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Abstract: Despite a cold temperate climate and low human population density, the 

Northern Great Plains has become a persistent hot spot for human West Nile virus (WNV) 

disease in North America. Understanding the spatial and temporal patterns of WNV can 

provide insights into the epidemiological and ecological factors that influence disease 

emergence and persistence. We analyzed the 1,962 cases of human WNV disease that 

occurred in South Dakota from 2002–2012 to identify the geographic distribution, seasonal 

cycles, and interannual variability of disease risk. The geographic and seasonal patterns of 

WNV have changed since the invasion and initial epidemic in 2002–2003, with cases 

shifting toward the eastern portion of South Dakota and occurring earlier in the 

transmission season in more recent years. WNV cases were temporally autocorrelated at 

lags of up to six weeks and early season cumulative case numbers were correlated with 

seasonal totals, indicating the possibility of using these data for short-term early detection 

of outbreaks. Epidemiological data are likely to be most effective for early warning of 

WNV virus outbreaks if they are integrated with entomological surveillance and 

environmental monitoring to leverage the strengths and minimize the weaknesses of each 

information source. 
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1. Introduction 

Emerging infectious diseases, including those that have appeared for the first time, rapidly 

increased in incidence, or expanded into new geographic areas, are a significant concern in the fields 

of human and veterinary medicine as well as wildlife conservation [1,2]. Disease emergence is often 

connected with the development of human societies and their interactions with the environment, 

including the proliferation of transportation networks that facilitate pathogen spread, land use and 

climate change that affect habitats for arthropod vectors, and animal hosts, and population movements 

that increase human and domesticated animal contact with wildlife and their pathogens. The successful 

invasion of North America by West Nile virus (WNV) is a well-known example of infectious disease 

emergence that was initially caused by long-distance pathogen transport and facilitated by a diversity 

of suitable environments for transmission [3]. WNV is an arbovirus that is maintained in an enzootic 

cycle with mosquitoes as the primary vectors and birds as the primary reservoir hosts. Humans and 

horses are incidental hosts; both species can acquire the virus from infected mosquitoes but do not 

transmit the virus to uninfected mosquitoes and are not necessary for the maintenance of the pathogen. 

WNV is indigenous to Africa, Asia, Europe, and Australia and was first identified in North America 

in the New York City metropolitan area during the summer of 1999 [3]. In 2002 widespread WNV 

cases occurred in the Midwest and south-central states, and the first WNV cases were reported in 

South Dakota. The epidemic wave moved further west in 2003, with extremely high incidence rates 

throughout the Great Plains and cases occurring as far west as California. From 2004 onward, WNV 

has been endemic across much of the western hemisphere with sporadic, localized outbreaks of human 

disease in a variety of geographic locations [4]. Human WNV disease has had a significant public 

health impact in the United States. A total of 37,088 WNV cases have been reported to the Centers for 

Disease Control through 2012, including 16,196 cases of severe neuroinvasive disease and 1,549 

deaths. The widespread resurgence of human WNV disease in 2012 following several years of 

relatively low incidence has highlighted the continued public health hazard posed by WNV and 

emphasized the need for more accurate predictions of when and where WNV outbreaks will occur. 

Disease mapping and exploratory spatial analysis of epidemiological data can help to identify the 

geographic locations of populations at risk and facilitate the development of hypotheses about the 

epidemiological and ecological processes that drive these patterns [5,6]. Time-series analysis can 

similarly elucidate seasonal cycles, longer-term trends, and deviations from these expected patterns 

that indicate the times when WNV risk is highest and suggest new hypotheses about the drivers of 

temporal variability at different scales [7,8]. In particular, early detection of anomalously high human 

case numbers, particularly during the early part of the WNV season, may serve as a harbinger of 

developing outbreaks [9]. There are a number of limitations to inferring spatial and temporal patterns 

of disease risk from human disease cases, particularly in rural areas with low human densities and in 

situations where time lags in disease case reporting and confirmation delay the availability of these 
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data. However, human disease surveillance can still provide valuable information that complements 

other sources of information from mosquito surveillance [10], dead bird surveillance [11], and 

ecological forecasting based on environmental monitoring data [12]. 

