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Abstract: Elliptical vibration-assisted cutting technology has been widely applied in complicated
functional micro-structured surface texturing. Elliptical-arc-beam spherical flexure hinges have
promising applications in the design of 3D elliptical vibration-assisted cutting mechanisms due to
their high motion accuracy and large motion ranges. Analytical compliance matrix formulation of
flexure hinges is the basis for achieving high-precision positioning performance of these mechanisms,
but few studies focus on this topic. In this paper, analytical compliance equations of spatial elliptic-
arc-beam spherical flexure hinges are derived, offering a convenient tool for analysis at early stages
of mechanism design. The mechanical model of a generalized flexure hinge is firstly established
based on Castigliano’s Second Theorem. By introducing the eccentric angle as the integral variable,
the compliance matrix of the elliptical-arc-beam spherical flexure hinge is formulated. Finite element
analysis is carried out to verify the accuracy of the derived analytical compliance matrix. The compli-
ance factors calculated by the analytical equations agree well with those solved in the finite element
analysis for the maximum error; average relative error and relative standard deviation are 8.25%,
1.83% and 1.78%, respectively. This work lays the foundations for the design and modeling of 3D
elliptical vibration-assisted cutting mechanisms based on elliptical-arc-beam spherical flexure hinges.

Keywords: compliance equations; high-precision positioning mechanism design; mechanical model-
ing; spherical flexure hinges

1. Introduction

Due to having good functional performances with proper design, surfaces with mi-
crostructural textures show their attractive application prospects in the fields of optics [1],
biomedicine [2], tribology [3], mechanics [4], etc. Enormous amounts of attention have
been paid to how to fabricate these surfaces with high efficiency and high accuracy by
ultra-precision manufacturing. Compared with conventional mechanical forming meth-
ods, ultra-precision fast tool servo (FTS) [5–7] and elliptical vibration-assisted cutting
(EVC) [8,9] are more effective ways to meet these requirements for surface texturing of
difficult-to-machine materials. Since the flexible hinge can realize the transmissions of
motion, force and energy through the elastic deformation of its flexible unit and has the
advantages of high transmission accuracy, no friction, no lubrication, no gap, etc. [10–12],
for FTS and EVC, high-precision positioning mechanisms based on the flexure hinge are
generally used to fabricate micro-structured surfaces with high surface shape accuracy
and working frequency [13,14]. Therefore, high-precision positioning mechanism design is
of great significance for processing micro-structured industrial components with proper
functional performance.

The mechanical modeling of flexure hinges is the basis of the kinetostatic modeling,
even the analysis and design, of high-precision positioning mechanisms. Due to this
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great importance, the mechanical modeling of flexure hinges has been widely studied
over the past two decades. The mechanical modeling of flexure hinges aims to model
the compliance equations or compliance matrix that are used to describe the relationship
between deformation and external loads. According to the existing literature, there are three
main modeling methods for compliance equations/matrix: the one based on Mechanics of
Materials, the one based on Castigliano’s Second Theorem, and the empirical one.

For the method based on Mechanics of Materials, Paros and Weisbord firstly estab-
lished the mechanical model for right-circular type flexure hinges based on Mechanics
of Materials [15]. Then, Smith developed this mechanical modeling method and derived
compliance equations for elliptical type flexure hinges to reveal the relationship between
deformation and external loads [16]. It is noted that the effect of shear forces on the com-
pliance equations of flexure hinges is not considered during their mechanical modeling
process. Chen et al. introduced the eccentric angle as an integral variable into the modeling
process and derived generalized compliance equations for elliptical and quadratic-curve
type flexure hinges. Then, this method was extended to the modeling of planar elliptical-
arc-beam type flexure hinges [17,18]. Recently, Lu et al. formulated the compliance matrix
of deep-notch elliptical flexure hinges based on the Mechanics of Materials without con-
sidering the effect of shear forces [19]. Unlike the previous studies, a numerical method is
used to calculate the integrals during the modeling process.

On the other hand, Lobontiu introduced Castigliano’s Second Theorem into the
mechanical modeling of flexure hinges and studied the compliance equations, motion
accuracy and stress properties for all types of flexure hinges [20,21]. Considering the effect
of shear forces, Shi et al. established the mechanical and accuracy models for all kinds of
two-axis and three-axis flexure hinges based on Castigliano’s Second Theorem and studied
the influence of structural parameters on the performance of flexure hinges [22]. Nguyen
et al. used the same method to further analyze the compliance of a L-type straight-beam
flexure hinge with the consideration of high-order shear effect and buckling effect [23].

