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Combining independent de novo ® e
assemblies optimizes the coding

transcriptome for nonconventional model
eukaryotic organisms

Nicolas Cerveau and Daniel J. Jackson”

Abstract

Background: Next-generation sequencing (NGS) technologies are arguably the most revolutionary technical
development to join the list of tools available to molecular biologists since PCR. For researchers working with
nonconventional model organisms one major problem with the currently dominant NGS platform (lllumina)
stems from the obligatory fragmentation of nucleic acid material that occurs prior to sequencing during library
preparation. This step creates a significant bioinformatic challenge for accurate de novo assembly of novel
transcriptome data. This challenge becomes apparent when a variety of modern assembly tools (of which there
is no shortage) are applied to the same raw NGS dataset. With the same assembly parameters these tools can
generate markedly different assembly outputs.

Results: In this study we present an approach that generates an optimized consensus de novo assembly of
eukaryotic coding transcriptomes. This approach does not represent a new assembler, rather it combines the
outputs of a variety of established assembly packages, and removes redundancy via a series of clustering steps.
We test and validate our approach using Illumina datasets from six phylogenetically diverse eukaryotes (three
metazoans, two plants and a yeast) and two simulated datasets derived from metazoan reference genome
annotations. All of these datasets were assembled using three currently popular assembly packages (CLC, Trinity
and IDBA-tran). In addition, we experimentally demonstrate that transcripts unigue to one particular assembly
package are likely to be bioinformatic artefacts. For all eight datasets our pipeline generates more concise
transcriptomes that in fact possess more unique annotatable protein domains than any of the three individual
assemblers we employed. Another measure of assembly completeness (using the purpose built BUSCO databases)
also confirmed that our approach yields more information.

Conclusions: Our approach yields coding transcriptome assemblies that are more likely to be closer to biological
reality than any of the three individual assembly packages we investigated. This approach (freely available as a
simple perl script) will be of use to researchers working with species for which there is little or no reference data
against which the assembly of a transcriptome can be performed.
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Background

RNA-Seq is a flavour of NGS that can generate ex-
tremely powerful datasets for a variety of research
themes. Gene discovery, digital gene expression profiling
of entire tissues or developmental stages and population
genetics [1, 2] are some of the broad applications to
which this technology can be applied. For researchers
working with nonconventional model organisms RNA-
Seq is alluring because such analyses are often touted as
being possible in the absence of an assembled genome
to which such transcriptome data is ideally mapped. In
these cases the researcher faces the significant bioinfor-
matic challenge of accurately assembling an RNA-Seq
dataset “de novo” [3]. This is a challenge because the
currently dominant NGS platform (Illumina) requires
nucleic acid samples to be fragmented prior to sequen-
cing, a process that needs to be accurately bioinformati-
cally reversed in order to reconstruct the original
transcripts. Additionally, typical Illumina read lengths
are much less than 500 bp long [4]. These features result
in both genome guided and de movo transcriptome
assembly approaches displaying a large number of bioin-
formatically derived artefacts, a phemonenon that is well
known [3]. The challenge of generating an accurate as-
sembly of a transcriptome has generated many responses
from the scientific community [5-9], with each assembly
package having its own strengths and weaknesses. One
de novo assembly strategy has been to generate multiple
assemblies with different k-mer values, to combine these
and then remove the redundancy of the resulting
merged assembly [10]. However this approach first re-
quires the user to identify an appropriate range of k-mer
values (not a trivial exercise), and may ultimately require
the production of up to 62 transcriptomes for a single
dataset [10]. Related to this issue is assessment of assem-
bly quality. This issue is highlighted when one considers
that different assembly packages applied to the same raw
dataset usually generate markedly different outputs, even
with the same assembly parameters, [10-12]. Any crit-
ical user would ask “which assembly is appropriate for
my project?”. For datasets with high proportions of
“novel” genes (often the case for nonconventional model
organisms), this problem has few solutions that can be
generally applied to all datasets. Statistics such as the
N50, average transcript size or coverage are not usually
informative nor relevant when assessing the quality of
an RNA-Seq assembly [13]. Another approach is to focus
on the annotatability of a given assembly. In combin-
ation with standard sequence similarity searches against
public databases, the recently released BUSCO
(Benchmarking  Universal  Single-Copy  Orthologs)
package falls under this umbrella, and can be used to
assess the completeness of a given transcriptome or
genome assembly [14].
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Having been through the process of de novo transcrip-
tome assembly optimization with our nonconventional
model Lymnaea stagnalis (a freshwater pulmonate mol-
lusc), we have developed a simple strategy that takes the
consensus coding features of a set of three (or more)
independent assembly packages, and discards redun-
dancy. This is not a new assembly method, but a way to
survey the outputs of different assembly packages in
order to generate a transcritpome that aims to be closer
to the biological truth. We test our approach on simu-
lated reads derived from the reference genomes of a fly
and a nematode, and also on previously analyzed and
publicly available raw RNA-Seq data derived from four
eukaryotic lineages: two plants, a yeast, a fly and a
nematode. In addition, we analyzed new RNA-Seq data
derived from our model organism, Lymnaea stagnalis.
For each dataset, we performed de novo assemblies with
three independently developed and widely used software
packages (Trinity [15], CLC Genomics Workbench V8.5
and IDBA-tran V1.1.1 [16]). The outputs of these assem-
blies were then processed through our pipeline. We
demonstrate both bioinformatically (using a range of an-
notation based comparisons) and by validation in the lab
for the L. stagnalis data, that this approach does indeed
capture the most ‘biologically correct’ set of transcripts.