Since its arrival in 2002, WNV has had a significant public health impact in South Dakota and 

neighboring Great Plains states. From 1999–2008 South Dakota had the highest average incidence of 

WNV neuroinvasive disease in the United States [13]. During 2012, a year in which WNV reemerged 

at a national level, South Dakota once again had the highest incidence rates of both neuroinvasive 

WNV disease (7.5/100,000), total WNV disease (24.6/100,000 including WNV fever in addition to 

WNV neuroinvasive disease), and viremic blood donors (5.1/100,000). The high and persistent 

incidence of WNV in South Dakota and the surrounding region has been hypothesized to reflect the 

geographic distribution of Culex tarsalis, a highly ornithophilic and particularly efficient amplifying 

vector of WNV that can also serve as a bridge vector to humans [14]. Previous WNV research in South 

Dakota found that Culex tarsalis abundance was lowest in urban areas and highest in grass-dominated 

rural habitats [15], and the incidence of human WNV disease was similarly highest in rural areas with 

poorly drained soils [16]. Seasonal and interannual variability in Culex tarsalis abundance in South 

Dakota exhibited much stronger lagged relationships with temperature than with precipitation [15,17], 

and a high number of accumulated degree days during the spring and early summer was found to be an 

indicator of the risk of human WNV disease during the subsequent main transmission season in mid to 

late summer [18]. 

The overarching goal of our study was to extend this previous work by characterizing the  

spatio-temporal epidemiology of WNV disease in South Dakota from 2002–2012. The underlying 

rationale was the expectation that identifying spatial and temporal patterns of human disease 

occurrence will provide a clearer understanding of when and where WNV risk is the highest and 

whether these patterns have changed since the emergence of WNV in South Dakota. We addressed the 

following specific questions: (1) Where in South Dakota is WNV risk highest and has this geographic 

pattern changed over time? (2) During what part of the year is WNV risk highest and has this seasonal 

pattern changed over time? (3) What are the temporal patterns (deviations from expected seasonal 

cycles and long-term trends) of WNV anomalies and can they be used to predict future WNV risk?  

(4) Do WNV epidemics arise simultaneously throughout the state or do cases increase earlier in some 

geographic locations than in others? 

2. Methods 

The study area encompassed the state of South Dakota, which is located in the northern Great Plains 

of the United States, a region historically dominated by prairie vegetation. Environmental variability 

across the state is strongly affected by precipitation, which generally decreases along an east-to-west 

gradient (Figure 1(a)). This precipitation gradient is reflected in the distribution of wetlands, which are 

highest in the eastern portions of the state (Figure 1(b)). Land cover patterns also vary along this 

gradient, ranging from a mixture of row crops, pasture, hay, and grasslands in eastern South Dakota to 

predominantly rangelands in the drier western region (Figure 2(c)). Forests are mostly restricted to the 

Black Hills on the far western edge of the state. 
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Figure 1. Environmental variability across South Dakota. (a) 1982–2011 mean monthly 

precipitation (mm) from May–September summarized at the county level (b) Emergent 

wetlands from the National Wetlands Inventory summarized as proportion of total county 

area, and (c) 2006 map of major land cover classes from the National Land Cover 

Database. 

(a) 

(b) 

(c) 
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Figure 2. Dot density maps of WNV cases in South Dakota from 2002–2012. (a–k) Each 

dot represents a single case within the ZIP code tabulation area (ZCTA) of the patient’s 

residence. Red dots represent WNV neuroinvasive disease and blue dots represent WNV 

fever. (l) Brown dots represent total population with one dot per 100 people. Dots were 

assigned random locations within the ZCTAs for the purpose of visualization. 

 

Epidemiological data on human WNV disease cases were collected by the South Dakota 

Department of Health. Each case was identified by disease type (WNV fever or neuroinvasive 

disease), referenced temporally by the reported date of disease onset, and referenced spatially by 

county, ZIP code, and city of residence. Each case was georeferenced using the 2010 map of ZIP code 

tabulation areas (ZCTAs) from the U.S. Census Bureau. A total of 23 cases (1.1% of the total number) 

were missing ZIP codes and were assigned to a ZCTA based on the county and city of residence.  

In addition, 60 cases (2.8% of the total number) had ZIP codes that were not present in the 2010 ZCTA 

map and were assigned to a 2010 ZCTA by referencing the 2000 ZCTA map or based on the county 
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and city of residence. The 2010 population data for each ZCTA were also obtained from the U.S. 