In addition, a lot of practical empirical compliance equations are proposed by means
of numerical methods. Smith et al. formulated the empirical equations of stiffness matrix
in the functional directions of right-circular flexure hinges by finite element simulation [24].
Tian et al. presented the dimensionless empirical equations and graph expressions of
filleted V-shaped, cycloidal and circular flexure hinges [25]. Li and Tuo used exponential
models to formulate the empirical compliance equations for right-circular flexure hinges
and the influence of stress concentration effect on the axial-compliance factor was further
discussed [26,27].

In contrast to ultra-precision FTS and 2-D EVC, 3D EVC is more suitable for texturing
surfaces with complicated microstructures [28]. According to the literature review, most
of the compliance equations are derived for the design of two-dimensional planar flexure
hinges, but few studies focus on the compliance equations for 3D, or spatial spherical
flexure hinges. However, with the development of elliptical vibration-assisted actuators
applied in 3D EVC, the demand for spatial spherical flexure hinges is increasing. It is
necessary to develop the compliance equations for spatial spherical flexure hinges to
briefly and accurately describe the relationship between deformation and external loads
by generalized analytical compliance equations or compliance matrix. Meanwhile, from
the reported literature, elliptical-arc type and straight-beam type are two basic types of
flexure hinges. The elliptical-arc flexure hinge has high motion accuracy but relatively
small rotation range, while the straight-beam flexure hinge has a large rotation range but
poor motion accuracy. To achieve both high motion accuracy and large rotation range,
the analytical compliance equations for a novel planar elliptical-arc-beam flexure hinge
is derived in [18]. However, the analytical compliance equations for spatial ones has not
been studied.

The contribution of this paper is to derive the generalized analytical compliance
equations of spatial elliptical-arc-beam spherical flexure hinges so that designers can
conveniently evaluate the kinetostatic performance of flexure hinges with all types of
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elliptical-arc-beam notch profiles, laying the foundation for high-precision positioning
mechanism design of 3D EVC. Therefore, how to simply model the mechanical behavior of
generalized spherical flexure hinges and deal with the formulation issue of the derived
analytical equations are the two main tasks in this paper. To fulfill this, the mechanical
model of a generalized flexure hinge is firstly established based on Castigliano’s Second
Theorem. By introducing the eccentric angle as an integral variable, the compliance matrix
of the elliptical-arc-beam spherical flexure hinge is formulated. Finite element analysis
is carried out to verify the accuracy of the derived analytical compliance matrix. The
novelty of this work is that the analytical compliance equations are theoretically extended
to generalized elliptical-arc-beam spherical flexure hinges, which is promising to provide
another design solution for spatial high-precision positioning mechanisms of 3D-EVC
using spatial flexure hinges other than combining multiple planar flexure hinges. This is of
great significance to the current state of industry.

2. Analytical Compliance Equations of Elliptical-Arc-Beam Spherical Flexure Hinges
2.1. Compliance Equations of Generalized Spatial Flexure Hinges

A spatial flexure hinge can be regarded as a section-variable cantilever beam with one
side fixed. The coordinate system is defined at the fixed end as shown in Figure 1. When
an external load vector Fi = [Fix, Fiy, Fiz, Mix, Miy, Miz]T acts on node i at the free end of the
flexure hinge, the flexure hinge will deform and a displacement vector ∆i = [∆ix, ∆iy, ∆iz,
θix, θiy, θiz]T occurs.
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The total elastic strain energy of the spatial flexure hinge comprises of the stain energy
from tension/compression, shear, bending and torsion. The total stain energy of the flexure
hinge U can be expressed as:

U =
∫ L

0

F2
x(x)

2EA(x)
dx+

∫ L

0

µF2
y(x)

2GA(x)
dx+

∫ L

0

µF2
z(x)

2GA(x)
dx+

∫ L

0

M2
x(x)

2GIP(x)
dx+

∫ L

0

M2
y(x)

2EIy(x)
dx+

∫ L

0

M2
z(x)