Methods

Raw data acquisition

We used Illumina NGS data previously reported from
three well-established model organisms: Drosophila
simulans, Caenorhabditis sp and the unicellular
eukaryote Saccharomyces cerevisiae. To increase the
phylogenetic diversity of this selection we also included
two plants, Hippophae rhamnoides and Nicotiana
benthamiana. We also sampled the foot tissue of an in-
dividual Lymnaea stagnalis from our lab culture, and ex-
tracted total RNA following the protocol described in
[17]. A stranded Truseq polyA library was constructed
and paired end sequencing was performed on the Illu-
mina HiSeq2000 platform. 46.5 million pairs raw reads
were generated. 42.3 millon of these passed trimming
and quality filtering and were used in all subsequent as-
sembly analyses (Additional file 1: Table S1). The raw
RNA-seq data for Drosophila simulans, Caenorhabditis
sp., Saccharomyces cerevisiae, Hippophae rhamnoides
and Nicotiana benthamiana were obtained from the
NCBI sequence read archive (SRA) (respective accession
numbers:  SRR1956911, ERR690851, SRR1924287,
SRP011938 and SRA066161 (single end data omitted).
The FASTQ data files were extracted using the SRA tool
kit provided by NCBIL For all datasets, individual reads
were quality filtered using Trimmomatic V0.32 [18] with
the following parameters: LEADING:5 TRAILING:5
MINLEN:36 (step 2 in Fig. 1). For L. stagnalis, TruSeq
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Fig. 1 Schematic outline of our pipeline. Schematic representation of the steps involved in our pipeline

primer sequences were clipped with the following
parameter: ILLUMINACLIP:primer_file:2:30:10. The five
datasets used in this study contained between
46,166,144 and 230,477,122 pairs of Illumina RNA-seq
reads with read lengths of 100 bp, except for S. cerevisiae
which had read lengths of 50 bp (Additional file 1:
Table S1). Between 83 and 100% of the read pairs
passed Trimmomatic quality checks (Additional file 1:
Table S1). These quality filtered reads were used for
our analyses.

Generation of simulated Illumina reads from genomic
references

We also generated artificial reads derived from the refer-
ence genomes of two well-established model organisms:
Drosophila melanogaster and Caenorhabditis elegans.
Genomic reference sequences and gff annotations were
donwloaded from NCBI database for D. melanogaster
(GCF_000001215.4_Release_6_plus_ISO1_MT) and C.
elegans (GCF_000002985.6_WBcel235). Gff annotations
were transformed into gtf format using the ‘rsem-gff3-

to-gtf’ command from the Rsem package with the option
mRNA for the RNA-pattern parameter [19]. Some anno-
tations had to be deleted because strand information
was not consistent with other records of the same tran-
script or CDS. The gtf files contained 30,421 transcripts
for D. melanogaster and 28,014 for C. elegans. The D.
melanogaster genome is composed of 1870 sequences
and the C. elegans genome is composed of 7 sequences.
Transcripts were extracted from D. melanogaster and C.
elegans genomes using ‘rsem-prepare-reference’ from the
Rsem package with the options mRNA for gff3-RNA-
patterns and RefSeq for trusted-sources. Fifty Million
read pairs were generated using the Flux simulator
complete pipeline with simulated expression [20].
Library construction and sequencing simulation parame-
ters for D. melanogaster are provided in Additional file
2. These artificially generated reads were also analyzed
to calculate the read density per transcript. In order to
represent variation in gene expression levels Flux simu-
lator does not simulate reads on all input transcripts.
We therefore removed transcripts that lacked simulated
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reads for all downstream analyses. As for Illumina data-
sets, simulated reads were quality filtered using Trimmo-
matic V0.32 [18] with the following parameters:
LEADING:5 TRAILING:5 MINLEN:36 (step 2 in Fig. 1).
In both datasets, 99.4% of the read pairs passed
Trimmomatic quality checks (Additional file 1: Table
S1). These reads were used for our analyses.

Transcriptome assemblies

We selected three assembly packages with unique as-
sembly strategies for our investigation: Trinity V2.0.3
[15], CLC Genomics Workbench V8.5 and IDBA-tran
[16]. While all of these packages employ the De Bruijn
method to perform their assemblies, CLC and Trinity
use a single k-mer method whereas IDBA-tran uses a
multiple k-mer method. In addition, while CLC and
IDBA-tran produce a single De Bruijn graph (per k-mer
for IDBA-tran and for the whole dataset for CLC),
Trinity produces one De Bruijn graph per transcript,
which are subsequently processed independently in
order to extract all splice isoforms and to separate
paralogous genes.

For each of the eight datasets we performed one
assembly with each assembly package, resulting in three
independent assemblies per dataset (step 3 in Fig. 1).
CLC assemblies were run using a word of 20 base pairs
(bp), a bubble size of 50 bp, with reads mapped back to
the transcriptome using default parameters. IDBA_tran
assemblies were run with k-mer values ranging from 20
to 100 bp with a step size of 10 bp. Trinity assemblies
were run with default parameters and a k-mer value of
25. For each of these independent assemblies we
recorded a variety of statistics (number of transcripts,
smallest transcript, largest transcript, median transcript
size, total assembly size, N50; step 4 in Fig. 1).