Census Bureau. 

ZIP codes were developed by the U.S. Postal Service to classify street segments, address ranges and 

delivery points for mail delivery. ZCTAs were created by the U.S. Census Bureau as spatial units to 

provide approximate mapping of ZIP code boundaries using aggregated Census blocks. However, it is 

difficult to map ZIP code boundaries precisely, and ZIP codes are frequently split, discontinued, 

added, or expanded [19]. As a result, some ZIP codes may not have a corresponding ZCTA and some 

addresses may actually be located in different ZCTAs relative to their ZIP code. Despite these 

limitations, ZIP code level data has the advantages of greater spatial precision than coarser county-level 

summaries and higher rates of geocoding success than street address-level geocoding [20,21]. The 

2010 ZCTAs in South Dakota had a mean area of 519 km2 and a mean population of 2,115. The mean 

population density at the ZCTA level was 34 per km2, but individual ZCTAs ranged from 0.05 to 

4,628 per km2 reflecting the variety of settlement patterns from dense cities to rural areas. 

Spatial patterns of WNV cases were displayed as dot density maps by selecting a random location 

for each case within its assigned ZCTA. Spatial patterns of WNV risk were mapped using annual 

incidence rates and were spatially smoothed by incorporating information from surrounding areas to 

reduce variability caused by small population sizes at the ZCTA level. For this initial assessment of 

WNV risk, smoothing was carried out using a simple population-weighted mean smoothing approach 

as suggested by Waller and Gotway [6]. To generate the smoothed maps, a neighborhood mean of 

WNV cases was calculated for each ZCTA as the mean number of cases from the focal ZCTA and all 

ZCTAs with centroids falling within a 75 mile radius of the focal ZCTA. A neighborhood mean of the 

2010 population was calculated for each ZCTA using the same method. The annual incidence rate, 

normalized to a population of 100,000, was calculated for each ZCTA using these smoothed values.  

To explore changes in the spatial pattern of WNV risk over time, smoothed maps were generated for 

each of three time periods: 2002–2003, 2004–2007, and 2008–2012. These time periods were 

subjectively selected to capture three distinctive epochs of WNV transmission in South Dakota: the 

initial invasion and first large epidemic (2002–2003), a subsequent period of relatively high WNV 

incidence (2004–2007), and a period of relatively low WNV incidence followed by the resurgence of 

human WNV cases in 2012 (2008–2012). Separate sets of maps were generated for the total incidence 

of human WNV disease (including both WNV fever and neuroinvasive disease) and for only WNV 

neuroinvasive disease. 

Seasonal patterns of total human WNV cases were summarized based on a standardized 18-week 

season in which all cases prior to 1 June were included in week 1; the months of June (weeks 2–5), 

July (weeks 6–9), August (weeks 10–13), and September (weeks 14–17) were each divided into four 

weeks; and all cases after September 30th were included in week 18. Weekly cumulative totals of 

human WNV cases were graphed for each year and for the three time periods used in the mapping 

(2002–2003, 2004–2007, and 2008–2012). Two-sample Kolmogorov-Smirnov tests were used to test 

for differences in the seasonal distribution of WNV cases among these three time periods. These tests 

were carried out using all human WNV cases (including both WNV fever and neuroinvasive disease), 

only the WNV fever cases, and only the WNV neuroinvasive disease cases. 

The 18 weeks of WNV data for each year were concatenated to generate a continuous time series of 

WNV cases from 2002–2012. This log-transformed time series was then decomposed into seasonal, 
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trend, and remainder components with the seasonal and trend decomposition using loess (STL) 

procedure [22]. In this approach, the seasonal component was calculated as the mean number of cases 

in each week across all years and the long-term trend was estimated using a smoothed locally-weighted 

regression. The remainder component reflected anomalies of WNV cases relative to these longer term 

patterns, and was computed by subtracting the seasonal and long-term trends from the raw data. 

Temporal autocorrelation was assessed by computing autocorrelation functions at time lags ranging 

from 1 to 18 weeks for both the raw data and the remainders from the STL decomposition. 