2EIz(x)
dx (1)

where L, A(x), E and G are the length of the flexure hinge, the area of the section at position
x, the Young’s modulus and the shearing modulus of the material, respectively. Considering
the flexure hinge may sometimes be abstracted as a short beam, the shearing coefficient µ is
also introduced in Equation (1). For a short beam with circular section, the shear coefficient
µ is 10/9. Fx(x) is the axial force along x-axis. Fy(x) and Fz(x) are the shear forces along
y-axis and z-axis. Mx(x), My(x) and Mz(x) are the moments around the corresponding axes.
For node i, the components of the external load vector are expressed as:

Fx(x) =Fix
Fy(x) =Fiy
Fz(x) =Fiz
Mx(x) =Mix
My(x) = −Fiz(L− x) + Miy
Mz(x) =Fiy(L− x) + Miz

. (2)
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According to Castigliano’s Second Theorem, the partial derivative of the strain energy
U to the external load Fi equals the displacement of the loading point ∆i, which can be
described as:

∆i =
∂U
∂Fi

, (3)

Combining Equations (1)–(3), the displacement of node i at the free end of the spatial
flexure hinge can be expressed as:

∆i = CiFi =



C∆ix−Fix 0 0 0 0 0
0 C∆iy−Fiy 0 0 0 C∆iy−Miz

0 0 C∆iz−Fiz 0 C∆iz−Miy 0
0 0 0 Cθix−Mix 0 0
0 0 Cθiy−Fiz 0 Cθiy−Miy 0
0 Cθiz−Fiy 0 0 0 Cθiz−Miz


Fi. (4)

Ci is the compliance matrix at node i, the components of which are presented as follows:

C∆ix−Fix = 4
πE

∫ L
0

1
D2(x)

dx

C∆iy−Fiy = C∆iz−Fiz = 4µ
πG

∫ L
0

1
D2(x)

dx + 64
πE

∫ L
0

(L−x)2

D4(x)
dx

C∆iy−Miz = Cθiz−Fiy= −C∆iz−Miy= −Cθiy−Fiz = 64
πE

∫ L
0

L−x
D4(x)

dx

Cθiz−Miz = Cθiy−Miy = 2G
E Cθix−Mix = 64

πE

∫ L
0

1
D4(x)

dx

(5)

where Cm-n (m = ∆ix, ∆iy, ∆iz, θix, θiy, θiz, n = Fix, Fiy, Fiz, Mix, Miy, Miz) represents the
compliance factor in the direction of m caused by the external load n and D(x) is the
diameter variation of the corresponding circular section, which is a function of x.

2.2. The Notch Profile of Generalized Elliptical-Arc-Beam Spherical Flexure Hinges

To obtain the equations of the factors in the compliance matrix for elliptical-arc-beam
spherical flexure hinges, the diameter variation of circular section D(x) in Equation (5)
should be formulated. For an arbitrary point P on the ellipse of which the lengths of
semi-major and semi-minor axes are a and b (Figure 2), its horizontal coordinate equals the
projection of the corresponding point Q, which is on the circumscribed circle of the ellipse
and determined by the eccentric angle θ, onto the x-axis, and its vertical coordinate equals
the projection of the corresponding point N, which is on the inscribed circle of the ellipse
with the same eccentric angle θ, onto the y-axis. The coordinates of P can thus be described
as Equation (6) {

xP= asinθ
yP= bcosθ

, 0 < θ ≤ π
2 (6)

where a and b are also the radii of the circumscribed and inscribed circles of the ellipse,
respectively.

According to the relationship between flexure hinges of different notch profiles in the
relevant Reference [18], elliptical-arc spherical flexure hinges will degenerate to circular-arc
ones when a is equal to b. They will also degenerate to circular ones when θ can reach up
to π/2.
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Figure 2. The eccentric angle of the ellipse.

