± 0.02a,b,c,d

C14 t = 0 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

t = 60 0.02 ± 0.00 0.01 ± 0.00c 0.01 ± 0.00c

t = 360 0.01 ± 0.00c,d 0.01 ± 0.00a.c 0.02 ± 0.00a,b

C8 DC t = 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 360 0.00 ± 0.00 0.01 ± 0.00a,c,d 0.01 ± 0.00a,c,d

C14:1OH t = 0 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

t = 60 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

t = 360 0.01 ± 0.00 0.01 ± 0.00a 0.01 ± 0.00a

C14OH t = 0 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00

t = 60 0.00 ± 0.00 0.00 ± 0.00c 0.00 ± 0.00

t = 360 0.00 ± 0.00 0.00 ± 0.00c 0.00 ± 0.00

C16:1 t = 0 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

t = 60 0.01 ± 0.00c 0.01 ± 0.00c 0.01 ± 0.00

t = 360 0.00 ± 0.00c,d 0.02 ± 0.00a 0.02 ± 0.00a

C16 t = 0 0.08 ± 0.01 0.08 ± 0.00 0.08 ± 0.01

t = 60 0.07 ± 0.01c 0.08 ± 0.00 0.07 ± 0.01c

t = 360 0.03 ± 0.00c,d 0.07 ± 0.00a,c,d 0.08 ± 0.01a,b

C10 DC t = 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 60 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

t = 360 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

C16:1OH t = 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 360 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

C16OH t = 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

(Continued)
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L-carnitine infusion already increased plasma free carnitine availability to supra-physiological

concentrations (155±5 μmol/L, P<0.01) and finally reaching concentrations of 183±6 μmol/L

(P<0.01) after six hours of infusion (Fig 4A and Table 3). No changes from baseline in plasma

free carnitine availability were observed in the CON and LIPID trial over time (P>0.99, Fig 4A

and Table 3).

Plasma acetylcarnitine (C2) concentrations showed a time�treatment interaction (P<0.01)

and were comparable between study arms at baseline (P = 0.860). C2 concentrations decreased

in the CON trial over time from 5.4±0.7 to 3.6±0 μmol/L after one hour and to 2.3±0.1 μmol/L

after six hours (P<0.01, Fig 4B and Table 3), which is probably due to insulin infusion. With

lipid infusion, C2 concentrations decreased during the first hour (5.7±0.6 to 4.2±0.4 μmol/L,

P<0.01) and subsequently tended to increase again (P = 0.05 compared to t = 60), reaching

Table 3. (Continued)

CON LIPID LIPID+CAR

t = 60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 360 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

C18:2 t = 0 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

t = 60 0.03 ± 0.00c 0.04 ± 0.00a,c 0.04 ± 0.00a,c

t = 360 0.02 ± 0.00c,d 0.13 ± 0.01a,c,d 0.15 ± 0.02a,b,c,d

C18:1 t = 0 0.08 ± 0.01 0.10 ± 0.01 0.09 ± 0.01

t = 60 0.06 ± 0.01c 0.07 ± 0.01c 0.07 ± 0.01c

t = 360 0.04 ± 0.00c,d 0.08 ± 0.01a 0.09 ± 0.00a,b,c,d

C18 t = 0 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

t = 60 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

t = 360 0.02 ± 0.00c,d 0.03 ± 0.00a 0.03 ± 0.00a

C18:2OH t = 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00c,d

t = 360 0.00 ± 0.00 0.01 ± 0.00a,c 0.01 ± 0.00a

C18:1OH t = 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 360 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00a,c,d

C18OH t = 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

t = 360 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Short- t = 0 0.80 ± 0.06 0.78 ± 0.06 0.79 ± 0.07

Chain t = 60 0.76 ± 0.05 0.72 ± 0.05 0.97 ± 0.08a,b,c

t = 360 0.50 ± 0.04c,d 0.51 ± 0.03c,d 1.06 ± 0.08a,b,c

Medium- t = 0 0.35 ± 0.04 0.37 ± 0.04 0.34 ± 0.05

Chain t = 60 0.25 ± 0.02c 0.33 ± 0.03a 0.36 ± 0.05a

t = 360 0.12 ± 0.00c,d 0.44 ± 0.02c,d 0.66 ± 0.05c,d

Long- t = 0 0.33 ± 0.04 0.35 ± 0.02 0.33 ± 0.04

Chain t = 60 0.26 ± 0.03c 0.31 ± 0.02a,c 0.31 ± 0.04a

t = 360 0.13 ± 0.01c,d 0.53 ± 0.05a,c,d 0.74 ± 0.09a,b,c,d

Data are expressed as mean ± SEM.
a significantly different from CON.
b significantly different from LIPID.
c significantly different from t = 0.
d significantly different from t = 60.

https://doi.org/10.1371/journal.pone.0239506.t003
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concentrations of 6.3±0.7 μmol/L after 6 hours which are comparable to baseline values

(P = 0.375). Infusion of L-carnitine in addition to lipids prevented the decrease in C2 concen-

trations after one hour resulting in significantly higher C2 levels compared to CON and

LIPID. After six hours, plasma acetylcarnitine concentrations were increased compared to

baseline (P<0.01, Fig 4B and Table 3).