WNV cases were also analyzed to determine whether the numbers of cases occurring during the 

early part of the WNV season (June and July) were predictive of the total number of WNV cases 

occurring throughout the entire season. For this analysis, we summarized the cumulative total number 

of WNV cases occurring in each year from week 2 (the first week in June) through week 9 (the last 

week in July). We computed the Spearman rank correlation between each of these cumulative 

variables and the total number of cases occurring for 2004–2012 (N = 9). We examined the changes in 

these correlations across the different weeks to determine the point during the season when WNV 

cases provided a reliable indicator of the total magnitude of WNV cases throughout the season. 

We conducted an analysis of space-time interactions during major WNV outbreak years to 

determine whether there were significant changes in the geographic locations of WNV cases 

throughout the season. To have sufficient data for the analysis, we focused on major outbreak years 

during which more than 200 WNV cases occurred in South Dakota (2003, 2005, 2007, and 2012).  

For each of these years, we used a generalized additive model (GAM) to model the day of year (DOY) 

of each case as the dependent variable using a smoothed functions of the spatial coordinates (eastings 

and northings) of the ZCTA centroids as independent variables. Statistically significant relationships 

between DOY and one or both of the independent variables indicated that different geographic 

locations had different mean dates of WNV onset. For years where there was significant spatial 

variability in mean DOY, the models were applied across the entire state to produce a continuous map 

of the mean DOY of WNV cases for each ZCTA. 

3. Results 

The dot density maps emphasized the strong spatial and temporal heterogeneity of human WNV 

cases within South Dakota (Figure 2, Table 1). During 2002, the first year of WNV occurrence in 

South Dakota, a relatively small number of WNV cases were concentrated in the eastern portion of the 

state. In 2003 there was a major increase in both WNV fever and neuroinvasive disease, with several 

significant clusters occurring in the central and western parts of South Dakota. WNV cases declined in 

2004, followed by a three year period (2005–2007) of increased WNV cases. Annual numbers of 

WNV cases declined steadily over the next four years (2008–2011), reaching their lowest levels in 

2011 when only two cases of WNV fever were reported. In 2012, there was a significant resurgence of 

WNV cases in South Dakota, with a stronger concentration of these cases in the eastern part of the 

state relative to previous years. Annual, log-transformed fever case counts and neuroinvasive case 

counts were strongly correlated at the state level (r = 0.96, p < 0.001). 
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Table 1. Annual cases of human West Nile virus disease in South Dakota. 

Year Fever Neuroinvasive Total Cases Deaths 

2002 23 14 37 0 
2003 868 171 1,039 13 
2004 45 6 51 1 
2005 194 35 229 2 
2006 75 38 113 3 
2007 160 48 208 6 
2008 28 11 39 0 
2009 15 6 21 0 
2010 16 4 20 0 
2011 2 0 2 0 
2012 141 62 203 3 

The smoothed maps of WNV incidence further highlighted changes in the geographic distribution 

of WNV risk over time. The maps of total WNV incidence showed a shift in the geographic patterns of 

risk from central and western portions of South Dakota in 2002–2003 to the eastern portion of the state 

in 2004–2007 and 2008–2012 (Figure 3). The smoothed maps of WNV neuroinvasive disease 

incidence showed more spatial variability at finer scales, reflecting the smaller numbers of 

neuroinvasive cases (Figure 4). The smoothed estimates of total WNV incidence and neuroinvasive 

WNV incidence were strongly correlated in 2002–2003 (r = 0.75, p < 0.001), exhibited a weaker 

correlation in 2004–2007 (r = 0.66, p < 0.001), and had the highest correlation in 2008–2012 (r = 0.86, 

p < 0.001). As with the maps of total WNV cases, the incidence of neuroinvasive disease shifted from 

central and western South Dakota in 2002–2003 toward the eastern portion of the state in 2004–2007 

and 2008–2012. 

Seasonal patterns of WNV cases varied from year to year (Figure 5(a)). For example, 5% of the 

cumulative WNV cases occurred before the end of July in 2002, whereas 14% of the cumulative WNV 

occurred before the end of July in 2003 and 20–48% of cases occurred before the end of July in all of 

the subsequent years except 2011. 2011 stood out as an anomalous year in which only two WNV cases 

occurred, both in September. The combined seasonal distributions for the 2002–2003, 2004–2007, and 

2008–2012 time periods also illustrated a shift toward earlier occurrence of WNV cases after 2003 

(Figure 5(b)). During all three time periods, the majority of WNV cases occurred during the last week 

of July and the first three weeks of August (58% in 2002–2003, 55% in 2004–2007, and 62% in  

