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ABSTRACT

Translation is dynamically regulated during cell de-
velopment and stress response. In order to detect ac-
tively translated open reading frames (ORFs) and dy-
namic cellular translation events, we have developed
a computational method, RiboWave, to process ribo-
some profiling data. RiboWave utilizes wavelet trans-
form to denoise the original signal by extracting 3-nt
periodicity of ribosomes and precisely locate their
footprint denoted as Periodic Footprint P-site (PF P-
site). Such high-resolution footprint is found to cap-
ture the full track of actively elongating ribosomes,
from which translational landscape can be explicitly
characterized. We compare RiboWave with several
published methods, like RiboTaper, ORFscore and
RibORF, and found that RiboWave outperforms them
in both accuracy and usage when defining actively
translated ORFs. Moreover, we show that PF P-site
derived by RiboWave shows superior performance in
characterizing the dynamics and complexity of cellu-
lar translatome by accurately estimating the abun-
dance of protein levels, assessing differential trans-
lation and identifying dynamic translation frameshift.

INTRODUCTION

Translation is an essential and energy intensive step of bi-
ological process (BP) in cells (1,2). It is dynamically regu-
lated in cell development and stress response (3). For in-
stance, variation in translation initiation sites have delin-
eated a dynamic range of translation regulation in response
to different environmental stimuli (4–12). Another alterna-
tive translation event that contributes to dynamic transla-
tional landscape is ribosomal frameshift, an essential and
universal translation process across species (13–18). Addi-
tionally, translation can also be regulated via immediate and

selective changes in protein translation efficiency (TE) in
which cells have developed to encounter different stimuli
(19–21). To uncover the dynamic translation landscape of
cell, ribosome profiling (Ribo-seq) has been developed to
sequence RNA fragments protected by ribosomes and thus
monitor translation events with unprecedented resolution
(22,23).

Translation regulation usually occurs at the translation
initiation phase where cells use different translation initia-
tion sites under stress condition (9,24). Besides special drugs
(i.e., harringtonine, lactimidomycin and puromycin) that
are used to experientially denoise the input signal and selec-
tively enrich initiating ribosomes (3,24,25), computational
methods have been proposed to analyze Ribo-seq data and
search for alternative translation processes (3,12,26,27). In
addition, statistical tools have been developed to calculate
the dynamics of translational efficiency where Ribo-seq sig-
nals are normalized by background (i.e., RNA-seq signals)
(19–22,28–30). However, it is still hard to identify trans-
lation initiation site and calculate TE accurately based on
Ribo-seq data alone due to the presence of intrinsic noises
that are mainly introduced from experimental procedures
and non-specific binding on RNAs (3,31–34). Given the fact
that the presence of Ribo-seq reads is not equivalent to the
indication of active translation (33), traditional identifica-
tion of alternative translation process would be ineffective,
placing a demand for Ribo-seq denoising.

An intrinsic feature of active translation that can be
used for discriminating genuine translational signal against
noises is trinucleotide (3 nt) periodicity (32,33). This period-
icity originates from the process of codon-anticodon recog-
nition during ribosome translocation (35). Several pub-
lished tools have utilized this signature to detect actively
translated open reading frames (ORFs) based on either un-
even distribution among frames (3,26,36–38), uniform dis-
tribution across codons (39) or frequency derivation with
Fourier transform (33). However, these methods cannot ex-
plicitly locate the full track of actively elongation of ribo-
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somes, which makes them lack of power on detecting local
behavior of translation, such as translation initiation, paus-
ing and frameshift.

In this work, we propose that wavelet transform can be
used to denoise Ribo-seq data and locate the footprint of
active elongating ribosomes by extracting 3-nt periodicity.
Wavelet transform is widely used in signal denoise in various
fields (40–44). One of its recently biological applications is
to eliminate non-experimentally transitions in PAR-CLIP
data (45). Different from Fourier transform whose waves
usually last for the entire duration of the signal, wavelet
transform utilizes multiple small waves that oscillate at cer-
tain region along the input signal (46). Thus, wavelet trans-
form gives not only frequency components (i.e., 3-nt period-
icity of translating ribosomes) but also the exact positions of
these frequency components. It is powerful for studying sig-
nal discontinuity and change point (45–49), such as trans-
lation initiation and ribosomal frameshift.

Therefore, we have developed a computational method,
RiboWave, utilizing wavelet transform to denoise the Ribo-
seq raw data and derive a set of Periodic Footprint P-sites
(PF P-sites) of actively elongating ribosomes. We compare
RiboWave with several published Ribo-seq analysis tools
like RiboTaper, ORFscore and RibORF in defining active
translated regions (i.e., ORFs) and show that RiboWave
outperforms them in both accuracy and usage. More impor-
tantly, RiboWave can assay the dynamics of many cellular
translation events, where PF P-sites are used to accurately
estimate protein abundance, calculate TE and identify ribo-
somal frameshift.

MATERIALS AND METHODS

Pre-processing of Ribo-seq and RNA-seq

The sequencing data were processed similarly as previous
described (33). Ribo-seq reads were firstly stripped from
adaptor sequence and then reads that aligning to rRNA se-
quencing were removed using STAR (50). We aligned the re-
maining Ribo-seq reads and RNA-seq reads to the prebuild
genome index using STAR. We allowed up to three mis-
matches and up to eight different positions multimapping
for Ribo-seq and further eliminated alignments flagged as
secondary alignments, ensuring one genomic position per
aligned read (33). For RNA-seq, default parameters were
used in alignment. The human genome index was obtained
from hg19 and built using annotation file from GENCODE
(version19) (51). Mouse genome index was built on mm10
and annotation file from GENCODE (version M8) (51).
Arabidopsis genome index was built on tair10 (52). For
zebrafish dataset, mapping bam file was obtained directly
from the download package of RiboTaper (33).

P-sites construction and ORF scanning

P-sites’ positions were inferred by investigating the offset of
5′ end of Ribo-seq reads to the first nucleotide of start codon
of CCDS transcripts as described in previous study (33). For
each read length, an individual aggregate profile was gener-
ated in order to determine P-sites positions precisely (Sup-
plementary Figure S1). After that, we applied this offsets-
to-read-length rule to all reads of the same length and ob-

tained P-sites positions for Ribo-seq datasets. For RNA-
seq, we used an arbitrary 25th position for all reads as the
‘P-site’ position of RNA-seq. Subsequently, we created P-
sites tracks for all transcripts using the inferred P-sites po-
sitions for mapped reads.

ORFs were scanned from the FASTA sequence of RNA
using custom python scripts. For each transcript, ORFs
were scanned by searching all possible AUG start codons
and paired with nearest in-frame stop codon (UAA, UAG,
UGA). Small ORF (sORF) is defined if its length is shorter
than 300 nt.

Denoising procedure

We utilized the wavelet transform to perform frequency-
position spectrum analysis. For any function

f (t) ∈ L2 (R) =
{

f (t) | ∫+∞
−∞ | f (t)|2dt < ∞

}
,

Continuous Wavelet Transform (CWT) of it is

Wf (a, b) = ∫+∞
−∞ f (t) ψa,b (t) dt,

where Wf (a, b) is the wavelet coefficients and ψ(t) is the
mother wavelet that depends on two indices, namely a
(scale) and b (position). The wavelet function is defined by

ψa,b (t) = 1√|a| ψ

(
t − b

a

)
(1)

By changing factors a and b continuously, we can get all
the coefficients at different scales and positions. Thus, we
can get a time-scale view of the original signal, and know
exactly when a specific frequency occurs. In principal, CWT
will decompose the original signal into numerous set of
wavelets ψ(t) by calculating coefficients for every a and b.
In RiboWave, we use the discrete form of wavelet transform
(DWT) to do the analysis to avoid the low efficiency and
redundancy brought by CWT:

ψ j,k (t) = 2 j/2 ψ
(
2 j t − k

)
ψ j,k(t) is called a series of daughter wavelets which, together
with scaling function ϕ(t), is sufficient for decomposing the
original signal and obtain corresponding DWT coefficients;
besides, these daughter wavelets can be made orthogonal to
each other to eliminate the redundancy of CWT (53). Then,
the detail f (t) can be represented in the form of

f (t) =
∞∑

j= j0

∑
k∈Z

d j,kψ j,k (t) +
∑
k∈Z

c j0,kϕ j0,k (t) ,

where DWT coefficients is defined as:

d j,k =< f, ψ j,k >= ∫+∞
−∞ f (t) ψ j,k (t) dt ,

c j0,k =< f, ϕ j0,k >= ∫+∞
−∞ f (t) ϕ j0,k (t) dt

In our study, we used an analogous of DWT, Discrete
Wavelet Packet Transform (DWPT), to perform wavelet
transform. The advantage of DWPT is that it decomposes
not only low-frequency part of a signal, but also high-
frequency part as well (54). It can split the frequency band
of 0 Hz ∼ 1 Hz into 26 = 64 frequency bands. In RiboWave,
we used wavelet function Symlets 4(sym4) and its scaling
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function for analysis (55). Particularly, we only considered
the frequencies within 0.2Hz ∼ 0.5Hz (covering reads peri-
odicity of 2, 3, 4, 5 nt) and chose 0.328125Hz ∼ 0.34375Hz
band to present the 3-nt periodicity. For each frequency
band, the coefficients of wavelet function are displayed as
a vector, in which each value represents how the wavelet
function fits the input signal at each position. The higher
the coefficient value is, the closer local signal’s frequency
to the corresponding wavelet frequency. To track the foot-
print of elongation, signals with 3-nt frequency’s coefficient
lower than any other frequency’s are treated as noise and
thus eliminated. Thus, raw P-sites track is denoised and con-
verted into PF P-sites.

RiboWave framework

RiboWave includes three major procedures: denoising pro-
cedure, translating ORF identification and translation ini-
tiation site prediction. For a Ribo-seq data, RiboWave first
utilizes denoising procedure to convert the P-sites track into
Periodic Footprint P-sites (PF P-site) track. The number of
Ribo-seq reads before and after denoisng is listed in Sup-
plementary Table 1. The second step, we test the in-frame
PF P-sites enrichment over each candidate ORF by chi-
square test. The definition of in-frame PF P-sites is based
on the studied ORF. It refers to all the positions/loci that
are located inside the ORF and are of the same reading
frame as the ORF itself. Compared to the flanking regions
of ORF (i.e., UTRs), we require in-frame PF P-sites must
show higher enrichment inside the ORF. At a significant
level of 0.05, ORF is predicted to be translated. In the chi-
square test, the expectation values are the length of ORF
and the length of ORF flanking regions; the observed val-
ues are the number of in-frame PF P-sites positions inside
the ORF and the number of positions of PF P-sites in the
flanking regions of ORF. Chi-square test is performed by
R basic function chisq.test(). If any of the number is lower
than five, we utilize the Fisher-exact test instead, i.e., R basic
function fisher.test().

Third, RiboWave is designed to identify the most con-
fident translation initiation sites among all initiation sites
that are predicted to be translated under different situations
(Supplementary Figure S7). First, we collect all ORFs that
are predicted to be translated and cluster these ORFs ac-
cording to its stop codon. Next, in case there are multiple
start codons for a stop codon, we select the one with less
upstream PF P-sites; if still there are multiple start sites re-
mained, we pick the one with the highest P-sites intensity
(P-sites of −1, 0, +1 nt of the candidate start codon’s first
nucleotide) as the final prediction (Supplementary Figure
S7).

Performance comparison in identifying translated ORFs

First, the translational signal and the non-translational
noise should be fully distinguishable. As previous study did
(33), we selected Ribo-seq as translational signal and paired
RNA-seq as non-translational signal (GSE51424) (56). For
both translational and non-translational signal, we gener-
ated a test set using original P-sites track as positive and
shuffled P-sites track as negative (33). For both (positive

and negative) test sets, we converted the raw P-sites track
into PF P-sites track and compared raw P-sites track and
PF P-sites track by testing if they were enriched inside the
1000 sampled CCDS transcripts’ annotated ORF regions.
Similarly, we also tested the performance of RiboWave, Ri-
boTaper, RibORF and ORFscore on the same test set. De-
fault parameters were used for RiboTaper, ORFscore and
RibORF as mentioned in published protocol (33,36,39).

Second, as the off-frame overlapping ORFs largely over-
lap with the translated ORFs, it is important to specify
which frame is under translation. To do so, we generated
a test set using 1000 sampled CCDS transcripts’ annotated
ORFs as positives and their off-frame overlapping ORFs
as negatives. Since an annotated ORF might have multiple
off-frame overlapping ORFs, we balanced the ratio of pos-
itive to negative to one by choosing the most overlapped
off-frame ORF as negative control. Subsequently, we com-
pared the positives and negatives by calculating the enrich-
ment chi-square test P-values for raw P-sites and PF P-sites.
Similarly, we also tested the performance of RiboWave, Ri-
boTaper, RibORF and ORFscore on the same test set.

For the above two test sets, we also evaluated the in-
fluence of different drug treatments using another Ribo-
seq dataset from mouse bone marrow-derived dendritic
cells (GSE74139) treated with four different kinds of drug:
harringtonine, lactimidomycin, cycloheximide and no drug
(57).

Third, for a translated ORF, it is important to decide
the translation initiation site out of multiple candidate start
codons. To do so, we used Ribo-seq as input and predicted
the translation initiation site by RiboWave and RiboTa-
per. We later compared the predicted initiation sites with
the experimental validated ones, which were from paired
QTI-seq (SRA160745) or paired ORF-RATER method
(GSE74139) (24,57). Only ORF with start and stop sites
both matched were reported as validated. Only AUG start
codon were considered.

Fourth, to validate the prediction results of RiboWave,
RiboTaper, RibORF and ORFscore, we used HCT116 cell
line Ribo-seq (GSE58207) as input and made prediction for
translated CCDS genes, which was later validated by paired
mass spectrometry (MS) datasets (PXD000304) (58). Same
comparison was performed on sORF as well.

Mass spectrometry data processing

Proteomics MS data (Pride database identifier:
PXD000304) was searched against a custom protein
database of all human ORFs using MaxQuant following
the setting as described in previous study (59). Briefly, heavy
labeled arginine (13C6) and lysine (13C6) were additionally
selected as fixed modifications, and methionine oxidation
to methionine-sulfoxide, pyroglutamate formation of
N-terminal glutamine and acetylation of the N-terminus
were selected as variable modifications. Precursor ions
mass tolerance was set to 10 ppm, while fragment ions
mass tolerance was set to 0.5 Da. The maximum charge
of peptide was 4+. The minimum peptide length was set
at 7, which is the default of MaxQuant and only one miss
cleavage was allowed.



e109 Nucleic Acids Research, 2018, Vol. 46, No. 18 PAGE 4 OF 15

Protein abundance estimation

Protein abundance estimation was done on proteins that
have enough reads density (>30 PF P-sites) at all time
points within the annotated ORF. A total of 1340 proteins
were estimated for its RPKM of P-sites and PF P-sites on
annotated ORF. In case of multiple annotated ORFs for
one single protein, only the longest annotated ORF was se-
lected for further calculation. Relative protein abundance
(iTRAQ) throughout the time course (0, 1.5, 3, 6, 9,12
h) was obtained from previous study coupled with paired
Ribo-seq data on the cell line MM1.S after the treatment of
bortezomib (GSE48785) (60). During comparison, proteins
were equally split into three groups (low, medium and high)
according to reads abundance. Pearson correlation was con-
sidered here. Relative abundance was calculated by Z-score
normalizing both RPKM of raw P-sites and PF P-sites and
iTRAQ intensity across time series so that iTRAQ and raw
P-sites/PF P-sites intensities were at the same scale. Relative
deviation against iTRAQ was calculated by measuring the
absolute difference between the relative abundance of raw
P-sites/PF P-sites and iTRAQ.