C3 and short-chain acylcarnitines (C3 until C5) both showed a time�treatment interaction

(P<0.01) and were similar between groups in the basal state after an overnight fast. C3 and

short-chain acylcarnitine decreased in the CON and LIPID condition after six hours (P<0.01),

but were increased upon 6 hours L-carnitine infusion compared to the CON and LIPID condi-

tion (P<0.01, Fig 4C and Table 3).

A time�treatment interaction was found for both medium- and long-chain acylcarnitines

(P<0.01). Plasma medium and long-chain acylcarnitines were not different between groups in

the basal state after an overnight fast. Insulin stimulation resulted in a reduction in medium-

as well as long-chain acylcarnitines in the control group in time (P<0.01). In contrast,

medium- and long-chain acylcarnitines increased upon lipid infusion after six hours

(P = 0.034 and P = 0.013 respectively, Fig 4D and 4E and Table 3). This increase was even

more pronounced when combining lipid infusion with L-carnitine infusion for both medium-

as long-chain acylcarnitines (P<0.01, Fig 4D and 4E and Table 3).

Skeletal muscle acylcarnitines profiles

No differences in skeletal muscle free carnitine availability (P = 0.901) and acetylcarnitine con-

centrations (P = 0.786) were found after 6-hours of infusion between groups (Fig 5A and 5B,

Table 4). Because of Bonferroni correction for multiple testing, p-values of 0.0125 were consid-

ered statistically significant for the comparison of insulin-stimulated states with the basal state.

Free carnitine and acetylcarnitine values obtained after 6 hours were not different from

Fig 5. Skeletal muscle acylcarnitine profiles. Skeletal muscle acylcarnitine concentrations measured in biopsies at the end of the 6-hour hyperinsulinemic-

euglycemic clamp (n = 8). Black bars represent the control group, white bars the LIPID group and light grey bars the LIPID+CAR group. Dark grey bars represent

the pre-clamp muscle biopsy. Data are expressed as means ± SEM. � significantly different from PRE (P<0.0125 after Bonferroni correction for multiple testing), ^

tending to be different from CON (P<0.10).

https://doi.org/10.1371/journal.pone.0239506.g005
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baseline (C0: P = 0.734 (CON), P = 0.170 (LIPID), P = 0.192 (LIPID+CAR) and C2: P = 0.138

(CON), P = 0.368 (LIPID), P = 0.187 (LIPID+CAR)). Short-chain acylcarnitine species

reduced upon 6-hours of insulin infusion in CON trial compared to basal (P = 0.013). This

decrease was blunted upon LIPID and LIPID+CARN compared to CON, resulting in a ten-

dency towards higher short-chain acylcarnitine concentrations upon LIPID and LIPID

+CARN compared to CON (P = 0.103, Fig 5C and Table 4). Medium and long-chain acylcar-

nitines seemed to be decreased in CON compared to baseline after 6 hours of insulin infusion,

but this did not reach significance (P = 0.049 and P = 0.107 respectively, Fig 5D and 5E). No

difference in medium and long-chain acylcarnitines were found after 6-hours of infusion

between groups (P = 0.177 and P = 0.564 respectively, Fig 5D and 5E and Table 4).

Table 4. Skeletal muscle acylcarnitine concentrations (in biopsies) before (only LIPID+CAR trial) and after the 6-hour hyperinsulinemic-euglycemic clamp.