Figure 3 presents the notch profile of a generalized elliptical-arc-beam spherical flexure
hinge. The notch profile can be determined by the notch length L, the lengths of semi-axes
(a and b) of the ellipse and the diameter of the middle beam Dmin which is the minimum
diameter of the whole spherical flexure hinge. The notch length L includes the notch length
of the elliptical-arc part c and the notch length of the middle beam part l, and L = l + 2c.
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As shown in Figure 3, for arbitrary position x starting from the left-hand surface of
the notch profile along the axis of the spherical flexure hinge, the diameter variation D(x)
can be expressed as:

D(x) =


2b + Dmin − 2b

a

√
a2 − (c− x)2 x ∈ [0, c]

Dmin x ∈ [c, l + c]

2b + Dmin − 2b
a

√
a2 − (l + c− x)2 x ∈ [l + c, L]

. (7)

According to Figure 2 the relationship between the notch length of the elliptical-arc
part and the semi-major axis of the ellipse is formulated as:

c = asinθm (8)

where θm is the maximum eccentric angle.
If D(x) in the form of Equation (7) is directly used, solving the compliance factors

by Equation (5) needs to deal with complicated integrals, which makes the solutions
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cumbersome. In this paper, the variable substitution in Reference [29] is used to obtain the
equations of the compliance factors

x = c + asinθ. (9)

By means of variable substitution, Equation (7) can be rewritten as:
D(θ) = 2b + Dmin − 2bcosθ,
D(x) =Dmin,
D(θ) = 2b + Dmin − 2bcosθ,

θ ∈ [−θm , 0]
x ∈ [c, l + c]
θ ∈ [0, θm]

(10)

and

x =


c + asinθ,
x,
l + c + asinθ,

x ∈ [0, c]
x ∈ [c, l + c]
x ∈ [l + c, L]

. (11)

The differentiation of Equation (11) yields:

dx =


acosθdθ,
dx,
acosθdθ,

x ∈ [0, c]
x ∈ [c, l + c]
x ∈ [l + c, L]

. (12)

Supposing ζ = Dmin/2b, the diameter of the circular section of the elliptical-arc part at
arbitrary θ can be expressed in polar coordinates as Equation (13):

D(θ) = 2b(1 + ζ− cos θ),
D(x) = 2bζ,
D(θ) = 2b(1 + ζ− cos θ),

θ ∈ [−θm , 0]
x ∈ [c, l + c]
θ ∈ [0, θm]

. (13)

2.3. Analytical Equations of the Factors in the Compliance Matrix

Combining Equations (5), (12) and (13), the factor equations of the compliance matrix
to be solved are given as follows:

C∆ix−Fix =
4a
πE

∫ θm

−θm

cos θ

[2b(ζ+ 1− cos θ)]2
dθ+

4
πE

∫ l+c

c

1

(2bζ)2 dx, (14)

C∆iy−Fiy = C∆iz−Fiz = 4aµ
πG

∫ θm
−θm

cosθ
[2b(ζ+1−cosθ)]2

dθ+ 4µ
πG

∫ l+c
c

1
(2bζ)2 dx

+ 64
πE

∫ 0
−θm

(l+c−asinθ)2acosθ
[2b(ζ+1−cosθ)]4

dθ + 64
πE

∫ θm
0

(c−asinθ)2acosθ
[2b(ζ+1−cosθ)]4

dθ + 64
πE

∫ l+c
c

(l+2c−x)2

(2bζ)4 dx
(15)

C∆iy−Miz = Cθiz−Fiy= −C∆iz−Miy= −Cθiy−Fiz = 64
πE

∫ 0
−θm

(l+c−asinθ)acosθ
[2b(ζ+1−cosθ)]4

dθ

+ 64
πE

∫ θm
0

(c−asinθ)acosθ
[2b(ζ+1−cosθ)]4

dθ + 64
πE

∫ l+c
c

l+2c−x
(2bζ)4 dx

(16)

and

Cθiz−Miz = Cθiy−Miy =
2G
E

Cθix−Mix =
64
πE

∫ θm

−θm

acosθ

[2b(ζ+ 1− cos θ)]4
dθ +

64
πE

∫ l+c

c

1

(2bζ)4 dx. (17)
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To further simplify the derivation, four intermediate variables Nj (j = 1, 2, . . . , 4) are
defined by the integrals in Equations (14)–(17). Their expressions are shown in Appendix A.
The analytical compliance factors can thus be expressed as follows:

C∆ix−Fix =
4a
πE

N1 +
4
πE

N2, (18)

C∆iy−Fiy = C∆iz−Fiz =

(
4aµ
πG + 32a(l+c)2+32ac2

πE

)
N1 +

128a2l
πE N2

+ 64a3

πE N3 +
µ

b2ζ2πG
+ 4

3
(c+l)3−c3

b4ζ4πE

(19)

C∆iy−Miz = Cθiz−Fiy= −C∆iz−Miy= −Cθiy−Fiz =
32a(l + 2c)

πE
N1 +

2l(l + 2c)
b4ζ4πE

, (20)

and
Cθiz−Miz = Cθiy−Miy =

2G
E

Cθix−Mix =
64a
πE

N4 +
4

b4ζ4πE
. (21)

With these intermediate variables, the compliance matrix of generalized elliptical-arc-
beam spherical flexure hinges can easily be obtained, avoiding the time-consuming integral
operations during the analysis and design processes for the mechanism using spherical
flexure hinges.