Differential translation detection

We used two published datasets: human PC3 cells in re-
sponse to mTOR signaling perturbation (GSE35469) and
dark-grown Arabidopsis seedling in response to light stim-
ulus (GSE43703) (20,21). Replicates were combined to-
gether for further studies. To identify dysregulated transla-
tion genes with high confidence, we required protein coding
genes should contain sufficient amount of reads (RNA-seq:
RPKM > 0.5, more than 20 mapped reads; Ribo-seq: more
than 20 PF P-sites) (28,34,57,61,62). In PC3 data, 10,957
protein coding genes in PC3 data and 13,240 genes in Ara-
bidopsis data were subjected to TE calculation. During the
calculation of TE, the abundance of translation was rep-
resented by the RPKM of either raw P-sites or PF P-sites
while the RPKM of raw reads from RNA-seq was used
to represent the abundance of transcription. TE was cal-
culated by the ratio of translation abundance and mRNA
abundance. Fold change of TE under two conditions were
transformed into Z-scores after fitting the data into a nor-
mal distribution (28,63,64). P-values were inferred from the
distributions. At last, Z-score > 2 were denoted as transla-
tion upregulation genes and Z-score < −2 were denoted as
downregulation (28,29,65).

Gene ontology analysis

The enriched functional groups were revealed with use of
the elim method from the TopGO package to estimate the
enrichment of BP terms for a certain gene set (66). The
Fisher exact test was used to evaluate the representation dif-
ferences between differentially translated genes detected by
raw P-sites and by PF P-sites. Meanwhile, differential trans-
lation genes were also subjected to KEGG enrichment anal-
ysis using the Database for annotation, visualization and
integrated discovery (67).

Gene set enrichment analysis

We used GSEA (v3.0) (68) to assess enrichment of sets of
dysregulated translation genes in corresponding gene ontol-
ogy (GO) geneset. GSEA requires two separate input files: a
gene set of interest and differentially translated genes. Here
we took different numbers of top ranked genes estimated by
either raw P-sites or PF P-sites, i.e., uptranslated and down-
translated, and sorted by its corresponding TE fold change
to see the enrichment of the studied gene set over these dif-
ferentially translated genes. GeneRatio indicates the overlap
ratio between the gene set and the input gene list.

Frameshift detection procedure

Frameshift refers to the translation events when the ribo-
somes exhibit a non 3-nt movement and thus cause a shift
in the reading frame (Supplementary Figure S16A, down
panel). A change point was defined as the position where
the PF P-site’s reading frame is different from the last PF P-
site’s frame. Relative to the change point, we defined the up-
stream (up) region as the region from annotated start codon
of the ORF to change point; downstream (down) region as
the region from change point to the last PF P-site position
along the transcript.

To ensure the reading frame before and after the
frameshift is different, we came up with a score
Frame change (Supplementary Figure S16B):

inframe Perc j, j = up, down

= number of PF Psites in annotated frame
number of PF Psites in 3 frames

Frame change

= 1 − 2 × inframe Percup × inframe Percdown

inframe Percup + inframe Percdown

Frame change can quantify the difference in reading
frame from upstream and downstream. To be specific,
in f rame Perc j, j = up, down calculates the percentage of PF
P-sites within the annotated reading frame in either up-
stream (up) or downstream (down) region. Difference be-
tween in f rame Percup and in f rame Percdown can be in-
corporated into Frame change, with its value approaching
1 indicating the potential of frameshift.

Next, to ensure the consistency of translational signal be-
fore and after the change point, we came up with a score
Frame dominancy (Supplementary Figure S16C):

PercFi, i = 0,1,2

= number of PF Psites in framei

number of PF Psites in 3 frames

FD j, j = up, down

= 2 × max (PercF0, PercF1, PercF2) − 1

Frame dominancy = 2 × FDup × F Ddown

F Dup + F Ddown

Similar to in f rame Perc j, j = up, down, PercFi, i = 0,1,2
calculates the percentage of PF P-sites inside each reading
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frame (i = 0, 1, 2) in either upstream (up) or downstream
(down) region. F Dj, j = up, down incorporates all three per-
centage PercF0, PercF1, PercF2 from either the upstream
(up) or downstream (down) region respectively. The value
of F Dj, j = up, down indicates the enrichment of PF P-sites
within one single frame. The higher F Dj, j = up, down , the
more consistent PF P-sites are within one reading frame. At
last, Frame dominancy is able to quantify the PF P-sites
consistency in both upstream (up) or downstream (down)
region, with its value approaching 1 indicating the poten-
tial of frameshift.

At last, we incorporated both Frame dominancy and
Frame change and came up a new score CRF. The higher
CRF, the most likely it is having a frameshift event.

CRF = Frame change × Frame dominancy

As one single ORF may contain multiple change points,
the highest CRF score was selected as the CRF score of that
ORF and corresponding change point was defined as the
change point of that ORF. We calculated the CRF score for
all annotated ORFs. ORF with CRF score > 0.6 and down-
stream signal including more than five out-frame PF P-sites
was selected as a candidate of frameshift event. In the next,
we tried to remove candidates that might be caused by other
reasons: downstream off-frame ORFs translation (Supple-
mentary Figure S16E) and chimera P-sites track (Supple-
mentary Figure S16F). To do so, we removed the cases when
downstream PF P-sites located fully inside the unannotated
ORF or overlapped in the same frame with any other an-
notated ORFs as well as ORFs predicted to be translated.
Further, we required the reads coverage of the downstream
region should be similar with the upstream region (>0.75-
fold and <1.5-fold). Candidates fulfilled all above criteria
were designated as frameshift events.

The frameshift events were detected from
HCT116(GSE58207), HeLa(GSE79664), glioblas-
toma(GBM)(GSE51424), clear cell renal cell carci-
noma(ccRCC)(GSE59820) and HEK293T(GSE65778)
and validated by paired MS datasets (PXD000304) (58).

Indel simulation

To systematically evaluate the ability of CRF score in de-
tecting frameshift event, we performed a simulation to ran-
domly introduce indels (insertion/deletion) in the anno-
tated ORF’s DNA sequence so as to create an artificial
frameshift. Later, we quantified this frameshift by calculat-
ing the CRF score before and after the indels. Here we took
25,554 annotated ORFs that were predicted to be translated
in HCT116 sample. The indel positions were treated as the
change point during the calculation of CRF score.

RESULTS

RiboWave identifies the periodic footprint of ribosomes by
wavelet transform

Given the fact that actively elongating ribosomes usually
have a consistent, 3-nt periodic codon-by-codon pattern,
extraction of the 3-nt periodic footprint would be a criti-
cal point during the denoising procedure. We use wavelet

transform for purpose because it derives both frequency
and position information of the ribosomes from Ribo-seq
data, i.e., it shows not only what frequencies are present, but
also which ribosomes are present with such frequency (see
‘Materials and Methods’ section and Figure 1A). Based on
wavelet transform, we have developed a powerful and rigor-
ous Ribo-seq analysis tool, RiboWave, that denoises Ribo-
seq data (peptidyl-site track, P-site track) by extracting 3-nt
periodicity of ribosomes. The denoised data track, denoted
as Periodic Footprint P-sites (PF P-sites), is capable of cap-
turing the full track of ribosomes’ 3-nt periodic footprint,
i.e., start, movement and stop of the actively elongating ri-
bosomes (Figure 1A).

The detail pipeline of PF P-sites generation is illustrated
in Figure 1B, in which we first converted Ribo-seq’s raw
reads into positions of peptidyl-sites (P-sites) as described in
previous study (33) (Figure 1B and Supplementary Figure
S1). Then, we used wavelet transform to generate a coeffi-
cient matrix of frequency at each nucleotide, i.e., frequency-
position spectrum matrix. In the frequency-position spec-
trum matrix, values are the coefficients of different wavelet
functions (i.e., different frequencies, rows of matrix) fitting
the input signal (i.e. P-sites intensities) at given positions
(i.e. nucleotide positions, columns of the matrix). Subse-
quently, raw P-sites were denoised into PF P-sites by re-
moving noises with frequencies other than 3 nt: for each nu-
cleotide, raw P-sites’ signal is neglected if it shows dominant
frequency other than 0.33Hz. Therefore, the denoised PF P-
sites represent a high-resolution 3-nt periodic footprint of
elongating ribosomes (Figure 1B).