CON after LIPID after LIPID+CAR before LIPID+CAR after

C0 4865.56 ± 1081.90 5391.99 ± 685.81 4559.25 ± 761.19 5402.57 ± 998.28

C2 476.28 ± 89.07 556.02 ± 83.27 822.57 ± 257.62 564.47 ± 111.55

C3 6.71 ± 1.43 6.84 ± 0.82 8.06 ± 1.30 7.15 ± 0.98

C4 2.86 ± 0.74 5.26 ± 1.02 8.55 ± 1.94 4.96 ± 1.44

C5:1 0.83 ± 0.33 0.63 ± 0.15 0.64 ± 0.23 0.43 ± 0.13

C5 2.59 ± 0.76 1.89 ± 0.40 3.78 ± 1.08 1.74 ± 0.45

C4-3OH 1.14 ± 0.20 9.56 ± 2.18a 6.26 ± 2.80 10.39 ± 2.90a

C6 0.79 ± 0.21 3.76 ± 1.29 8.15 ± 3.08 3.58 ± 1.58

C8:1 0.44 ± 0.13 1.79 ± 0.33ac 0.77 ± 0.18 1.18 ± 0.27

C8 0.66 ± 0.13 2.30 ± 0.81 4.47 ± 1.60 2.22 ± 0.84

C4DC 1.12 ± 0.13 1.45 ± 0.17 1.59 ± 0.29 1.48 ± 0.25

C10 0.51 ± 0.11 0.95 ± 0.24 2.70 ± 0.87 1.03 ± 0.32

C12:1 0.30 ± 0.07 0.44 ± 0.11 1.20 ± 0.45 0.52 ± 0.14

C12 0.87 ± 0.19 1.07 ± 0.22 3.84 ± 1.46 1.14 ± 0.30

C14:2 0.63 ± 0.13 2.35 ± 0.61 2.06 ± 0.63 2.38 ± 0.81

C14:1 1.67 ± 0.40 2.30 ± 0.48 8.44 ± 3.30 2.53 ± 0.75

C14 2.54 ± 0.58 2.32 ± 0.38 9.35 ± 3.60 2.77 ± 0.52

C16:2 0.85 ± 0.20 1.92 ± 0.36 1.75 ± 0.54 2.01 ± 0.43b

C16:1 5.18 ± 1.30 3.55 ± 0.30 10.65 ± 3.43 4.10 ± 0.68

C16 14.40 ± 3.05 9.78 ± 1.27 28.43 ± 9.44 11.28 ± 1.53

C18:2 12.62 ± 2.58 15.57 ± 1.49 16.10 ± 3.55 19.56 ± 3.24

C18:1 31.96 ± 7.33 19.77 ± 1.81 47.24 ± 10.62 27.89 ± 4.38

C18 4.75 ± 0.87 3.88 ± 0.54 10.27 ± 2.88 4.73 ± 0.72

C20:2 0.11 ± 0.02 0.09 ± 0.01 0.20 ± 0.08 0.12 ± 0.01

C20:1 0.20 ± 0.03 0.15 ± 0.02 0.43 ± 0.14 0.19 ± 0.03

C20 0.06 ± 0.01 0.14 ± 0.02a 0.18 ± 0.06 0.15 ± 0.03a

Short-acylcarnitines 16.04 ± 3.43 29.38 ± 4.48b 28.88 ± 5.69 29.73 ± 5.52b

Medium-acylcarnitine 3.17 ± 0.60 6.83 ± 1.47 22.07 ± 7.70 6.38 ± 1.78

Long-acylcarnitines 74.97 ± 15.53 61.71 ± 6.19 135.09 ± 36.20 77.59 ± 11.32

Data are expressed as mean ± SEM.
a significantly different from CON after.
b tending to be different from CON after.
c significantly different from LIPID+CAR before.

https://doi.org/10.1371/journal.pone.0239506.t004
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Discussion

In the present study, we aimed to investigate whether free carnitine availability could alleviate

lipid-induced insulin resistance. We hypothesized that intravenous infusion of L-carnitine

would increase the availability of free carnitine in skeletal muscle, which could prevent the

development of lipid-induced insulin resistance and metabolic inflexibility during acute lipid

infusion.

In the current study, the intravenous administration of L-carnitine increased plasma free

carnitine concentrations to 183 μmol/L. These values exceed normal reference values (22.3–

54.8 μmol/L) indicating a state of hypercarnitinemia in the plasma and thus increased plasma

free carnitine availability. This level of plasma hypercarnitinemia is comparable to earlier stud-

ies that also used L-carnitine infusions of similar dosage to reach hypercarnitinemia in the

plasma [21, 35].

Although plasma hypercarnitinemia occurred, no differences in skeletal muscle free carni-

tine concentration were found upon L-carnitine infusion. This is surprising, as the infusion of

insulin has been shown to stimulate uptake of carnitine and combinations of carnitine and

insulin have been shown to increase carnitine content in muscle [36]. The uptake of carnitine

into the skeletal muscle cells is regulated via the sodium dependent organic cation transporter

2 (OCTN2) and tightly regulated by the sarcolemmal Na+/K+ ATPase pump activity [36–40].