Concatenated-assembly generation

Once the three individual assemblies for a given dataset
had been generated we next produced a concatenated
assembly. To do this we harmonized all assembly out-
puts into the same format. Transcript names were also
modified so that the origin of each sequence in the
concatenated-assembly could be traced (step 4 in Fig. 1).
We then performed an intra-assembly clustering step in
order to remove all strictly redundant transcripts present
within each of the individual sub-assemblies for each
dataset (step 5 in Fig. 1). For this clustering step we used
CD-HIT-EST [21] with ten threads (-T), a maximum
memory of 2549 megabytes (-M), local sequence identity
(-G 0) with identity parameter of 100% (-c 1.00), min-
imal coverage ratio of the shorter sequence of 100% (-aS
1.00) and minimal coverage ratio of the longest sequence
of 0.005% (-aL. 0.005). The minimal ratio of the longest
sequence was chosen in order to allow clustering of the
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whole range of transcript sizes. The resulting unique
transcripts derived from each of the 3 assemblies for
each dataset were then concatenated (step 6 in Fig. 1).
TransDecoder V2.0.1 [22] was then used to detect open
reading frames (ORFs) greater than 100 amino acids
(step 7 in Fig. 1). The resulting coding sequence (CDS -
i.e. with 5" and 3" UTRs removed), were then clustered
again using CD-HIT-EST with minimal coverage ratio of
the longest sequence of 0.005% (-aL 0.005), but a slightly
lower sequence identity than the previous clustering step
(-c 0.98) in order to take in consideration the Illumina
sequencing error rate (step 8 in Fig. 1). The only param-
eter that can vary between clustering runs at this stage
was the minimal coverage ratio of the shorter sequence
(-aS). This parameter had values that ranged from 75 to
100% (100, 99, 98, 97, 96, 95, 90, 85, 80 and 75%). An
-aS value was retrospectively selected in order to gener-
ate the most concise assembly (see below under in silico
testing of assemblies). The resulting cluster info file
(*.clstr) was retained in order to identify the transcript
that generated the longest CDS of each cluster, and also
all other transcripts of this cluster for further analyses.
We mined the cluster information file to determine the
assembly origins of each CDS and to calculate the CDS
extension size (see below). The consensus of each cluster
was then classified into one of seven categories:

1. The cluster consensus was present in all three
assembler outputs

2. The cluster consensus was present in CLC and
IDBA_tran outputs

3. The cluster consensus was present in CLC and
Trinity outputs

4. The cluster consensus was present IDBA_tran and
Trinity outputs

5. The cluster consensus was present only present in
the CLC output

6. The cluster consensus was present only present in
the IDBA_tran output

7. The cluster consensus was present only present in
the Trinity output

The perl script (concatenator.pl) used to perform all of
these steps is provided in the Additional file 3. As input
this script requires the path to a directory containing the
assembly outputs to concatenate, and the paths to two
binary files: CD-HIT-EST and TransDecoder. Variable
options include the nucleotide identity and the minimal
coverage ratio of the shortest sequence for the CDS
clustering step (step 8 in Fig. 1).

Transcriptome assembly quality control
In order to test the quality of the assemblies generated
by our pipeline we adopted two approaches, an
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annotatability based approach (applied to all datasets),
and in vitro validation (applied to our L. stagnalis
dataset).

Annotatability of assemblies

These analyses were performed with two different goals in
mind. The first was to retrospectively determine the best
minimal coverage ratio (aS value) for the final clustering
step (in order to minimize redundancy and loss of infor-
mation). To this end, we performed BLASTx searches for
each of the above listed aS values, and BUSCO analyses
for all assemblies based on Illumina datasets [14]. For
BLASTx searches the e-value was set to le-3. A perl script
was used to count the number of CDSs with a BLASTx
hit. In addition, the number of unique BLASTXx hits were
counted. These values were compared across the different
assemblies in order to identify at which aS value the
concatenated-transcriptome began to lose information.
The second goal was to evaluate any improvement that
our concatenated-assembly approach gave relative to each
of the individual assemblers. We applied Transdecoder to
the transcripts generated by each individual assembler
with the same parameters as described above. Subsequent
BLASTXx searches were also performed as described above
for the concatenated-assembly. In addition, BUSCO ana-
lyses of individual and concatenated transcriptomes were
also compared.

in vitro validation of the L. stagnalis assemblies

We performed a small scale in vitro validation of our
new L. stagnalis transcriptome data using 10 randomly
selected transcripts from each of the following categories
outlined above: 1, 5, 6 and 7. Although this is a small
sample compared to the overall transcriptome size, the
resulting trends were informative. Transcripts were se-
lected randomly using a perl script (Additional file 4).
We designed primer pairs for each of these 40 selected
transcripts with a melting temperature of 60 °C using
Primer3 [23]. RT-PCR was performed on foot total RNA
isolated from three L. stagnalis individuals (RNA derived
from the individual used for NGS sequencing was not
used in this exercise). Reverse transcription reactions
were performed in a final volume of 25 pL as follows.
One microgram of high quality total RNA was combined
with 200 pumols of random hexamer and water to a final
volume of 10 pL. This mix was put at 70 °C for 5 min in
order to melt RNA secondary structure and allow pri-
mer annealing. The mix was then cooled to room
temperature. We then added to each reaction Promega
5X MMLV-RT buffer (final concentration 1X), dNTPs
(final concentration of 0.4 mM), 200 Units of MMLV-
RT H™ mutant (Promega), and water to a final volume of
25 pL. For each reaction we performed a positive reverse
transcription (RT+) containing all components
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mentioned above, and a negative reaction where
MMLV-RT was replaced by water (RT-) to control for
contaminating genomic DNA. Both RT+ and RT- reac-
tions were incubated at room temperature for 10 min,
and then heated to 42 °C for 90 min. The reactions were
then heated to 70 °C for 15 min to inactivate the
MMLV-RT. Single stranded cDNA was stored at -20 °C.
PCR reactions were performed in a final volume of
25 pL containing the following: a final concentration of
1X enzyme reaction buffer, 0.2 mM dNTPs, 0.2 uM for-
ward and reverse primers, 0.5 U Q5 polymerase (NEB),
1 pL of cDNA template and water to a final volume of
25 pL. Thermocycling was were performed in a Senso-
Quest thermocycler with the following steps: 94 °C for
10 min, 35 cycles with denaturation at 94 °C for 30 s,
primer annealing at 55 °C for 30 s, DNA synthesis at
72 °C for 3 min with a final elongation step at 72 °C for
10 min. PCR products were loaded onto a 2% agarose
gel containing ethidium bromide and electrophoresed at
130 V for 40 to 50 min and then visualized under UV
light. For each primer pair, results were considered con-
gruent when all three replicate RT+ reactions contained
a distinct band at the expected size, and all three repli-
cate RT- reactions were negative. A result was consid-
ered incongruent in any other case for the RT+
reactions. Reactions with negative and incongruent re-
sults were repeated a second time to confirm the results.