We illustrated the signals of raw P-sites and PF P-sites
on two example transcripts, a mRNA and a long noncod-
ing RNA (lncRNA) (Figure 1C and Supplementary Fig-
ure S2). The P-sites signal is split into three reading frames,
frames 0, 1 and 2, by counting the position of nucleotide
from the start of a transcript. The example mRNA, which
is annotated by GENCODE (51) as consensus coding se-
quence (CCDS) transcript, shows clear enrichment of PF
P-sites inside the annotated ORF on frame 1 (chi-square test
P-value < 0.05), while the raw P-sites are noisy and scatter
over all three frames. On the contrary, we see lots of raw P-
sites falling inside a putative ORF on the example lncRNA,
while the signal track of PF P-sites is clean. This illustra-
tion suggests that RiboWave can remove those ambiguous
raw P-sites and produce a track of high-resolution periodic
footprint, PF P-sites, for actively elongating ribosomes.

RiboWave accurately identifies actively translated ORFs

One of the direct application of Ribo-seq is to find actively
translated regions. It includes the following steps: distin-
guish translational signal from noise, specify correct read-
ing frame and pinpoint translation initiation and termina-
tion sites. Here, we demonstrate that PF P-site shows supe-
rior performance in defining translating regions when non-
translational noises are removed by RiboWave.

First, we aim at evaluating the performance of PF
P-sites in distinguishing translational signal from non-
translational noise. To do so, we randomly sampled 1000
CCDS transcripts’ Ribo-seq P-site tracks as translational
signals and their shuffled P-site tracks as noise and com-
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Figure 1. RiboWave detects high-resolution periodic footprint, PF P-sites, from ribosome profiling data using wavelet transform. (A) Wavelet transform
decomposes the raw Ribo-seq signal into position-frequency matrix, where x-axis indicates frequency, y-axis indicates nucleotide position and z-axis
indicates the coefficient of each nucleotide for each frequency. Based on that matrix, we are able to extract 3-nt periodicity of actively elongating ribosomes
and precisely locate their footprint denoted as Periodic Footprint P-site (PF P-site). The denoised signal, PF P-site track, provides valuable information
about the start, movement and stop of the elongating ribosomes. (B). Detailed procedure of denoising. First, raw P-sites’ track is directly inferred from
reads of Ribo-seq. Second, a position-frequency spectrum matrix is generated by wavelet transform. Values in the matrix are the coefficients of different
wavelet functions (i.e., different frequencies) for each nucleotide. Thirdly, we compare the coefficients and smooth the signals other than 3-nt periodicity
(0.33 Hz). At last, we derive the Periodic Footprint P-sites (PF P-sites). Cf = 3 nt indicates the coefficient of 0.33Hz (3-nt periodicity); Cf 	=3 nt indicates the
coefficient of other frequencies. (C) Raw and PF P-sites on two example transcripts, mRNA (ENSG00000059804) and lncRNA (ENSG00000258644). The
original signals of P-sites (F 0,1,2) are distributed at three frames, F0, F1 and F2. Annotated ORF is colored in green. Putative ORFs derived by directly
sequence scanning are colored in red.

pared two types of signals’ enrichment over annotated
ORFs by chi-square test P-values (Figure 2A). Both raw
P-site track (before denoising) and PF P-site track (after
denoising) showed significant enrichment over annotated
ORFs for translational signal and no enrichment for shuf-
fled noise, indicating both raw P-sites and PF P-sites can
distinguish translational signal from shuffled noise (Fig-
ure 2A). The same comparison was done by taking the
same transcripts’ signal from paired RNA-seq dataset as
non-translational signal and their shuffled P-sites as the
noise (Figure 2B) (33). No enrichment was detected for PF
P-sites on non-translational RNA-seq data, suggesting its
unique specificity in identifying translational signal (Fig-
ure 2B down panel). On the contrary, significant enrich-
ment over ORFs on RNA-seq suggests the use of raw P-
sites might lead to false identification, which is consistent
with previous study (Figure 2B up panel) (33). We summa-
rized the above comparisons by AUC (area under the re-
ceiver operating characteristic curve) scores using the orig-
inal tracks of Ribo-seq or RNA-seq as positive and their
shuffled tracks as negative. For the Ribo-seq dataset, both
raw P-site track and PF P-site track achieved high AUC
scores (0.96 and 0.94, respectively) (Figure 2C and Supple-
mentary Figure S3). For the RNA-seq dataset, only the PF
P-site track showed an expected AUC score of approaching

0.5 (0.499); raw P-site track showed a AUC score as high as
0.73 (Figure 2C and Supplementary Figure S3). These re-
sults show that PF P-site is able to specifically distinguish
the footprint of actively elongating ribosomes from non-
translational noises.

Next, we want to track the trace of actively elongating
ribosomes by identifying the correct reading frame out of
three candidate frames. Performances were compared be-
tween positive set: CCDS transcripts’ annotated ORFs and
negative set: the most overlapped off-frame ORFs from the
same transcript. By the ratio of overlapping, we divided the
test sets to five levels: 0 ∼ 100%, 0 ∼ 25%, 25 ∼ 50%, 50
∼ 75% and 75 ∼ 100%. With the increase of overlapping
ratios, PF P-site track was shown to have much better per-
formance than raw P-sites. (PF P-sites: 0.94, 0.94, 0.93, 0.90
and 0.89; raw P-sites: 0.84, 0.84, 0.76, 0.67 and 0.68) (Figure
2D and Supplementary Figure S3). Collectively, the results
show that PF P-site is able to recognize the correct reading
frame of translational footprint.

Cell has evolved exquisite mechanism to regulate trans-
lation initiation (3). However, it has been pointed out that
standard Ribo-seq is not suitable for detecting translation
initiation sites due to the existence of non-translational
noise (24,25,69). As demonstrated in Figure 2E, a meta-
gene pattern was plotted around the annotated start codons
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Figure 2. PF P-sites derived from RiboWave identify translational signal, locate reading frame and pinpoint translation initiation site. Distribution of raw
and PF P-sites within the annotated ORFs. Chi-square enrichment test P-values are calculated for signal (original signal) versus noise (shuffled signal)
based on 1000 CCDS transcripts. The P-value is calculated from (A) Ribo-seq data and (B) RNA-seq data (used as control). (C) The AUC scores are also
calculated when distinguishing signals from noises. (D) AUC scores are calculated for the annotated ORFs (aORFs) versus overlapped off-frame ORFs at
different overlapping levels. (E) The meta-gene patterns around the annotated start sites for QTI-seq P-sites, Ribo-seq raw P-sites and Ribo-seq PF P-sites.
Fold-change (Fc) of each type of signal is the intensity of start codon (−1,0,+1 nt) over upstream region (−30 to −2 nt).