2008–2012). However, only 6% of cases occurred before the last week of July in 2002–2003 compared 

to 20% in 2004–2007 and 12% in 2008–2012. In contrast, 36% of cases occurred after the third week 

of August in 2002–2003 compared to 25% in 2004–2007 and 26% in 2008–2012. The Kolmogorov-

Smirnov tests found statistically significant differences in WNV seasonality in 2002–2003 compared to 

2004–2007 (D = 0.2016, p < 0.001) and in 2002–2003 compared to 2008–2012 (D = 0.2195, p < 0.001), 

but the difference was not statistically significant in 2004–2007 compared to 2008–2012 (D = 0.08,  

p = 0.12). Similar results were obtained when only the same tests were performed using only the WNV 

fever cases and only the WNV neuroinvasive disease cases. 
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Figure 3. Spatially smoothed incidence rates of all human WNV disease (including both 

fever and neuroinvasive disease) in South Dakota for three time periods. Rates are the 

annual number of cases per 100,000 population. 
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Figure 4. Spatially smoothed incidence rates of human WNV neuroinvasive disease  

in South Dakota for three time periods. Rates are the annual number of cases per  

100,000 population. 
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Figure 5. Weekly cumulative distributions of illness onsets of all human WNV cases 

(including both fever and neuroinvasive disease) in South Dakota from 2002–2012. (a) 

Annual curves, (b) Combined curves for three time periods. 

 

These patterns were reflected in the seasonal component of the WNV time series decomposition, 

which showed a strong seasonal peak between the last week of July and the third week of August  

(Figure 6). The smoothed trend component illustrated longer-term variation in human WNV cases, 

with highest case numbers from 2003 through 2006, declining case numbers after 2007, and an 

increase driven by the 2012 outbreak. The raw, log-transformed WNV case data exhibited positive 

temporal autocorrelation at lags from 1 to 4 weeks and from 13 to 18 weeks (Figure 7(a)), reflecting 

the previously-described seasonal pattern of WNV. After removing the seasonal patterns and long-term 

trend from the data, the remainder exhibited positive temporal autocorrelation at lags from 1 to 6 weeks 

(Figure 7(b)). This pattern suggested that anomalously high numbers of WNV cases can serve as 
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indicators of continued high WNV risk up to 6 weeks in the future. Cumulative case counts through 

the first and second weeks of June were not significantly correlated with annual case counts at an 

alpha-level of 0.05 (Table 2). However, cumulative case counts from the third week of June were 

significantly correlated with annual case counts, and the magnitude of this correlation generally 

increased as more cases were accumulated later into the season. 

Figure 6. Decomposition of the log-transformed 2004–2012 WNV time series into 

seasonal, trend, and remainder components using the STL procedure. Each “year” in the 

time series consists of an 18-week WNV season extending from the last week in May 

through the first week in October. 

 

Figure 7. Temporal autocorrelation function for (a) the raw, log-transformed time series of 

WNV cases and (b) the remainders from the time series decomposition. Blue lines represent 

critical values for statistical significance of the autocorrelation statistic at an alpha-level  

of 0.05. 
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Table 2. Spearman rank correlations between cumulative case numbers through July and 

August and total annual case numbers from 2004–2012 (N = 9).  

Month Week Rho p-value 
June 1 0.603 0.086 

 2 0.656 0.055 
 3 0.783 0.013 
 4 0.801 0.010 

July 1 0.882 0.002 
 2 0.917 0.001 
 3 0.867 0.005 
 4 0.933 <0.001 

Table 3. Results of generalized additive models predicting the day of year of WNV case 

onset as a function of the eastings and northings of their respective ZCTAs.  

Year N 
p-value 

Adjusted R2 
Easting Northing 

2003 1,041 <0.001 0.0112 0.0617 
2005 229 0.0052 0.2409 0.0386 
2007 208 0.0005 0.3562 0.0746 
2012 202 0.4100 0.2990 0.0267 

Figure 8. Smoothed maps of the mean day of year of WNV cases for 2003, 2005, and 

2007. Maps were generated by using generalized additive models to predict the DOY as a 

smoothed function of the spatial coordinates of the ZCTAs. 