Results and discussion

Individual transcriptome assemblies

In order to broadly compare the outputs of the individ-
ual assemblers (CLC, Trinity and IDBA_tran) with our
concatenated assemblies, we calculated some standard
assembly metrics that are commonly wused to
characterize these kinds of datasets [13]. While each as-
sembly output displayed different characteristics, a con-
sistent pattern could be observed. Assemblies produced
by Trinity always produced the highest numbers of tran-
scripts and the largest transcriptome sizes (as measured
by cumulating transcript lengths), whereas CLC gener-
ated assemblies with the lowest numbers of transcripts
(except for the S. cerevisiae and C. elegans samples), and
the smallest transcriptome sizes (Additional file 5: Table
S2). Number of input reads did not have any influence
on these metrics. Indeed, S. cerevisiae dataset has ap-
proximately twice the number of input reads than all
other samples, and the smallest transcriptome output re-
gardless of the assembly software. In general CLC and
IDBA_tran produced 2.2 to 4.6 and 1.8 to 3.6 times
fewer transcripts than Trinity respectively. N50 values
for all assemblers lay between 405 and 4056 bp. IDBA_-
tran consistently generated the longest N50s, and CLC
generally the smallest (except for the S. cerevisiae, H.
rhamnoides and C. elegans datasets; Additional file 5:
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Table S2). However we must point out that the number of
transcripts and N50 values will be biased by differences in
the smallest transcript size assembled by each software
(300 bp for IDBA-tran, 211 for CLC and 201 for Trinity;
Additional file 5: Table S2), and also by the biological real-
ities of these transcriptomes - longer N50 values do not
necessarily reflect a better transcriptome assembly. The
longest transcript sizes varied from 8609 to 51,362 bp,
with the longest transcripts generated by Trinity (except
for the H. rhamnoides, N. benthamiana, D. melanogaster
and C. elegans datasets where it was generated by IDBA-
tran). Interestingly, for some datasets the longest
transcript size varied by more than two fold according to
the assembler used (Additional file 5: Table S2). These
general observations confirm previous reports that the use
of different assemblers (even though they are all based on
the construction of de Bruijn graphs), generate signifi-
cantly different final assemblies [12, 24—26]. This led us to
explore the possibility of combining these assemblies and
removing any redundancy.

Concatenated transcriptome assemblies

The main goal of our concatenated assembly approach
was to improve assembly accuracy without generating a
bloated assembly. In order to first remove intra-
assembly redundancy, a stringent clustering step (100%
sequence identity on 100% of the shorter sequence
length) was performed for each individual sub-assembly
(step 5 in Fig. 1). For all datasets, the redundancy rate
was zero for all IDBA_tran assemblies and below 0.02%
for all CLC assemblies (Additional file 6: Table S3). For
Trinity transcriptomes, the redundancy rate was always
significantly higher and ranged between 0.02 and 30%
(Additional file 6: Table S3). The redundancy in the
Trinity assemblies was also higher in the two simulated
datasets (27 and 30%) than in the Illumina datasets
(maximum 11%) (Additional file 6: Table S3). Higher
intra-Trinity redundancy is probably due to the fact that
Trinity is the only assembler to produce one de Bruijn
graph per transcript, and subsequently processes them
one by one, whereas CLC and IDBA_trans produce only
one graph overall. The non-redundant transcripts pro-
duced by each assembler for each dataset were then
pooled and TransDecoder was used to detect putative
ORFs with a size of 2100 amino acids. The resulting
datasets had concatenated transcriptomes with 25,854 to
885,944 transcripts, and TransDecoder detected between
22,180 and 379,596 putative ORFs (Additional file 7:
Table S4). Both simulated datasets fell within the range
described by the Illumina datasets, while the proportion
of the simulated transcriptomes predicted to be coding
was higher (Additional file 7: Table S4). This is most
probably due to the fact that simulated reads were
derived from mRNA molecules.
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The next critical step was to cluster the CDSs pro-
duced by Transdecoder in order to obtain the most con-
cise coding transcriptome while minimizing information
loss (step 8 in Fig. 1). To do this we used CD-HIT-EST
with the nucleotide identity level set to 98% in order to
be more conservative than the average Illumina sequen-
cing error rate of 1%. The size ratio of the longest
transcript to the overall transcript was set to 0.5% in
order to include the shortest transcripts. The size ratio
of the shortest transcript to the overall transcript (-aS)
varied from 100 to 75% (see below). To evaluate the
amount of information lost at this step, we used
annotation-based metrics [13] that make more biological
sense than metrics such as N50 or transcript size (how-
ever these can be found in Additional file 5: Table S2).
BLASTx searches against Swiss-Prot database for each
aS value were performed to determine the impact of the
a$S value in the above clustering step. It showed that the
number of unique database entries decrease at 99% for
both Illumina derived and simulated datasets (Additional
file 8: Table S5). In addition, BUSCO analyses also
showed that the completeness of each assembly began to
decrease at an aS value of 99% for each sample. On the
basis of these analyses (and to be the most conservative),
the smallest aS value was set to 100% for all datasets.
Nevertheless, it should be kept in mind that according
to the dataset and the type of downstream analysis to be
performed, a lower aS value may be more appropriate.
After this clustering exercise, between 54 and 68% of the
CDSs from each dataset were found to be redundant at
the nucleotide level (Table 1). C. elegans dataset is in the
range of the Illumina datasets whereas D. melanogaster
is two point higher than the highest Illumina dataset,
which is D. simulans.