(−30 to +60 nt) of CCDS transcripts for three types of
signals: P-site track from quantitative translation initia-
tion sequencing (QTI-seq) (24), raw P-site track from Ribo-
seq data and PF P-site track denoised from the same
Ribo-seq data. QTI-seq was used as a positive control be-
cause it utilizes specific drug treatments, lactimidomycin
and puromycin, to enhance the translation initiation signal
with its P-sites mostly enriched around the initiation sites
(3,24). Though a peak at the annotated start codon was
observed, raw P-site track was coupled with unneglectable
signal scattered everywhere, indicating its limited power in
detecting translation initiation sites. In contrast, PF P-site
track showed barely signal before initiation, but clean and
consistent codon-by-codon in-frame signal after initiation.
The advantage of PF P-sites was also revealed by calculating
the intensity fold-change ratios (Fc) between start codon re-
gion (−1, 0 and +1 nt of the first nucleotide of start codon)
and upstream region (−30 to −2 nt of the first nucleotide

of start codon). PF P-site track achieved comparable fold-
change ratio (Fc = 30.3) with QTI-seq (Fc = 30.5) and much
higher than raw P-site track (Fc = 13.4) (Figure 2E). These
results suggest that PF P-site is of great sensitivity in iden-
tifying translation initiation site using standard Ribo-seq
as input, without additional drug treatment procedures. In
addition, the denoised PF P-site of Ribo-seq data might
be a nice supplement to QTI-seq in two situations, when
the starting peak does not lead to a complete translation
(34,70), and when the starting peak is caused by experimen-
tal containments (31,71).

Comparison of RiboWave and other Ribo-seq analysis tools
on ORF identification

Above results highlight the novelty and superiority of PF P-
site in identifying actively translated regions, prompting us
to further compare RiboWave with other published Ribo-
seq analysis tools. The ORF detection pipeline of RiboWave
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begins with the derivation of PF P-sites, followed by in-
frame enrichment test to see if PF P-sites are enriched in
any candidate ORFs (Figure 3A). RiboWave start codon
prediction is set for the purpose to identify the most confi-
dent translation initiation site based on Ribo-seq data alone
(Supplementary Figure S7). The real translation initiation
site should remark the emergence of actively elongating ri-
bosomes. As a result, we reason it should have least up-
stream active translating footprints, PF P-sites, even in the
occasion when upstream ORF (uORF) exists (Supplemen-
tary Figure S7). Following these steps, we are able to deter-
mine whether the transcript is translated and if does, which
ORF is under translation and where the translation ini-
tializes. We compared the performance of RiboWave with
three other well-known Ribo-seq analysis tools, RiboTaper,
ORFscore and RibORF, in characterizing ORF translation
(33,36,39).

First, we compared these tools in distinguishing transla-
tion signal from non-translational noise (Figure 3B). Like
we did in Figure 2C, we compared the AUC scores of four
tools on Ribo-seq dataset: RiboWave showed the high-
est AUC score as 0.94; RiboTaper, RibORF and ORF-
score showed lower AUC scores of 0.93, 0.83 and 0.80.
When applied on non-periodic RNA-seq test set, RiboWave
showed the closest AUC score to 0.5: 0.498; RiboTaper, Ri-
bORF and ORFscore showed greater deviations from 0.5
(0.66, 0.32 and 0.43, respectively), indicating their weak-
ened power in discriminating non-translational noises. Sim-
ilarly, we also conducted the comparison by treating dif-
ferent drugs (no drug, cycloheximide, lactimidomycin and
harringtonine) (Figure 3C). Despite the usage of lactim-
idomycin and harringtonine in specifying translation initi-
ation sites, RiboWave still showed robust and top perfor-
mance. Similar result was also observed on different P-sites
coverage and RNA expression level (Supplementary Figure
S4). Both RiboWave and RiboTaper detect the 3-nt peri-
odicity, while RibORF and ORFscore utilize the uneven
distribution of three frames. Thus, when separating trans-
lational signal from noise, only RiboTaper was comparable
to RiboWave.

Next, we evaluated the power of eliminating off-frame
overlapping ORFs for four tools (Figure 3D and Supple-
mentary Figure S5). Like we did in Figure 2D, we com-
pared the AUC scores of four tools on different overlap-
ping levels: 0 ∼ 100%, 0 ∼ 25%, 25 ∼ 50%, 50 ∼ 75% and
75 ∼ 100%. For every overlapping level, RiboWave (0.94,
0.94, 0.93, 0.90 and 0.89, respectively), RibORF (0.95, 0.96,
0.93, 0.92 and 0.88, respectively) and ORFscore (0.95, 0.95,
0.93, 0.93 and 0.88, respectively) showed comparable AUC
scores and much higher AUC scores than RiboTaper (0.81,
0.82, 0.69, 0.60 and 0.56, respectively). Such result was con-
sistent when considering different drug treatment or differ-
ent P-sites coverage, RNA expression level (Supplementary
Figures S5 and 6). RiboWave, RibORF and ORFscore ex-
plicitly utilize reading frame information, while RiboTaper
merely detects the existence of 3-nt periodicity for a given
ORF using Fourier transform, lack of location information,
e.g. which specific reading frame. Thus, the former three
methods performed better than RiboTaper on separating
in-frame ORFs from overlapped off-frame ORFs.

At last, we compared RiboWave with RiboTaper on de-
tecting translation initiation sites based on Ribo-seq data
(RibORF and ORFscore do not provide utility to identify
translation initiation sites). We used QTI-seq as validation
set and paired Ribo-seq as input set. For 2829 initiation
sites detected by QTI-seq, RiboWave matched 2093(74%)
of them and RiboTaper matched 1966 (69%) (Figure 3E
and Supplementary Figure S8). Since the detection of QTI
peak does not guarantee the completion of translation, we
next compared the accuracy of determining the correct ini-
tiation sites out of all ORFs that were predicted to be
translated: RiboWave showed a rate as high as 91% com-
pared to RiboTaper (85%) (Supplementary Figure S9). We
repeated the comparison on another validation set ORF-
RATER (57), which incorporated Ribo-seq with different
treatments (harringtonine, lactimidomycin, cycloheximide
treated or no-drug treated) to predict translation initiation
sites (57). Using paired untreated Ribo-seq data as input
set, RiboWave matched 12,153 (81%) out of 15,055 initia-
tion sites as detected by ORF-RATER, while RiboTaper
matched only 8599 (57%) of them (Figure 3E and Sup-
plementary Figure S8). Besides, in terms of accuracy, Ri-
boWave showed much higher rate of 93% than RiboTaper
(77%). These combined results suggest RiboWave predic-
tion highly agrees with experiments defined translation ini-
tiation sites and thus might be more suitable in identifying
translation initiation sites from Ribo-seq data, especially
when QTI-seq or other drug treatment data not available.
Figure 3F provides an example of translation initiation site
where transcript’s QTI-seq P-site track, raw P-site track and
PF P-site track are plotted. Translation initiation site candi-
dates are highlighted in the top panel where the first AUG
start codon is designated as the real translation initiation
site by QTI-seq. Comparison of RiboWave and RiboTaper
shows that RiboWave detects the correct initiation site from
which PF P-sites start to emerge while RiboTaper tends to
pick the downstream start site instead (Figure 3F).

At last, MS data were used to validate the translation of
predicted ORFs by four tools (Figure 3G and Supplemen-
tary Figure S10). Out of 2351 CCDS genes validated by MS,
ORFscore showed highest recovery rate as 99.9% (2348) fol-
lowed by RiboWave 96.9% (2278), RiboTaper 96.5% (2268)
and RibORF 95.1% (2236), respectively. In terms of posi-
tive predicted value (PPV), RiboWave showed highest PPV
as 0.197 (11,562) while ORFscore showed lowest PPV as
0.184 (12,778). The result suggests that the predicted ORFs
using different tools on Ribo-seq data have similar overlap
with MS data. In terms of predicting translation on sORFs,
RiboWave also shows comparable result and highest PPV
as validated by MS (Supplementary Figure S11). Further-
more, RiboWave have also successfully verified the transla-
tion of sORF in a lincRNA, toddler (Supplementary Figure
S12) (33,72).