3. Results
3.1. Compliance Factors of Spherical Elliptical-Arc Flexure Hinges

Though few studies focus on the compliance matrix formulation of generalized spher-
ical elliptical-arc-beam flexure hinges, analytical compliance equations of elliptical-arc
spherical flexure hinges, which are the special cases, are reported. Therefore, the results
of compliance factors of elliptical-arc spherical flexure hinges are presented first so that
a comparison of the results calculated by other reported methods can be carried out to
verify the correctness of the proposed analytical compliance equations. Elliptical-arc spher-
ical flexure hinges of different minimum diameter Dmin and notch types, including the
elliptical, elliptical-arc, circular and right-circular types, are investigated. The geometric
parameters of flexure hinges are listed in Table 1. The material of the spherical flexure
hinges is structural steel, with Young’s modulus of 200GPa and Poisson’s ratio of 0.3. The
results calculated by the proposed analytical compliance equations are shown in Table 2.
The comparison will be discussed in Section 4.

Table 1. Geometric parameters of the elliptical-arc spherical flexure hinges.

Hinge No. a (mm) b (mm) c (mm) θm (◦) Dmin (mm) Notch Type

1 8.25 4 8.25 90 0.5 Elliptical
2 5 7 5 90 0.4 Elliptical
3 7 4 6.76 75 0.5 Elliptical-arc
4 4.5 6 3.90 60 0.4 Elliptical-arc
5 4 4 3.86 75 0.5 Circular
6 6 6 5.20 60 0.4 Circular
7 4 4 4 90 0.5 Right-circular
8 7 7 7 90 0.4 Right-circular
9 1 0.1 1 90 0.5 Elliptical

10 1 0.5 1 90 0.6 Elliptical
11 0.875 0.3 0.875 90 0.75 Elliptical
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Table 2. The results calculated by the proposed analytical compliance equations.

Hinge No. C∆ix-Fix
(×10−8 m/N)

C∆iy-Fiy
(10−5 m/N)

Cθix-Mix
(rad/Nm)

C∆iy-Miz
(10−3 m/N)

Cθiy-Miy
(rad/Nm)

1 11.19 32.23 6.01 38.10 4.62
2 7.32 11.77 6.04 23.20 4.65
3 9.49 18.41 5.10 26.50 3.92
4 7.08 7.00 5.87 17.60 4.52
5 5.42 3.44 2.91 8.70 2.24
6 9.45 16.56 7.83 31.3 6.02
7 5.42 3.68 2.91 9.00 2.24
8 10.25 32.27 8.46 45.60 6.51
9 4.40 0.32 3.23 2.50 2.48

10 2.28 0.09 1.00 0.76 0.76
11 1.53 0.04 0.46 0.31 0.36

3.2. Simulation Validation by FEA

To further verify the derived equations of the compliance factors for generalized
elliptical-arc-beam flexure hinges, a simulation validation by FEA is conducted in this
study. The compliance factors calculated by the derived equations are compared with those
solved by the corresponding FEA.

For different notch types of spherical flexure hinges, the finite element models are
established in ANSYS according to the tested geometric parameters. We investigated
18 hinge examples in this study, including the notch types of elliptical, right-circular,
elliptical-arc, elliptical-beam, etc. The geometric parameters of the tested elliptical-arc-
beam spherical flexure hinges are listed in Table 3. The flexure hinge is modeled by cutting
axial-symmetric notch on the base cylinder. The length of the base cylinder is longer than
that of the notch so that the rest part on each side can be used as an end block to apply
loads and constraint conditions. In this simulation, the material of the spherical flexure
hinges is 60Si2Mn, with Young’s modulus of 206GPa and Poisson’s ratio of 0.28.