Our concatenated coding transcriptomes ranged in
size from 9744 transcripts for S. cerevisiae to 127,526
transcripts for N. benthamiana (Table 1). Whatever the
raw data origin, the number of transcripts in the
concatenated assembly is less than the number of
uniCDSs, and the number of CDSs in the concatenated
assembly is more than the number of uniCDSs (Table 1).
This is because transcripts often possessed more than
one CDS (Table 1). Transcripts with multiple CDSs also
influenced the number of redundant CDSs in our
concatenated assemblies (between 3 and 22%, Table 1).
The proportion of CDS redundancy for the simulated D.
melanogaster data is within the range of all Illumina
datasets, while the simulated C. elegans is 5% lower than
the smallest Illumina dataset (H. rhamnoides 8%).
Transcripts with multiple CDSs may be the result of
sequencing or assembly errors, the activity of transpos-
able elements such as group-II intron or transposases
that get inserted in genes [27], or operon transcription
[28]. Compared to the individual assemblies generated



Cerveau and Jackson BMC Bioinformatics (2016) 17:525

Table 1 Assembly statistics
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lllumina derived datasets

Simulated datasets

Step® L stagnalis S. cerevisiae  Caenorhabditis sp. D. simulans H. rhamnoides N. benthamiana D. melanogaster C. elegans

Number of concatenated 6 576,412 25,854 152,491 184,892 278,987 885,944 42,535 15,340
transcripts
CDS number 7 139,727 22,180 112,813 81,598 137,601 379,596 37,920 41,103
uniCDS number® 8 59,178 9,942 40,116 27,735 63,092 131,656 12,118 14,890

(58%) (55%) (64%) (66%) (54%) (65%) (68%) (64%)
Total transcript number 9 58,185 9,744 39,022 26,968 61,798 127,526 11,582 14,283
Total CDS number 9 64,659 11,605 51416 34,363 68,288 153,118 14,231 15412
Transcripts with multiple 9 5,759 1,529 9,756 5838 5,999 21,060 2,218 949
CDSs¢ (10%) (15%) (19%) (22%) (10%) (17%) (19%) (7%)
Redundant CDSs® 9 5481 1,663 11,300 6,628 5,196 21,462 2,113 522

(9%) (14%) (22%) (19%) (8%) (14%) (15%) (3%)
Transcriptome size (bp) 9 131,591,076 16,164,888 69,689,679 69421322 86,181,833 206,036,224 34,121,269 19,765,122
Smallest transcript (bp) 9 300 300 300 300 300 300 300 300
Largest transcript (bp) 9 35,470 15,061 21,466 51,362 13,117 19,833 29,220 26,756
N50 9 3,483 2414 2,366 3,866 1,823 2,116 4479 1,666

Step number in Fig. 1

PProportion of discarded CDSs is indicated in brackets
“Proportion of transcripts with >1 CDS is indicated in brackets
9proportion of none unique CDSs is indicated in brackets

by CLC, Trinity and IDBA-tran (Additional file 5: Table
S2), the concatenated assemblies of L. stagnalis, D. simu-
lans and N. benthamiana contained fewer transcripts
than any of the individual sub-assemblies, whereas for S.
cerevisiae, Caenorhabditis sp, H. rhamnoides, D. melano-
gaster and C. elegans the number of transcripts within
the concatenated assemblies were within range of those
produced by the individual assemblers. Considering the
total transcriptome sizes, the concatenated assemblies
were similar to the individual assemblies, but were
always larger than the CLC generated assemblies
(Table 1; Additional file 5: Table S2). For the S. cerevisiae
dataset the concatenated transcriptome was larger than
all individual assemblies (Table 1; Additional file 5: Table
S2). Finally, the N50s of the concatenated assemblies
were higher than all of the individual assemblies except
for the S. cerevisiae and C. elegans dataset. This suggests
that most of the transcripts removed during our concat-
enation and filtering steps had small sizes. These statis-
tics also show that our pipeline did not increase the
overall transcriptome size compared to the individual
assemblers. In some cases the overall transcriptome size
even decreased considerably (Table 1). This phenomena
has also been previously observed in other plant datasets
[6, 10]. The N50 values also suggests that our pipeline
generates coding transcriptomes that have larger average
transcript sizes than assemblies generated by the individ-
ual assemblers [13].

In order to further assess the performance of our pipe-
line, we compared transcripts generated by the three

individual assemblers and our pipeline with the original
transcripts from which artificial reads were generated for
both the D. melanogaster and C. elegans datasets
(Table 2). These comparisons were performed with
BLASTn and we only considered hits with a nucleotide
identity of 98% covering at least 50% of the original
transcript. In both datasets, CLC failed to recover the
highest proportion of genuine transcripts (21% for D.
melanogaster and 34% for C. elegans), while our
concatenated assemblies failed to recover the lowest pro-
portion of genuine transcripts (11% for D. melanogaster
and 29% for C. elegans). In general, these concerningly
high values are similar to those previously made on
human and worm de novo transcriptome assemblies [3].
For both the D. melanogaster and C. elegans datasets,
most of the missing genuine transcripts in the
concatenated assembly (85% for D. melanogaster and
80% for C. elegans) had read coverages of less than 10X,
whereas most of the successfully recovered transcripts
(82% for D. melanogaster and 89% for C. elegans) had
read coverages higher than 10X.