Collectively, the comparison results show that RiboWave
is accurate and robust, and can be used to systemically iden-
tify actively translated ORFs. In addition to this, a novel
and unique feature of RiboWave is that it explicitly derives
a track of active translation signals, PF P-sites, along each
transcript. In the following sections, we illustrate the us-
ages of RiboWave in understanding the dynamics of trans-
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Figure 3. Comparison between RiboWave and three other Ribo-seq analysis tools. (A) Workflow of RiboWave for identifying translating ORF based on
PF P-sites. RiboWave first denoises raw P-sites into PF P-sites. Second, it tests if PF P-sites are in-framely enriched in a certain ORF. Third, RiboWave
determines the translation initiation site by minimizing upstream PF P-sites. At last, one ORF having the highest intensity within the initiation site is
identified as final prediction. (B) AUC scores and ROC curves of distinguishing signal (original signal) from noise (shuffled signal) for four tools, RiboWave,
RiboTaper, RibORF and ORFscore, based on two datasets, Ribo-seq and RNA-seq (used as control). (C) Performance of four tools in distinguishing
translation signal (Ribo-seq) from noise (shuffled signal) on special drug treatment (no drug, cycloheximide, lactimidomycin and harringtonine). (D) AUC
scores of distinguishing annotated ORFs from overlapped off-frame ORFs at different overlapping levels. (E) Validation rate of the translation initiation
sites predicted by RiboWave and RiboTaper, using two validation sets, QTI-seq and ORF-RATER. (F) An example of identifying translation initiation
site. (G) MS validation for the ORFs predicted by different tools on gene level.

lational landscape, where PF P-site plays an indispensable
role.

RiboWave accurately estimates dynamics of protein abun-
dance

Translation regulation plays a pivotal role in the control of
protein synthesis (9). Intensity measured from Ribo-seq is
known to have better correlation with protein abundance
than RNA-seq does (22,73–76). To assess the performance
and utility of RiboWave on protein abundance estimation
based on denoised Ribo-seq data (i.e., PF P-sites), we first
compared the intensities of raw P-sites and PF P-sites via
the correlation to absolute protein abundance. In this case,
RPKM of the annotated ORF was used to estimate the
reads intensity of either raw P-sites and PF P-sites for each
protein.

We first investigated the correlation between PF P-sites
intensity and protein levels in multiple time points. We cu-
rated Ribo-seq data at six individual time points (0, 1.5, 3,

6, 9, 12 h) with its protein abundance quantified by the ap-
proach of isobaric tag for relative and absolute quantitation
(iTRAQ) (76). Comparison was done across the time course
and showed that the intensities of PF P-sites and iTRAQ
measured protein abundance shared consistent dynamics,
while raw P-sites intensities showed limited correlation with
iTRAQ data (Figure 4A up panel, 4B and 4C). We have
achieved the same result when averaging the intensity of raw
P-sites, PF P-sites and iTRAQ at each time point (Figure 4A
bottom panel). Both correlation (Figure 4B) and deviation
(Figure 4C) against iTRAQ intensity were stable within pro-
teins of different levels of reads intensities (low, medium and
high), suggesting PF P-site’s robustness in estimation pro-
tein abundance. The example of protein SEC31A is shown
in Figure 4D, illustrating the advantage of PF P-sites over
raw P-sites. To sum up, the above results suggest that PF P-
site serves as a better estimator of protein abundance than
raw P-site.
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Figure 4. PF P-sites derived from RiboWave accurately evaluate the dynamics of protein abundance. (A) Heat maps show the expression (RPKM) of raw
P-sites (left), PF P-sites(middle) and iTRAQ intensity (right) for 100 randomly sampled proteins across time series. Average relative intensity of sampled
proteins is shown in the bottom. (B) Correlation between iTRAQ intensities and raw P-sites/PF P-sites RPKM across time course. Proteins are equally split
into three individual groups (low, medium and high) according to reads abundance. Pearson correlation coefficient (PCC) is considered here. (C) Relative
deviation of raw P-sites/PF P-sites RPKM against iTRAQ intensities on the level of different reads abundance. (D) An example of protein SEC31A with
its relative raw P-sites, PF P-sites and iTRAQ intensities plotted throughout the time course.

RiboWave improves the detection of differentially translated
genes

Ribo-seq is usually accompanied by RNA-seq to es-
timate TE and identifies genes that are subjected to
translational dysregulation. TE is defined by the ratio
of Ribo-seq read intensity and RNA-seq read intensity
(22,28,29,63,65,76,77). However, the convention way of cal-
culating TE might bring some false discoveries because the
signal of raw P-sites contains not only active translational
signal but also unspecific binding noises (31,32).

To demonstrate the performance of PF P-sites in as-
sessing differential TE, we used two ribosome profiling
datasets under different biological conditions. One is from
human PC3 cells in response to mTOR signaling pertur-
bation (19,20); the other is from dark-grown Arabidopsis
seedling in response to light stimulus (21). Replicates were
combined and subjected to the same pre-processing proce-
dure, followed by TE calculation. During the calculation of
TE, both datasets used RPKM of either raw P-sites or PF
P-sites from Ribo-seq data to estimate the activity of trans-
lation before normalization by RNA-seq. We selected dif-
ferentially translated genes (Z-score > 2 or Z-score < −2)
and picked top 200 translationally up/downregulated genes
for further studies (28,29,65,76). In general, PF P-sites and
raw P-sites detected similar amount of differential trans-
lated genes (Supplementary Figure S13). Next, we used GO
and KEGG pathway enrichment analyses to identify rele-
vant biological functions and processes.

In PC3 data, top 200 downtranslated genes were selected
when mTOR signaling was inhibited. Most enriched bi-

ological processes were related to translation process and
biosynthesis, which is consistent with the result of mTOR
signaling perturbation (20,78) (Figure 5A and Supplemen-
tary Figure S14). Within the same biological process, the
enrichments from raw P-sites were much lower than that
of PF P-sites (Figure 5A and Supplementary Figure S14).
Similarly, we also performed the Gene Set Enrichment
Analysis (GSEA) on the gene set of translation initiation
(GO:0006413) by combining different numbers of top dys-
regulated translation genes. In agreement with previous re-
sult, downtranslated genes identified by PF P-sites were sig-
nificantly enriched in translation initiation gene set than
those from raw P-sites (Figure 5B). We further examined
the enrichment at different expression levels and found that
the performance of PF P-sites was very robust (Supplemen-
tary Figure S15).

Similarly, we performed the same analysis on Arabidopsis
thaliana where the seedlings were pre-grown under the dark
environment (21). Top 200 uptranslated genes were picked
as candidates. We found that exposure to light induced en-
hanced translation of genes related to photosynthesis and
chloroplast organization, which is in good agreement with
previous reports (21) (Figure 5C and Supplementary Figure
S14). Again, PF P-sites achieved better enrichments than
raw P-sites (Figure 5C). A GSEA analysis on the gene set
of chloroplast organization (GO:0009658) further demon-
strated the advantage of PF P-sites (Figure 5D and Supple-
mentary Figure S15).

Taken together, the function enrichment results above
suggest that PF P-sites derived by RiboWave is able to de-
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Figure 5. TE calculated from PF P-sites improves the identification of differentially translated genes. (A) GO enrichment (BP) of the top 200 downregulated
genes identified by the TE based on either raw P-sites or PF P-sites in a PC3 dataset. KEGG pathway enrichment is also indicated in the right. P-values of the
enrichment are shown on the vertical axes in −log10 scale. The number on top of each bar represents the number of genes, within the downregulated genes,
falling in the corresponding BP or pathway. (B) GSEA performed on a gene set of translation initiation (GO:0006413). Different numbers of top ranked
genes estimated by either raw P-sites or PF P-sites (# of top genes), i.e., up- and downtranslated genes, are merged as the input gene list and pre-ranked by
its fold change of TE. q-value and ratios of genes overlapped within the input gene list (GeneRatio) are labeled, respectively. (C) GO enrichment (BPs) of
the top 200 upregulated genes identified in Arabidopsis dataset. (D) GSEA analysis performed on a gene set of chloroplast organization (GO:0009658).

tect differentially translation events with better biological
relevance and higher sensitivity than raw P-sites.