Table 3. Geometric parameters of the elliptical-arc-beam spherical flexure hinges in FEA.

Hinge No. a (mm) b (mm) c (mm) θm (◦) Dmin (mm) l (mm) Notch Type

1 10 6 10 90 1 0 Elliptical
2 6 10 6 90 1 0 Elliptical
3 10 10 10 90 1 0 Right-circular
4 10 6 8.66 60 1 0 Elliptical-arc
5 6 10 5.20 60 1 0 Elliptical-arc
6 10 10 8.66 60 1 0 Circular
7 10 6 10 90 1 2 Elliptical-beam
8 6 10 6 90 1 2 Elliptical-beam
9 10 10 10 90 1 2 Circular-beam
10 10 6 8.66 60 1 2 Elliptical-arc-beam
11 6 10 5.20 60 1 2 Elliptical-arc-beam
12 10 10 8.66 60 1 2 Circular-arc-beam
13 10 6 10 90 1 4 Elliptical-beam
14 6 10 6 90 1 4 Elliptical-beam
15 10 10 10 90 1 4 Circular-beam
16 10 6 8.66 60 1 4 Elliptical-arc-beam
17 6 10 5.20 60 1 4 Elliptical-arc-beam
18 10 10 8.66 60 1 4 Circular-arc-beam

The flexure hinge model is meshed by high-order three-dimensional 20-node elements
SOLID186. To increase the mesh quality, the mesh refinement is carried out in the slender
region of the hinge. The finite element model for hinge No.10 (elliptical-arc-beam type)
is shown in Figure 4. Point A is the geometric center of the right end face of the flexure
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hinge. Point B and point C are the two ends of the section diameter at the right end face
of the flexure hinge in the x–y plane. The boundary conditions, including constraint and
load settings, are shown in Figure 5. In this FEA, the left end block in purple is set as the
fixed support for all degrees of freedom. Loads of unit force (1N) in Figure 5a and unit
moment (1N·mm) in Figure 5b are solely applied onto the right end edge (shown in red) of
the flexure hinge based on the unit load method. Herein, taking the calculation process
of C∆ix-Fix as an example, Figure 6a–f presents the x-directional displacement results of
different notch types of flexure hinges (the length of the beam part is 2mm) under the
application of the x-directional unit force (Fx = 1N). It is seen that to different extents, axial
tensile deformation occurs to flexure hinges with different notch types, as the maximum
x-directional displacement results range from 3.425 × 10−5 mm to 5.288 × 10−5 mm. The
x-directional displacement of point A can be easily captured from these simulation results.
Because the flexure hinge is applied by the unit load, C∆ix-Fix equals to the x-directional
displacement of point A. Similarly, the displacements of A, B and C under different load
conditions for all types of flexure hinges mentioned above are thus solved to calculate
the positions and postures of the hinge’s right end according to the simple geometric
relationship, respectively. Combined with the calculated positions and postures, the FEA
results of the compliance factors by different loads can be obtained.
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As listed in Table 4, for all notch types of flexure hinges, the compliance factors solved
by the analytical method are compared with the FEA results, which can be regarded as the
benchmark. The relative error is plotted in Figure 7. The maximum relative error is 8.25%
and the average relative error is 1.83%. For flexure hinges of elliptical-arc notch and circular
notch (a ≥ b, hinge No. 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16 and 18), the relative error of each
compliance factor is basically kept within 3.6%, while that of flexure hinges of elliptical-arc
notch (a < b, hinge No. 2, 5, 8, 11, 14 and 17) is larger. It is also found that the longer the
beam part of the notch is, the smaller the calculation error of the compliance factors is.
The calculation error of C∆ix-Fix is bigger than that of the other compliance factors. The
discussion of Figure 7 will be given in Section 4.

Table 4. Comparison between the analytical solutions and the FEA solutions.