Inhibition of the Na+/K+ ATPase pump activity has been shown to decrease carnitine uptake

in isolated skeletal muscle cells, illustrating the importance of the Na+/K+ ATPase pump activ-

ity in this sodium dependent uptake of carnitine [39, 41]. Insulin is known to facilitate carni-

tine uptake into skeletal muscle by increasing the activity of the sarcolemmal Na+/K+ ATPase

pump [36, 38, 42]. Therefore, L-carnitine infusion together with hyperinsulinemia (40mU/m2/

min) was expected to increase skeletal muscle free carnitine levels, however, this was not the

case in the present study. It is yet unclear why carnitine concentrations did not increase in

muscle tissue. Although this very much exceeds the scope of the current research, a possible

theoretical explanation for the lack of increase in skeletal muscle free carnitine and acetylcarni-

tine in the current study could be that due to the development of lipid-induced insulin resis-

tance, the expected insulin facilitated increase in Na+/K+ ATPase pump activity may have been

blunted, thereby not leading to enhanced sodium mediated co-transport of carnitine into the

skeletal muscle [38, 39, 43–45]. However, this remains speculation and future studies will have

to investigate potential mechanisms. Unfortunately, we did not perform a clamp with intrave-

nous infusion of L-carnitine, without additional lipid infusion. The latter could have revealed

whether lipid infusion indeed hampered carnitine uptake versus insulin infusion alone. Fur-

thermore, the participants of the current study were young and healthy and it is expected that

their carnitine availability in muscle was already high to start with. It is conceivable that there-

fore an increase in muscle carnitine concentration upon infusion is less likely, although this

requires further study.

The increase in lipid availability as a result of lipid infusion lead to strongly elevated plasma

free fatty acid levels, as reported before [3, 34]. It was previously reported that due to this rise

in FFA levels, glucose infusion rates (GIR), insulin sensitivity and metabolic flexibility

decreases after 2–4 hours of lipid infusion [3, 4, 34, 46–48]. Indeed, we found that glucose infu-

sion rate and M-value both decreased by approximately 50% indicating a marked induction of

insulin resistance upon lipid infusion. Furthermore, carbohydrate oxidation was reduced and

lipid oxidation increased in the insulin-stimulated state, reflecting a blunted metabolic flexibil-

ity upon insulin stimulation. However, these changes were similar in the conditions with or

without infusion of L-carnitine. As carnitine needs to be taken up in the muscle to exert an

effect on insulin sensitivity according to our hypothesis, it is not be surprising that insulin
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sensitivity was not affected in the present study. In contrast to our findings, beneficial effects

of L-carnitine infusion has been reported previously in overweight patients with type 2 diabe-

tes. Thus, in these studies, intravenous infusion of L-carnitine during a hyperinsulinemic-

euglycemic clamp (40mU/kg/min) was shown to improve whole-body glucose disposal [20,

21]. Furthermore, Mingrone et al. [20] reported enhanced insulin stimulated glucose oxidation

upon L-carnitine infusion during a clamp (40mU/kg/min), reflecting improved metabolic flex-

ibility. However, in these studies, skeletal muscle free carnitine availability is not reported. It

should be noted that in these studies, no lipid infusion was used and therefore, no lipid-

induced insulin resistance occurred and the uptake of carnitine may have been more efficiently

stimulated by insulin. Whether improved skeletal muscle free carnitine availability indeed

underlies the beneficial metabolic effects that were reported previously, remains to be shown.

In the current study, plasma acetylcarnitine concentrations were reduced upon insulin

stimulation in the control trial. Next to acetylcarnitine levels, reduced short-, medium- and

long-chain acylcarnitine levels have been reported in situations of hyperinsulinemia. We here

confirmed this reduction in short-, medium- and long-chain acylcarnitines levels upon insulin

infusion. These decreases in acylcarnitine species are likely to reflect a decreased lipid oxida-

tion caused by hyperinsulinemia, as previously reported [49, 50]. Indeed, decreased lipid oxi-

dation and increased glucose oxidation were observed upon hyperinsulinemia in the control

trial. Lipid infusion increased plasma acetylcarnitine, medium- and long-chain acylcarnitines,

probably reflecting increased efflux of β-oxidation intermediates by tissues such as liver and

muscle [51, 52]. The main contributor to the plasma acetylcarnitine elevations might be

increased production by β-oxidation and subsequently release of acetylcarnitine by the liver, as

indicated by earlier studies using a porcine animal model or human volunteers to assess trans-

organ acylcarnitine fluxes [52, 53]. Plasma C3 acylcarnitines and the sum of plasma short-

chain acylcarnitines (C3 to C5) did not change upon lipid infusion, contrary to the other acyl-

carnitine species. Since C3 is mainly derived from branched-chain amino acids, this might

explain the different kinetics. With additional intravenous carnitine infusion (LIPID+CAR),

an even more pronounced increase in plasma acetylcarnitine, medium- and long-chain acyl-

carnitines compared to only lipid infusion, was observed. Similarly, C3 and short-chain acyl-

carnitine were also increased upon combined lipid + carnitine infusion compared to lipid

infusion alone (p<0.05). As plasma acylcarnitine concentrations are significantly higher upon

carnitine infusion, these data indicate the necessity of free carnitine availability in the forma-

tion of acylcarnitine species suggests that carnitine infusion can further stimulate the efflux of

β-oxidation intermediates from the liver.