RiboWave identifies ribosomal frameshift event explicitly

Frameshift refers to an alternative regulation of protein
translation, which is observed as a shift in translation read-
ing frame (79). Previous method used a periodicity transi-
tion score (PTS) (26) to identify such event based on Ribo-
seq (12,73). But PTS is not able to capture the whole picture
of frameshift by pointing out the shifting site and changed
frames accurately and explicitly. Now with the help of Ri-
boWave and PF P-sites, it is possible to trace the move-
ment of actively elongating ribosomes and thus identify the
frameshift events explicitly. To do so, we have defined a
score to quantify the extent of frameshift during translation
(Figure 6A and Supplementary Figure S16). The change
of reading frame (CRF) score utilizes two properties of
frameshift: (i) Frame dominancy requires consistent PF P-
sites within one reading frame for both upstream and down-
stream of the change point; and (ii) Frame change requires
PF P-sites of upstream and downstream come from dif-
ferent frames (Figure 6A and Supplementary Figure S16;
‘Materials and Methods’ section). By definition, CRF score
would be approximating 1 for frameshift event and vice
versa. To evaluate the performance of CRF score, we per-
formed a simulation by introducing one nucleotide of in-
dels (insertion/deletion) randomly in the annotated CCDS

ORFs’ DNA sequences to cause a frameshift in the context
of reference genome. Significant difference was observed
when comparing the CRF scores before and after the indels
(Figure 6A). Conversely, using raw P-sites instead of PF P-
sites during the calculation of CRF score showed only lim-
ited power for identifying frameshift events (Supplementary
Figure S16D).

Application of CRF score on detecting novel frameshift
events requires further efforts. As the CRF could be caused
by other ambiguities. For example, a high CRF score is
expected if the downstream off-frame ORF is also trans-
lated (Supplementary Figure S16E). Similarly, if the change
point’s upstream and downstream signals come from two
separate transcripts, in other words, if the P-site track is a
chimera, a high CRF score is also expected (Supplemen-
tary Figure S16F). Thus, we developed a pipeline to de novo
identify genuine frameshift events. We started by calculat-
ing the CRF score of each change point for all annotated
ORFs and selected those change points with high CRF
score (Figure 6B). Subsequently, we ruled out the cause of
downstream off-frame ORFs translation and chimera P-site
tracks (see Methods). Candidates showing significantly un-
balanced P-sites coverage before and after the change point
were also eliminated (see ‘Materials and Methods’ section).

Based on the pipeline, we identified five genes with
frameshift events, PEG10, GPATCH4, APHGAP35,
SAFB2 and DBP in HCT116 cell (Figure 6C and Supple-
mentary Table 2). These five genes were scanned in multiple
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Figure 6. PF P-sites derived from RiboWave explicitly identify translation frameshift events. (A) Schematic diagram for CRF score; and its performance
on detecting frameshift events simulated by artificial insertions and deletions (indels). (B) De novo frameshift detecting pipeline based on PF P-sites. We
use the CRF score of PF P-sites to define candidate frameshift events. Ambiguous events, such as translated downstream ORFs and chimera tracks, are
removed. The coverage of PF P-sites from either upstream and downstream of the change point need to be similar (0.75- to 1.5-fold change) in order to
remove ambiguity. (C) PF P-site tracks have identified five frameshift events in HCT116. These five genes demonstrate dynamic frameshift potential within
different cells. CRF score(CRF) and ORF coverage(COV) are labeled, respectively. GBM: glioblastoma; ccRCC: clear cell renal cell carcinoma. (D) A well-
known programmed frameshift event in PEG10 detected by PF P-sites. Dashed line indicates the translation track of the ribosomes. (E) A cell specific +1
frameshift we found in gene ARHGAP35, which is caused by a genetic deletion. (F) MS/MS validation for a peptide fragment, DSALAFAGEEDALRFR,
after the frameshift.

tissues/cells to reveal its dynamic frameshift potential
under different circumstances (Figure 6C). PEG10 and
GPATCH4 displayed consistent high CRF scores in multi-
ple cell lines, while the frameshifts of ARHGAP35, SAFB2
and DBP were predicted to be more cell specific (Figure
6C). PEG10 is reported as a programmed frameshift
gene that involves two ORFs, ORF1 and ORF2 (80). Its
translation starts in frame 2 until position 1437, where a
programmed frameshift event occurs, and hereafter, the
subsequent translation proceeds in the frame 1 (80). Com-
pared to raw P-site track where reads could be observed
in all three frames, PF P-site track showed a clear signal
of frameshift at the right position (Figure 6D). Similarly,
the identified frameshift of GPATCH4, which is caused
by genetic insertion (annotated by dbSNP (81)), was
confirmed by paired MS data (Supplementary Figure S17).

Another example is a cell specific frameshift identified in
ARHGAP35, a GTPase-activating protein, that has been
designated as a mutational cancer driver in several can-
cer types (82–85). In HCT116, a cell specific deletion oc-
curs at position 4330 as annotated by COSMIC (86), which
gives rise to the change of reading frame. This cell specific
frameshift was accurately predicted by PF P-sites (Figure
6E) and validated by paired MS data where a mutated pep-

tide sequence caused by frameshift, DSALAFAGEEDAL-
RFR, was detected (Figure 6F). In summary, the above re-
sults suggest that RiboWave is able to explicitly identify
frameshift events and predict its dynamics in multiple cell
lines.

DISCUSSION

Based on wavelet transform, we have developed RiboWave,
a Ribo-seq analysis tool that denoises the original Ribo-seq
data into a high-resolution periodic footprint, PF P-sites.
This footprint enables us to explore many important and
interesting translational regulation events in cells.

Although Ribo-seq contains different source of non-
translational noises (3,31–34), few methods are specially de-
signed to denoise the raw signal. We notice that a newly
published method, Ribo-TISH (3), also improves the per-
formance of ORF prediction by removing reads with low
quality. Ribo-TISH utilizes a set of statistical metrics, like,
distribution of RPF (ribosome-protected mRNA fragment)
counts across three reading frames, meta-gene profiles of
RPF counts to indicate low quality reads. But it does not, as
RiboWave does, explicitly reveals the biological processes of
active elongation by locating the 3-nt periodicity of RPF. It
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is also worth noticing that although we denote these filtered
signals from Ribo-seq as noise in the context of translation,
the composition and biological meaning of them requires
further study. For instance, they may be associated with the
processes of noncoding RNAs (31).

Techniques like QTI-seq have been considered as the gold
standard when it comes to predicting translation initiation
sites. However, in most cases, the treatment of harringtonine
and lactimidomycin is not common (87), placing a demand
for a computational method that is able to identify transla-
tion initiation sites based on standard Ribo-seq data alone.
In our study, we have demonstrated high level of consistency
with the translation initiation sites defined by QTI-seq. As
a result, we think that RiboWave might be a nice option for
predicting translation initiation sites and further studying
alternative translation initiation especially when there is no
QTI-seq data available.

In our study we used MS data as validation in a couple
of situations. Although MS is pointed out to be the most
widely used technology for systemically quantification of
protein abundance, it still faces significant technical chal-
lenges, especially in the cases that the amounts of analytes
are too low to be detected by canonical MS (88). Therefore,
it would be impossible for MS to provide a genome-wide
snapshot of all protein levels. Alternatively, our method Ri-
boWave could provide a solution to this problem as we
have shown that PF P-site is sensitive and robust in estimat-
ing protein abundance. Meanwhile, ribosome profiling is
technically easier and economically cheaper than MS-based
proteomic profiling.

In this study, we have shown that PF P-site is able to im-
prove the estimation of protein TE. Besides the direct quan-
tification of TE by normalizing Ribo-seq to paired RNA-
seq, sophisticated statistical strategies, such as Xtail (19)
and Riborex (30), have also been proposed to search for dif-
ferential translation. In the future, we would incorporate PF
P-sites into these statistical models to explore dysregulated
translation process.