Hinge No. C∆ix-Fix
(×10−8 m/N)

C∆iy-Fiy
(10−5 m/N)

Cθix-Mix
(rad/Nm)

C∆iy-Miz
(10−3 m/N)

Cθiy-Miy
(rad/Nm)

1 (Analytical) 3.75 4.04 5.01 3.90 3.91
1 (FEA) 3.84 4.09 5.05 3.96 3.96

2 (Analytical) 1.78 0.67 2.34 1.10 1.83
2 (FEA) 1.94 0.71 2.42 1.15 1.92

3 (Analytical) 2.97 3.11 3.90 3.00 3.05
3 (FEA) 3.08 3.17 3.95 3.10 3.10

4 (Analytical) 3.73 3.06 5.01 3.40 3.91
4 (FEA) 3.74 3.09 5.05 3.42 3.95

5 (Analytical) 1.78 0.51 2.34 0.95 1.83
5 (FEA) 1.94 0.54 2.42 0.99 1.92

6 (Analytical) 2.96 2.34 3.90 2.60 3.05
6 (FEA) 3.07 2.40 3.95 2.69 3.10

7 (Analytical) 4.99 7.40 7.54 6.50 5.89
7 (FEA) 5.07 7.47 7.58 6.53 5.94

8 (Analytical) 3.02 1.93 4.87 2.70 3.81
8 (FEA) 3.18 1.98 4.95 2.73 3.90

9 (Analytical) 4.20 6.24 6.43 5.50 5.03
9 (FEA) 4.31 6.32 6.49 5.59 5.08

10 (Analytical) 4.97 5.77 7.54 5.70 5.89
10 (FEA) 4.97 5.82 7.57 5.72 5.92

11 (Analytical) 3.01 1.52 4.87 2.40 3.81
11 (FEA) 3.18 1.57 4.95 2.41 3.90

12 (Analytical) 4.20 4.85 6.43 4.90 5.03
12 (FEA) 4.30 4.92 6.48 4.91 5.08

13 (Analytical) 6.23 11.9 1.00 9.40 7.87
13 (FEA) 6.31 12.01 1.01 9.50 7.91

14 (Analytical) 4.25 3.89 7.40 4.60 5.78
14 (FEA) 4.42 3.94 7.43 4.68 5.86

15 (Analytical) 5.44 10.40 8.96 8.40 7.00
15 (FEA) 5.55 10.50 9.02 8.47 7.06

16 (Analytical) 6.20 9.48 1.007 8.40 7.87
16 (FEA) 6.21 9.54 1.01 8.42 7.91

17 (Analytical) 4.25 3.18 7.40 4.20 5.78
17 (FEA) 4.42 3.24 7.49 4.23 5.87

18 (Analytical) 5.43 8.32 9.00 7.50 7.00
18 (FEA) 5.54 8.41 9.02 7.52 7.06
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4. Discussion

As mentioned in Section 3, to verify the correctness of the derived analytical equations,
a comparison with compliance equations derived by other methods should be carried
out. It should be noted that the reason why the above geometric parameters (Table 1) and
material properties are chosen for the calculation of compliance factors is that they are used
in Reference [29], a typical work with a comparative verification of the existing equations, to
verify the validity of analytical equations of elliptical-arc flexure hinges based on the beam
theory. From Table 2, the results calculated by the proposed analytical compliance equations
are almost the same as those listed in Reference [29] with a maximum relative error
1.3%. Although the analytical compliance equations are, respectively, developed based on
the beam theory and Castigliano’s Second Theorem, there is no difference in essence in
mechanics. That small error could be attributed to the calculation error during the integral
process. According to Reference [29], it is indicated that the equations in this study are also
much more accurate and stable than those developed by other existing equations reported
in References [15,20]. Consequently, the analytical equations are correct for calculating the
compliance factors for elliptic-arc spherical flexure hinges which, as mentioned above, are
the special cases of generalized elliptic-arc-beam spherical flexure hinges.

From Figure 7, the compliance factors calculated by the analytical equations agree
well with those solved by FEA since the maximum relative error is 8.25% and the average
relative error is 1.83%, respectively. It should be noted that since the units and magnitudes
of these compliance factors are different, the relative standard deviation is also used to
verify the accuracy of the proposed equations. The relative standard deviation is 1.78%,
indicating a good precision of the results. The reason why the relative error of compliance
factors of elliptical-arc flexure hinges (a < b) are larger than those of flexure hinges of
elliptical-arc notch (a ≥ b) is that the stress concentration of elliptical-arc notch (a < b)
flexure hinge is more obvious than those of flexure hinges of other types, which affects the
prediction accuracy of the corresponding compliance factors. Meanwhile, as the length of
the beam part of the notch increases from 0 mm to 4 mm, the displacement of the flexure
hinges is dominated by the deformation of the beam part, which can be perfectly predicted
by the classical analytical beam model, while the influence of the stress concentration from
the elliptical-arc part of which the section area varies decreases. This results in the trends
of Figure 7 that the longer the beam part of notch is, the smaller the calculation error of
the compliance factors is. Moreover, the calculation error of C∆ix-Fix is bigger than that of
the other compliance factors, which is consistent with the analysis in Reference [30]. The
reason is that in the theoretical mechanical model, the force between elements is assumed
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to be uniformly distributed, so that the deformation error between flexible elements caused
by the concentrated force is not considered. Since there is a small relative error between the
analytical solutions and the FEA solutions, the derived analytical compliance equations
have enough accuracy to calculate the compliance factors and help designers to evaluate
the kinetostatic behaviors of generalized elliptical-arc-beam spherical flexure hinges.