Surprisingly, skeletal muscle acetylcarnitine concentrations remained unaffected by lipid

infusion as well as lipid combined with L-carnitine infusion. Contrary, Tsintzas et al. [48]

reported increased skeletal muscle acetylcarnitine concentrations upon lipid infusion.

Although we cannot provide a direct explanation for this discrepancy, the more than two-fold

higher plasma FFA concentration in the study of Tsintzas might be of relevance. Future

research is necessary to unravel what is underlying this difference.

Furthermore, skeletal muscle short-chain acylcarnitine (C3-C5) levels decreased upon insu-

lin infusion in the control trial. Medium- and long-chain acylcarnitine seemed to decrease as

well, although not reaching significance. Insulin reduces lipolysis resulting in decreased

plasma FFA availability, and as a consequence, glucose oxidation increases. The decrease in

skeletal muscle acylcarnitine species upon insulin therefore probably reflects this decreased

FFA availability resulting in a transition of lipid towards glucose oxidation induced by hyper-

insulinemia [49, 50]. Lipid infusion increased plasma FFA concentrations despite high insulin

concentration. Therefore, the decrease in short- and medium-chain acylcarnitines in skeletal

muscle tissue as found in the control trial upon insulin was blunted upon the combination of
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lipid and insulin infusion, which may indicate higher skeletal muscle lipid oxidation rates

upon the elevation of plasma lipids by lipid infusion. Remarkably, this effect was only seen on

the short and medium chain acylcarnitine species and not on the long chain species: lipid infu-

sion did not blunt the insulin-induced reduction in long-chain acylcarnitine species. Although

we cannot provide a direct explanation for this effect, it could be speculated that during acute

lipid overload, accumulation of β-oxidation intermediates does mainly happen at later pas-

sages through the β-oxidation.

A study limitation is the low number of participants in the current study. Although the

number of participants is quite low (n = 8), a cross-over design was used to bolster the power

of this mechanistic study. According to our sample size calculation, 13 participants needed to

perform the entire study. Upon eight finalized participants, an interim analysis was performed.

We calculated that based on the difference found in insulin sensitivity in the current study

(eight participants), over five hundred participants would have been needed to render the

effect of carnitine supplementation on insulin sensitivity statistically significant. Considering

the reproducibility of the methods used, the sample size of n = 8 should be sufficient to be able

to pick up a change in insulin sensitivity of 10%, which is assumed to be clinically relevant.

Thus, it can be inferred from the observed results that if there is a difference between treat-

ments, it is so small that it is not clinically relevant. Therefore, the study was ended prema-

turely after eight participants. A second limitation of the current study is the fact that we only

included men. The hormonal changes that occur in women as result of the menstrual cycle are

known to affect insulin sensitivity [54, 55] and would have had to be taken into account. This

would have made the execution of the current study with a three arm cross-over design very

complex.

In summary and conclusion, lipid infusion strongly increased plasma FFA levels and

resulted in a hampered metabolic flexibility and insulin sensitivity. The addition of intrave-

nous infusion of L-carnitine elevated plasma free carnitine availability as expected. However,

against expectations, L-carnitine infusion did not increase skeletal muscle free carnitine avail-

ability, possibly due to insulin resistance of the OCTN2 receptor involved in skeletal muscle

carnitine uptake. Since skeletal muscle free carnitine availability remained unaltered with L-

carnitine infusion, we cannot conclude on the original hypothesis whether free carnitine avail-

ability in skeletal muscle tissue might be crucial in maintaining metabolic flexibility and insu-

lin sensitivity. Therefore, further research is necessary to unravel if skeletal muscle free

carnitine availability is indeed crucial in maintaining metabolic flexibility and insulin sensitiv-

ity. Using an acute carnitine treatment, the current study was performed to mechanistically

investigate the role of L-carnitine. However, to investigate whether carnitine treatment would

be beneficial in improving insulin sensitivity in clinical practice, future studies using long-

term carnitine treatment needs to be performed.
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