Interestingly, and in contrast to the missing genuine
transcripts, up to 27% of the assembled transcripts were
not present in the original transcript set (representing
bioinformatically ‘invented’ transcripts). IDBA_tran pro-
duces the lowest proportion of invented transcripts (14%
for D. melanogaster and 14% for C. elegans), whereas
Trinity produces the highest proportion of invented
transcripts in D. melanogaster (25%) and CLC in C.
elegans (25%). In C. elegans, our concatenated assembly
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Table 2 Comparison between original and assembled transcriptomes derived from simulated reads generated from D. melanogaster

and C. elegans datasets

Organism Assembler Original transcripts Assembled transcripts
Total number Lacking a BLASTn hit in assembled Total number Lacking a BLASTn hit in original
transcripts transcripts

D. melanogaster Concatenated 11,856 1,277 (11%) 12,273 2,685 (22%)
CLC 3 (21%) 8113 1,972 (24%)
IDBA_tran 1,775 (15%) 8,282 1,150 (14%)
Trinity 1,843 (16%) 11,395 2,810 (25%)

C. elegans Concatenated 16,513 4,774 (29%) 14,922 4,087 (27%)
CLC 4 (34%) 11,853 2,948 (25%)
IDBA_tran 8 (30%) 11,069 1,557 (14%)
Trinity 5473 (33%) 12,843 2,869 (22%)

had a higher proportion of invented transcripts than any
single assembler, whereas in D. melanogaster it had a
lower proportion than CLC and Trinity (Table 2).

Evaluation of concatenated assemblies

In order to study the composition of the final uniCDS
clusters in our concatenated assemblies we assigned all
clusters to one of seven categories (Fig. 2). The resulting
pattern was consistent across all datasets, and all aS
ratios used (75-100%) in the clustering step (data not
showed). CDS clusters primarily belonged to either cat-
egory 1 (the cluster was present in all three individual
sub-assemblies following concatenation and redundancy
filtering) or category 6 (the cluster was only present in

the Trinity assembly) (Fig. 2). Of all three individual as-
semblers, Trinity consistently generated the most unique
clusters (excepted for C. elegans), while CLC consistently
generated the fewest unique clusters (excepted for C.
elegans) (Fig. 2).

In order to compare these distributions between sam-
ples, we performed Kolmogorov-Smirnov statistical tests.
All paired comparisons were statistically non-significant
except for 4 that always involved at least one of the plant
transcriptomes (one for H. rhamnoides and three for N.
bentamiana) (Additional file 9: Table S6). Distribution
comparisons between concatenated assemblies from
both simulated datasets without plant Illumina datasets
were always non-significant (Additional file 9: Table S6).

-

60

55—

50 —

Percentage of transcripts

1 2 3 4 5 6 7
CLC Trinity ~ CLC Trinity ~ CLC Trinity ~ CLC Trinity ~CLC Trinity ~CLC Trinity ~CLC Trinity
IDBA-Trans IDBA-Trans IDBA-Trans IDBA-Trans IDBA-Trans IDBA-Trans IDBA-Trans

Category

Fig. 2 Categorization of concatenated clusters according to their presence/absence in the individual sub-assemblies. Category
three assemblers; category 2: clusters found in CLC and Trinity; category 3: clusters found in CLC and IDBA; category 4: clusters found in IDBA-tran and
Trinity; category 5: clusters found in CLC; category 6: clusters found in Trinity and category 7: clusters found in IDBA
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This categorization exercise led us to ask whether any
one of these categories contained a higher proportion of
“biologically correct” transcripts than others? In order to
address this question, we performed an in vitro valid-
ation using the L. stagnalis dataset. We tested ten
randomly selected clusters from categories 1 (clusters
detected in all three assemblers), 5, 6 and 7 (clusters
unique to either CLC, Trinity or IDBA_tran respect-
ively). The positive validation rate for categories 5, 6 and
7 ranged from 40 to 70%, and the negative validation
rate ranged from 30 to 60% (Table 3). Category 1 had a
positive validation rate of 80%, and a negative validation
rate of 0% (Table 3). These results suggest that clusters
found by only one assembler (categories 5, 6 or 7) are
likely to be either very lowly expressed or are assembly
errors, while those found in all three assemblers (cat-
egory 1) are more likely to be genuine molecules, giving
further credence to the concept of our bioinformatic
approach.

We also retrospectively investigated the completeness
of each individual assembly relative to our concatenated
assemblies. The results of this analysis were striking.
Averaging across all eight datasets, 50.3% +16.1% of
CDS clusters in the concatenated assembly were present
in the CLC assemblies, 62.3% + 7.1% were present in the
IDBA_tran assemblies and 77.5% + 8.0% were present in
the Trinity assemblies (Fig. 3a). Both simulated
concatenated assemblies were in the range of all Illu-
mina derived assemblies, excepted for CLC where the
proportion of detected CDSs was higher than in any of
the 6 other samples (Fig. 3a). On face value this result
suggests that Trinity alone provides the best overall pic-
ture of a coding transcriptome. However, when we
looked retrospectively at the effect of our pipeline on
CDS extension, we found IDBA_tran to be the best per-
former for all datasets (except for both Caenorhabditis
datasets; Fig. 3b). Between 13 and 44% of the CDSs from
each assembler were extended during our concatenating
process (Table 4). The proportion of extended CDSs
from the simulated transcriptomes were within the range

Table 3 In vitro validation of L. stagnalis clusters

Number Positive Incongruent Negative
Category 1 10 8 2 0
Clusters found in all 3
assemblers
Category 5 10 2 5 3
Clusters unique to the CLC
assembly
Category 6 10 2 2 6
Clusters unique to the
Trinity assembly
Category 7 10 4 1 5

Clusters unique to the
IDBA_tran assembly
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of all Illumina derived assemblies, excepted for CLC in
C. elegans which was 3% lower than the smallest
Illumina dataset (IDBA_tran in S. cerevisiae) (Table 4).