DATA AVAILABILITY

The software of RiboWave is available at https://lulab.
github.io/Ribowave. It can be used to denoise Ribo-seq raw
data into PF P-site track, define translated ORFs, estimate
reads occupancy as well as TE and identify potential ribo-
somal frameshift.
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Supplementary Data are available at NAR Online.
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Keulenaer,S., De Meester,E., Ma,M., Shen,B. and Gevaert,K. (2014)
A proteogenomics approach integrating proteomics and ribosome
profiling increases the efficiency of protein identification and enables

https://www.cseweb.ucsd.edu/~baden/Doc/wavelets/polikar_wavelets.pdf
http://www.iar.cs.unm.edu/~williams/cs530/arfgtw.pdf


PAGE 15 OF 15 Nucleic Acids Research, 2018, Vol. 46, No. 18 e109

the discovery of alternative translation start sites. Proteomics, 14,
2688–2698.

60. Wiita,A.P., Ziv,E., Wiita,P.J., Urisman,A., Julien,O.,
Burlingame,A.L., Weissman,J.S. and Wells,J.A. (2013) Global cellular
response to chemotherapy-induced apoptosis. Elife, 2, e01236.

61. Juntawong,P., Girke,T., Bazin,J. and Bailey-Serres,J. (2014)
Translational dynamics revealed by genome-wide profiling of
ribosome footprints in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A.,
111, E203–E212.

62. Merchante,C., Brumos,J., Yun,J., Hu,Q., Spencer,K.R., Enriquez,P.,
Binder,B.M., Heber,S., Stepanova,A.N. and Alonso,J.M. (2015)
Gene-specific translation regulation mediated by the
hormone-signaling molecule EIN2. Cell, 163, 684–697.

63. Wang,X., Zhao,B.S., Roundtree,I.A., Lu,Z., Han,D., Ma,H.,
Weng,X., Chen,K., Shi,H. and He,C. (2015) N(6)-methyladenosine
modulates messenger RNA translation efficiency. Cell, 161,
1388–1399.

64. Quackenbush,J. (2002) Microarray data normalization and
transformation. Nat. Genet., 32, 496–501.

65. Rubio,C.A., Weisburd,B., Holderfield,M., Arias,C., Fang,E.,
DeRisi,J.L. and Fanidi,A. (2014) Transcriptome-wide
characterization of the eIF4A signature highlights plasticity in
translation regulation. Genome Biol., 15, 476.

66. Alexa,A., Rahnenfuhrer,J. and Lengauer,T. (2006) Improved scoring
of functional groups from gene expression data by decorrelating GO
graph structure. Bioinformatics, 22, 1600–1607.

67. Huang,D.W., Sherman,B.T. and Lempicki,R.A. (2009) Systematic
and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat. Protoc., 4, 44–57.

68. Subramanian,A., Tamayo,P., Mootha,V.K., Mukherjee,S.,
Ebert,B.L., Gillette,M.A., Paulovich,A., Pomeroy,S.L., Golub,T.R.,
Lander,E.S. et al. (2005) Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression
profiles. Proc. Natl. Acad. Sci. U.S.A., 102, 15545–15550.

69. Morris,D.R. and Geballe,A.P. (2000) Upstream open reading frames
as regulators of mRNA translation. Mol. Cell. Biol., 20, 8635–8642.

70. Pauli,A., Valen,E. and Schier,A.F. (2015) Identifying (non-)coding
RNAs and small peptides: challenges and opportunities. Bioessays,
37, 103–112.

71. Ingolia,N.T., Brar,G.A., Stern-Ginossar,N., Harris,M.S.,
Talhouarne,G.J., Jackson,S.E., Wills,M.R. and Weissman,J.S. (2014)
Ribosome profiling reveals pervasive translation outside of annotated
protein-coding genes. Cell Rep., 8, 1365–1379.

72. Pauli,A., Norris,M.L., Valen,E., Chew,G.L., Gagnon,J.A.,
Zimmerman,S., Mitchell,A., Ma,J., Dubrulle,J., Reyon,D. et al.
(2014) Toddler: an embryonic signal that promotes cell movement via
Apelin receptors. Science, 343, 746–755.

73. Calviello,L. and Ohler,U. (2017) Beyond read-counts: ribo-seq data
analysis to understand the functions of the transcriptome. Trends
Genet., 33, 728–744.

74. Cenik,C., Cenik,E.S., Byeon,G.W., Grubert,F., Candille,S.I.,
Spacek,D., Alsallakh,B., Tilgner,H., Araya,C.L., Tang,H. et al.

(2015) Integrative analysis of RNA, translation, and protein levels
reveals distinct regulatory variation across humans. Genome Res., 25,
1610–1621.

75. Zur,H., Aviner,R. and Tuller,T. (2016) Complementary post
transcriptional regulatory information is detected by PUNCH-P and
ribosome profiling. Sci. Rep., 6, 21635.

76. Wiita,A.P., Ziv,E., Wiita,P.J., Urisman,A., Julien,O.,
Burlingame,A.L., Weissman,J.S. and Wells,J.A. (2013) Global cellular
response to chemotherapy-induced apoptosis. Elife, 2, e01236.

77. Liu,T.Y., Huang,H.H., Wheeler,D., Xu,Y., Wells,J.A., Song,Y.S. and
Wiita,A.P. (2017) Time-resolved proteomics extends ribosome
Profiling-Based measurements of protein synthesis dynamics. Cell
Syst., 4, 636–644.

78. Reiter,A.K., Anthony,T.G., Anthony,J.C., Jefferson,L.S. and
Kimball,S.R. (2004) The mTOR signaling pathway mediates control
of ribosomal protein mRNA translation in rat liver. Int. J. Biochem.
Cell B, 36, 2169–2179.

79. Craigen,W.J., Cook,R.G., Tate,W.P. and Caskey,C.T. (1985) Bacterial
peptide chain release factors: conserved primary structure and
possible frameshift regulation of release factor 2. Proc. Natl. Acad.
Sci. U.S.A., 82, 3616–3620.

80. Clark,M.B., Jänicke,M., Gottesbühren,U., Kleffmann,T., Legge,M.,
Poole,E.S. and Tate,W.P. (2007) Mammalian gene PEG10 expresses
two reading frames by high efficiency–1 frameshifting in
embryonic-associated tissues. J. Biol. Chem., 282, 37359–37369.

81. Sherry,S.T., Ward,M.H., Kholodov,M., Baker,J., Phan,L.,
Smigielski,E.M. and Sirotkin,K. (2001) dbSNP: the NCBI database
of genetic variation. Nucleic Acids Res., 29, 308–311.

82. Gonzalez-Perez,A., Perez-Llamas,C., Deu-Pons,J., Tamborero,D.,
Schroeder,M.P., Jene-Sanz,A., Santos,A. and Lopez-Bigas,N. (2013)
IntOGen-mutations identifies cancer drivers across tumor types. Nat.
Methods, 10, 1081–1082.

83. Liu,Y., Zhang,J., Li,L., Yin,G., Zhang,J., Zheng,S., Cheung,H.,
Wu,N., Lu,N., Mao,X. et al. (2016) Genomic heterogeneity of
multiple synchronous lung cancer. Nat. Commun., 7, 13200.

84. Kondo,T. (2017) Molecular mechanisms involved in gliomagenesis.
Brain Tumor Pathol., 34, 1–7.

85. Rajendran,B.K. and Deng,C.X. (2017) Characterization of potential
driver mutations involved in human breast cancer by computational
approaches. Oncotarget, 8, 50252–50272.

86. Forbes,S.A., Beare,D., Boutselakis,H., Bamford,S., Bindal,N.,
Tate,J., Cole,C.G., Ward,S., Dawson,E. and Ponting,L. (2016)
COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids
Res., 45, D777–D783.

87. Xiao,Z., Huang,R., Xing,X., Chen,Y., Deng,H. and Yang,X. (2018)
De novo annotation and characterization of the translatome with
ribosome profiling data. Nucleic Acids Res., 46, e61.

88. Du,R., Zhu,L., Gan,J., Wang,Y., Qiao,L. and Liu,B. (2016)
Ultrasensitive detection of low-abundance protein biomarkers by
mass spectrometry signal amplification assay. Anal. Chem, 88,
6767–6772.