(a) 2003 

(b) 2005 

(c) 2007 
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There was statistically significant variability in the onset date of WNV cases in both the north-south 

and east-west directions in 2003, and in the east-west direction in 2005 and 2007 (Table 3). There were 

no statistically significant spatial trends in the onset date of WNV cases in 2012. In 2003 and 2005, 

cases tended to occur earlier in the western part of the state and later in the season in the eastern part of 

the state (Figure 8). The reverse pattern occurred in 2007; cases tended to occur earlier in the eastern 

part of the state and later in the western part of the state. The adjusted R2 values of the GAMs were all 

low (<0.08), indicating that these space-time patterns were relatively weak. 

4. Discussion 

There has been a shift in the spatio-temporal niche of human WNV risk in South Dakota from the 

initial invasion and first major epidemic of WNV in 2003–2003 to the subsequent years of endemic 

WNV from 2004-onward. In 2002–2003, human WNV cases were broadly distributed across the state 

and in particular were higher in the central and western portions. Starting in 2004, cases were more 

concentrated in the eastern portion of the state, and this eastward shift became even more pronounced 

during the 2008–2012 period. In addition, there were significantly fewer cases in the early part of the 

WNV season (before the last week of July) and more cases in the later part of the WNV season (after 

the third week of August) in 2002–2003 compared to 2004 and later years. These changes suggest that 

the spatial and temporal patterns observed during the large 2003 epidemic have become less relevant to 

current ecological and epidemiological processes that drive WNV risk, and that disease maps and other 

inferences about human WNV risk should be based on epidemiological data from 2004 onward. 

Climatic variability is one possible explanation for the observed changes. A geographic analysis of 

the 2003 WNV epidemic in the northern Great Plains highlighted strong clustering of WNV in the 

Dakotas, Nebraska, and eastern Montana and Wyoming [14]. This cluster occupied a climatic niche 

characterized by higher temperatures and intermediate precipitation, and was hypothesized to reflect 

the geographic distribution of Culex tarsalis, a particularly efficient WNV vector. Subsequent research 

showed that interannual variability in temperature and moisture during the spring and early summer was 

associated with spatial and temporal variability in WNV incidence across the region from 2004–2011 [18]. 

Thus, anomalies in the regional patterns of temperature and precipitation in 2002 and 2003 relative to 

later years may explain some of the differences in geographic pattern and seasonality. Alternately, 

changes in geographic and seasonal patterns of WNV cases after 2003 may reflect other ecological and 

epidemiological factors, such as the development of immunity in both human and avian populations 

and consequent impacts on virus amplification in avian communities and viral transmission to humans. 

In addition, significant and persistent declines in the abundances of multiple bird species resulting 

from WNV-caused mortality have been documented across the United States [23,24]. Resulting 

changes in bird community composition across South Dakota have the potential to influence the spatial 

pattern and timing of virus amplification and risk to humans, but have been unexplored to date and 

merit further investigation. 

From 2004 onward, and particularly in 2008–2012, one of the regions of highest WNV risk within 

South Dakota was concentrated in eastern South Dakota within the James River Valley, which lies 

between the uplands of the Missouri Couteau to the West and the Prairie Couteau to the East.  

This broad lowland was created by the James Lobe of the Laurentide ice sheet and occupies 
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approximately 49,000 km2. It is characterized by a high density of seasonal and permanent wetlands 

and a landscape mosaic of row crops and grasslands (Figure 1), and is currently being impacted by 

land use changes that are resulting in widespread wetland drainage and conversion of grasslands to row 

crop agriculture [25,26]. Previous studies have highlighted spatial clustering and climatic associations 

of human WNV cases at national and regional levels [14,27] and finer-scale associations of human 

WNV disease with land cover, land use, soils, and hydrology at the landscape level [16,28,29]. The 

geographic patterns highlighted in this study further suggest that broad physiographic features such as 

the James River Valley can influence WNV risk to humans through their characteristic hydrological 

processes, land use patterns, and consequent effects on habitat for vector and host populations. More 

research is needed to better elucidate the proximal determinants of the geographic distribution WNV 

risk at the state level and to apply this knowledge to improve strategies for WNV prevention and control. 