We also compared the annotatability of our
concatenated transcriptomes relative to assemblies gen-
erated by each of the three individual assemblers using
BLASTx sequence similarity searches against Swiss-Prot
[13]. The results of these analyses showed that annotat-
ability was always higher in the concatenated assemblies
compared to all of the individual assemblies (Table 5).
For all Illumina derived datasets, the proportion of CDSs
with a BLASTx hit expressed as a percentage of that
found in the corresponding concatenated assembly
ranged between 94% for the Trinity assembly of the S.
cerevisiae dataset to 36% for the CLC assembly of the L.
stagnalis dataset (Table 5). This trend also held true for
the D. melanogaster and C. elegans simulated datasets
(Table 5).

We were aware that an increase in the proportion of
CDSs returning a BLASTx hit does not necessary mean
that annotation diversity also increases. Indeed, an over-
all increase in the number of BLASTx hits could be due
to a greater number of mis-assembled isoforms or para-
logs present in a given assembly. To account for this
phenomenon we investigated annotation diversity by
calculating the number of unique database entries for all
BLASTx searches. Again in all cases the number of
unique BLASTx hits was highest in the concatenated
assemblies (Table 5). For the Illumina datasets, the num-
ber of unique database hits in the individual assemblies
expressed as a percentage of that found in the corre-
sponding concatenated assembly ranged between 98%
(for the Trinity assembly of the Caenorhabditis sp. data-
set) and 72% (for the CLC assembly of the L. stagnalis
dataset; Table 5). These results demonstrate that an
overall increase in the rate of annotation is accompanied
by an increase in annotation diversity. This phenomena
was also observed in the analysis of a N. benthamiana
transcriptome [10]. It should be noted that the increase
in annotation diversity in our concatenated assemblies
was less extreme than the increase in the overall anno-
tatability (Table 5). This implies that most of the in-
crease in the overall annotation is due to CDS isoforms
that were not found by a given individual assembler.

We also performed an analysis of assembly complete-
ness using the transcription factor database BUSCO
[14]. In addition to the simple presence/absence pattern
of BUSCO entries, this analysis also provides interesting
information regarding the number of duplicated and
fragmented entries. The results of this analysis also con-
firmed the results obtained with our BLASTx searches;
the number of detected BUSCOs entries was always
higher in the concatenated assemblies than in all of the
individual assemblers for all Illumina datasets and the
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simulated datasets (Table 6). In addition, the number of
fragmented copies was always lower in all concatenated
assemblies than in the individual sub-assemblies, except
for the Caenorhabditis sp. dataset where the number of
fragmented copies was equal in the concatenated and
IDBA_tran assemblies and the C. elegans dataset where

Table 4 Effect of concatenating assemblies on CDS length

the number of fragmented copies is lower in Trinity and
equal in IDBA_tran (Table 6).

There were always the fewest number of duplicated
copies in all CLC sub-assemblies, but CLC was always
the single assembler with the fewest total number of
BUSCO entries, except for the S. cerevisiae and C.

lllumina derived datasets

Simulated datasets

Assembler L. stagnalis

S. cerevisiae  Caenorhabditis sp.

D. simulans H. rhamnoides N. benthamiaana D. melanogaster C.elegans

Number of extended CLC 8,195 1,333 7,255
CDSs? (38%) (23%) (44%)
IDBA_tran 13,401 957 1,717
Q7%) (16%) (38%)
Trinity 23,532 2,879 28918
(34%) 27%) (44%)
Cumulated extended CLC 9289434 913872 675849
€D length (bp) IDBA_tran 23112789 121,116 9,431,703
Trinity  33,055113 2749041 30,317,865
Mean extended CLC 1,134 686 932
€D length (bp) IDBA_tran 1,725 127 805
Trinity 1,405 955 1,048

5,490 11,508 24,218 1,888 1,534
(34%) (38%) (47%) (23%) (13%)
7,586 11,427 48,830 1,960 2,054
(25%) (24%) (36%) (23%) (18%)
11,638 21,032 78,038 7817 5,808
(33%) (35%) (40%) (38%) (33%)
5921460 6,816,978 23,238,501 2,662,092 1,107,756
5795478 5143413 36,408,087 2,311,569 1,433,037
14,029,893 16,390,158 53,633,142 10,201,314 4,291,554
1,079 592 960 1,410 722

764 450 746 1179 698

1,206 779 687 1,305 739

“The proportion of CDSs with an extension are indicated in brackets
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Table 5 Comparisons of assembly annotatability

lllumina derived datasets Simulated datasets
Assembler L. stagnalis S. cerevisiae Caenorhabditis sp. D. simulans H. rhamnoides N. benthamiana D. melanogaster C. elegans
Number of Concatenated 59,178 9,942 40,116 27,735 63,092 131,656 12,118 14,890
unicos CLC 21,527 5673 15,466 15,988 29,898 51,151 8,113 11,853
IDBA_tran 36,726 5,608 21,384 19,556 38,353 79612 8,271 11,069
Trinity 44,545 9339 34,356 23,509 46,571 88428 11351 12,838
Overall number of Concatenated 38,838 9922 25,502 19,789 49,565 93,781 9,007 9,751
BLASThits ac 14,034 5,666 9,983 11,221 23,523 36,587 5777 7,740
(36%) (57%) (39%) (57%) (47%) (39%) (64%) (79%)
IDBA_tran® 23,634 5,598 13,996 14,107 30,491 56,665 6,218 7,489
(61%) (56%) (55%) (71%) (62%) (60%) (69%) (77%)
Trinity® 30,134 9320 21,730 16,765 36,232 63,079 8,342 8,559
(78%) (94%) (85%) (85%) (73%) (67%) (93%) (88%)
Number of unique Concatenated 15,232 5,404 9,242 9,575 15,524 16,700 4957 5,767
BLAST hits ac 10958 5004 7492 8376 12,405 12,902 4664 5529
(72%) 949%) (81%) (87%) (80%) (77%) (94%) (96%)
IDBA_tran® 12,893 5223 8,069 8,868 13,840 14,900 4,055 5,302
(85%) (97%) (87%) (93%) (89%) (89%) (94%) (92%)
Trinity? 14,124 5,243 9,051 9174 14314 14,855 4817 5,340
(93%) (97%) (98%) (96%) (92%) (89%) (97%) (93%)