Consequently, according to the comparative results with the existing method and the
FEA, the derived analytical equations are valid and correct for the computational analysis
of generalized elliptical-arc-beam spherical flexure hinges, offering a convenient tool for
analysis at early design stages of spatial compliance mechanisms for 3D-EVC.

5. Conclusions

This paper presents a formulation of analytical compliance equations for generalized
elliptic-arc-beam spherical flexure hinges. Finite element analysis is carried out to verify
the accuracy of the derived equations. The compliance factors calculated by the analytical
equations agree well with those solved in the finite element analysis for the maximum
and average relative error, which are 8.25% and 1.83%, respectively, and the relative
standard deviation is 1.78%. Due to the small relative error and good precision between
the analytical solutions and the FEA solutions, the derived analytical compliance equations
have enough accuracy to calculate the compliance factors and help designers to evaluate
the kinetostatic behaviors of generalized elliptical-arc-beam spherical flexure hinges. The
analytical equations developed in this paper for the elliptic-arc-beam spherical flexure
hinges are applicable for the computational analyses and designs of the spatial high-
precision positioning mechanisms for 3D elliptical vibration-assisted cutting, providing
researchers with another design solution for spatial high-precision positioning mechanisms
of 3D-EVC using spatial flexure hinges other than combining multiple planar flexure hinges.
Since the analytical compliance equations have been obtained, the modeling, analysis and
optimization of a 3D elliptical vibration-assisted cutting mechanism based on the elliptical-
arc-beam flexure hinges will be performed for high-precision surface texturing in our
future work.
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Nomenclature
All the parameters used in this paper are listed as follows:
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Fi External load vector acts on node i at the free end of the flexure hinge
Fik External force component of Fi with subscript k denoting its direction, k = x, y, z
Mik External moment component of Fi with subscripts k denoting its direction, k = x, y, z
∆i Displacement vector of node i at the free end of the flexure hinges resulted by Fi
∆ik Translation component of ∆i with subscript k denoting its direction
θik Rotation component of ∆i with subscript k denoting its direction
x Position coordinate along the flexure hinge
L Length of the flexure hinge
A(x) Section area of the flexure hinge, a function of x
E Young’s modulus of material
G Shearing modulus of material
µ Shearing coefficient for a short beam with circular section
Fx(x) Axial force along x-axis of the flexure hinge, a function of x
Fk(x) Shear force along k-axis of the flexure hinge, a function of x, k = y, z
Mk(x) Moment around k-axis of the flexure hinge, a function of x, k = x, y, z
U Strain energy of the flexure hinge acted by Fi
Ci Compliance matrix of the flexure hinge at node i
Cm-n Compliance in the direction of m caused by the external load n, m = ∆ix, ∆iy, ∆iz, θix, θiy,

θiz and n = Fix, Fiy, Fiz, Mix, Miy, Miz
D(x) Diameter variation of circular section, a function of x
a Length of semi-major axis of ellipse
b Length of semi-minor axis of ellipse
θ Eccentric angle of ellipse
xp Horizontal coordinate of point P on the ellipse
yp Vertical coordinate of point P on the ellipse
Dmin Diameter of the middle beam
l Notch length of the middle beam part
c Notch length of the elliptical -arc part
θm Maximum eccentric angle
ζ Intermediate variable, ζ = Dmin/2b
Nj Intermediate variables for integral simplification, j = 1, 2, 3, 4

Appendix A

The four integrals in the proposed equations are given as follows:
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∫ θm
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