Early detection systems are widely used to identify the onset of mosquito-borne disease outbreaks 

by tracking human disease cases. Forecasting techniques range from relatively simple methods based 

on thresholds determined from historical data [30], to more sophisticated statistical methods for time 

series forecasting [31]. Our results suggest that anomalously high numbers of WNV cases, relative to 

seasonal patterns and longer-term trends, provide an indicator of continued high numbers of WNV 

cases up to 6 weeks in the future. Alternately, the cumulative number of WNV cases through the end 

of June could be used to make a seasonal forecast of the total number of expected cases during the 

peak of the WNV season in July and August. Although statistically significant spatio-temporal patterns 

were detected in the major outbreak years, the relationships were relatively weak and variable from 

year to year. As a result, there currently appears to be a relatively low potential for using human case 

data to predict the precise locations of WNV risk within South Dakota at specific times during the 

WNV season. 

Two major limitations to the use of human surveillance data for forecasting disease outbreaks are 

data quality and data availability. For human WNV disease in the United States, all cases are assessed 

based on a consistent definition established by the Centers for Disease Control and are subject to 

laboratory confirmation. However, an unknown degree of spatial uncertainty is introduced because 

some patients may contract WNV at a location away their residence. In addition, the delay introduced 

as a result of the time lags between amplification of the virus in mosquito and bird populations, 

transmission to humans, onset of symptoms, medical diagnosis, and case confirmation mean that 

human cases are a lagging indicator of WNV risk. As result, WNV amplification will have already 

occurred and mosquito numbers and infection rates will likely already be high by the time WNV is 

detected in the human population. In a state like South Dakota that experiences human WNV cases 

every year, detection of anomalies in early season case data does have some potential to predict the 

magnitude of WNV in human populations during the peak transmission season. In particular, our 

results suggest that human surveillance data may be able to indicate the onset of a significant WNV 

outbreak with several weeks of lead time. This type of alert would not provide enough time to take 

action to prevent virus amplification, but it might still allow public health officials to take steps such as 

expanding adult mosquito control and issuing preventive warnings before the period of peak 

transmission to humans. 

One promising approach toward leveraging the strengths and minimizing the limitation of human 

case surveillance for disease outbreak detection is to use blended approaches that integrate multiple 
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streams of surveillance data. For example, a study of WNV in Colorado combined environmental data, 

entomological data, and human WNV case data to develop an improved map of disease risk in the 

Northern Colorado Front Range [32]. Research on malaria early warning in the highlands of Ethiopia 

has found that forecasting models that incorporate both remotely-sensed climatic variables and lagged 

indicators from human case surveillance are more effective at predicting epidemics than models based 

on either environmental data alone or human cases alone [31,33]. The California Mosquito-Borne 

Virus Surveillance and Response Plan incorporates multiple sources of information, including 

meteorological data, vector abundance, vector infection rates, sentinel chicken seroconversion, dead 

bird reporting and testing, and human surveillance into a single index [34,35]. This multifactor index 

was found to be a better early warning indicator for the onset of human WNV disease than predictions 

based on single sources of information [35]. Previous research in South Dakota has found influences of 

climatic variability on the abundance of vector mosquitoes [15,17] and human disease cases [18] and 

we suggest that combining these types of environmental indicators with mosquito and human case 

surveillance data offers a strong potential for improving our ability to predict the spatial and temporal 

dimensions of WNV in South Dakota as well as in other regions where WNV is endemic. 

5. Conclusions 

Human WNV disease exhibits strong patterns of geographic variability, seasonal cycles, and 

interannual fluctuations in South Dakota. The geographic and seasonal patterns of WNV have changed 

since the invasion and initial epidemic in 2002–2003, with cases shifting toward the eastern portion of 

South Dakota and occurring earlier in the transmission season in more recent years. The underlying 

cause of these shifts is currently unknown, but the results suggest that more recent data on endemic 

WNV from 2004 onward should be used for risk mapping and assessment of seasonality for public 

health planning purposes. Temporal analyses indicate that there is a potential for forecasting upcoming 

large WNV outbreaks with lead times of up to several weeks. Although this time frame is likely 

insufficient for preventing virus amplification, it could still help reduce transmission to humans by 

providing time to ramp up emergency mosquito control and disseminate messages to the public to take 

personal protection measures. Ultimately, information from epidemiological surveillance should be 

integrated with environmental monitoring, entomological surveillance, and other sources of 

information to provide more effective predictions of the likelihood of future WNV outbreaks. 
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