®Each value is also expressed as a percentage of the corresponding Concatenated dataset value (numbers in brackets)

Table 6 Results of BUSCO annotations

L. stagnalis  S. cerevisiae Caenorhabditis sp. D. simulans H. rhamnoides N. benthamiana D. melanogaster C. elegans

lllumina derived datasets Simulated datasets
BUSCO dataset Metazoa Fungi Metazoa Arthropods Plants Arthropods Metazoa
Number of BUSCO 843 1438 843 2675 956 2675 843
entries
Detected BUSCO Concatenated 822 1,357 720 2,455 903 934 1,204 442
entries ale 779 1,207 655 2,159 843 811 1,079 437
IDBA_tran 813 1,195 699 2,242 881 903 1,137 428
Trinity 811 1,356 710 2,424 887 927 1,143 415
Duplicated copies  Concatenated 344 430 445 945 525 745 368 49
CLC 59 35 52 89 224 284 48 25
IDBA_tran 210 70 189 662 361 569 149 28
Trinity 259 155 324 520 389 633 291 42
Fragmented copies Concatenated 19 53 16 143 20 5 89 54
CLC 66 106 39 230 88 167 94 57
IDBA_tran 20 59 16 174 33 63 93 54

Trinity 35 136 24 189 52 8 100 53
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elegans datasets (Table 6). Our concatenated assemblies
always contained a higher number of duplicated copies
than all three individual assemblers. This is apparently a
weakness of our methodology that must be traded off
against an assembly with more copies and fewer frag-
mented copies (Table 6). Our concatenated assemblies
produced from the simulated datasets reflected the same
patterns seen in the Illumina derived data (Table 6).

Because the NCBI databases have evolved significantly
over the last two years, we downloaded the previously
reported [10] cumulative transcriptome of N. benthami-
ana  (http://benthgenome.qut.edu.au/), repeated the
BLASTx and BUSCO searches and compared these
updated results to our assembly of the same raw data.
This comparison revealed that essentially the same pro-
portion of both assemblies returned a BLASTx hit
against the swiss-prot database (75.28% versus 75.22%,
Table 7). Nevertheless, 250 more unique database entries
were detected in our concatenated transcriptome
(Table 7). These two assemblies shared 13,938 entries,
while our assembly possessed 2534 unique entries and
the Nakasugi et al assembly possessed 2284 unique en-
tries (Table 7). This picture was supported by the
BUSCO analysis: both assemblies shared 929 BUSCOs
entries (a total of 14 BUSCOs entries were missing in
both assemblies suggesting this dataset is largely
complete), with five entries unique to our assembly and
eight unique to the Nakasugi assembly. In addition, the
number of duplicated copies was lower in our assembly
than in the assembly reported by Nakasugi et al. (745
versus 785 respectively).

Conclusion

As far as we are aware this is the first study to
characterize the effects of combining multiple de novo
transcriptome assemblies in order to both maximize the
information content, and minimize the redundancy of
the resulting coding transcriptome for a variety of
eukaryotes. A similar method was previously reported
for transcriptomes derived from plants in order to
address assembly difficulties associated with polyploidy

Table 7 Comparison of BLASTx annotation rate of both N.
benthamiana cumulative transcriptomes

Our study
127,526
95,929 (75%)

Nakasugi et al
234,526
176,540 (75%)

Total number of transcripts

Number of transcripts with
BLASTX hits against Swiss-prot

Number of transcripts with a 16,472 16,222
unique Swiss-prot hit

Number of shared transcripts 13,938

with a unique Swiss-prot hit

Number unique transcripts 2,534 2,284

with a unique Swiss-prot hit
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[10]. Our approach however requires only three alterna-
tive assemblies in comparison with many tens of assem-
blies. In general our methodology produces a more
concise and information-rich coding transcriptome
assembly that will make subsequent analyses more
efficient; from the comparisons we conducted here on
six independent eukaryotic datasets using three popular
RNA-Seq assembly packages we generated on average
1.8X fewer transcripts, and significantly increased the
degree and diversity of annotatability in comparison to
any of the three individual assemblers. In addition, we
tested our approach on two simulated datasets generated
from reference genomes, confirming the results ob-
served from ‘real world’ Illumina datasets. We believe
our approach (encoded by the simple perl script pro-
vided here) will allow researchers with minimal bioinfor-
matics experience to extract the most information from
their RNA-Seq datasets. A weakness we observe in our
approach is the generation of slightly more “false” tran-
scripts and redundancy than seen in the individual as-
semblers we employed. This phenomenon (present in all
methods used to assemble RNA-Seq data) will have an
impact on subsequent analyses, for example differential
gene expression (DGE). In the case of DGE analysis, this
weakness can be countered to some extent by allowing
multiple read mappings as implemented by Rsubread
[29]. This also serves to emphasize the point that such
analyses based on NGS data should always be confirmed
by independent validation experiments.
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