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Abstract

The salivary gland can be permanently impaired by radiation treatment for head and neck

cancers. Efforts at tissue regeneration have focused on saliva-producing acinar cells. How-

ever, myoepithelial cells are also critical to gland function, but mechanisms that regulate

their differentiation are poorly defined. To study myoepithelial differentiation, we employed

mSG-PAC1 murine salivary gland epithelial cells. We demonstrate that mSG-PAC1 spher-

oids exhibit phenotypic plasticity between pro-acinar and myoepithelial cell fates. Increased

expression of pro-acinar/acinar or myoepithelial RNAs was identified from spheroids cul-

tured under different media conditions by microarray followed by gene-set enrichment anal-

ysis. Spheroids cultured with different medium components expressed proteins typical of

either acinar or myoepithelial cells, as detected by immunocytochemistry. We demonstrate

that the pattern of TAZ expression in the epithelial compartment of the differentiating murine

salivary gland correlates with the expression of the myoepithelial marker alpha-SMA, as is

the case for TAZ expression in mSG-PAC1 spheroids. Our analysis also indicates that YAP/

TAZ target genes are upregulated together with myoepithelial markers. Importantly, siRNA

targeting of TAZ expression in mSG-PAC1 spheroids diminished the expression of myoe-

pithelial markers. Our results in this in vitro cell model implicate TAZ signaling in myoepithe-

lial differentiation.

Introduction

Tissue regeneration has become the focus of investigation in multiple contexts and in the sali-

vary gland in particular. Permanent salivary gland damage is a consequence of radiation ther-

apy for head and neck cancers [1–3]. In many cases, damage targets multiple cell types

including the saliva-producing acinar cells and myoepithelial cells of the submandibular sali-

vary gland [1–3]. Murine models are currently being employed to understand mechanisms

that contribute to regeneration of salivary gland tissue following damage induced by radiation,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0268668 May 26, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Thiemann RF, Varney S, Moskwa N,

Lamar J, Larsen M, LaFlamme SE (2022)

Regulation of myoepithelial differentiation. PLoS

ONE 17(5): e0268668. https://doi.org/10.1371/

journal.pone.0268668

Editor: Rajeev Samant, University of Alabama at

Birmingham, UNITED STATES

Received: October 7, 2021

Accepted: May 4, 2022

Published: May 26, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0268668

Copyright: © 2022 Thiemann et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Raw data from our

microarray studies can be found on the Gene

Expression Omnibus (GEO) repository and listed

under GSE197652 and can be accessed at https://

https://orcid.org/0000-0002-9819-9227
https://orcid.org/0000-0001-5406-8391
https://orcid.org/0000-0001-6130-5332
https://doi.org/10.1371/journal.pone.0268668
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268668&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268668&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268668&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268668&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268668&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268668&domain=pdf&date_stamp=2022-05-26
https://doi.org/10.1371/journal.pone.0268668
https://doi.org/10.1371/journal.pone.0268668
https://doi.org/10.1371/journal.pone.0268668
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197652


obstruction, or resection, focusing on the submandibular salivary gland [4–9]. Several thera-

peutic approaches are promising, including transplantation of murine salivary gland stem cells

to restore function of damaged glands, as well as tissue engineering methods for the generation

of functional organoids [9–13]. Interestingly, lineage tracing experiments in damaged glands

demonstrated that cellular plasticity is an important contributor to salivary gland regeneration,

and in particular to the expansion of acinar cells to replace those lost due to tissue damage [4,

5, 14, 15].

Important efforts to promote salivary gland regeneration is a knowledge of mechanisms

that regulate the differentiation of cell types critical to gland function. Multiple approaches

have been used to identify mechanisms that regulate acinar cell differentiation, including

mouse genetic models, ex vivo organ explants and organoid cultures, as well as three-dimen-

sional (3-D) cell culture [16–22]. Similar approaches have been used to understand the forma-

tion of ducts in the developing gland [6, 22–24]. However, in spite of the critical contribution

of myoepithelial cells to the secretary function of the salivary gland [25–29], little effort has

focused on identifying mechanisms that regulate their differentiation.

To facilitate the identification of pathways that guide myoepithelial differentiation, we

developed a three-dimensional (3-D) cell culture system to model myoepithelial differentia-

tion. We employed the pro-acinar murine salivary gland epithelial cells, mSG-PAC1 that we

established from P2 murine submandibular salivary glands as we previously described and

characterized [18]. We first demonstrated the phenotypic plasticity of mSG-PAC1 between

proacinar and myoepithelial cell fates. Using immunofluorescence imaging, qPCR and micro-

array analyses, together with gene set enrichment analyses, we identified conditions that pro-

mote the myoepithelial differentiation of mSG-PAC1 cells and demonstrated a role for the

TAZ (Wwtr1) transcriptional co-activator in regulating this process.

Results

Differentiation towards a myoepithelial phenotype in three-dimensional

culture

The murine submandibular salivary gland begins to develop by the invagination of an initial

epithelial bud into underlying mesenchymal tissue at embryonic day 12.5 (E12.5) [30]. Multi-

ple rounds of branching morphogenesis follow leading to the arborized structure of the adult

gland together with the differentiation of acinar cells that produce saliva and contractile myoe-

pithelial cells that promote the secretion of saliva through ducts to the oral cavity [27, 31, 32].

Recent studies showed that myoepithelial cells differentiate from the outer cuboidal layer of

epithelial cells of buds of developing acini [33]. The expression of the myoepithelial marker, α-

SMA (Acta2) was detectable by E-15.5—E16 [20, 33].

Similar to the outer polarized cuboidal layer of epithelial cells in developing acini of the

murine salivary gland, mSG-PAC1 spheroids can be induced to adopt a pro-acinar phenotype,

characterized by the establishment of a polarized layer of cuboidal cells at the basal surface of

spheroids and by the expression of the pro-acinar marker, aquaporin-5 (AQP5) when cultured

in a medium referred to as pro-acinar medium (Pro-A medium) [18]. Because of these similar-

ities, we asked whether we could induce the outer cells of mSG-PAC1 spheroids to differentiate

into myoepithelial cells. Others reported that the addition of serum to luminal epithelial cells

from the mammary gland can contribute to their differentiation towards a myoepithelial phe-

notype [34]. To test whether mSG-PAC1 cells could serve as progenitors cells of the myoe-

pithelial cell fate, we compared the phenotype of spheroids cultured for six days in Matrigel

with Pro-A medium or pro-myoepithelial (Pro-M) medium (See Materials and Methods for

details).
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Myoepithelial cells are characterized by their stellate shape with extended processes, flat-

tened nuclear morphology, and expression of smooth muscle proteins important for contrac-

tion [35]. While mSGPAC1 spheroids cultured in Pro-A medium maintained an organized

structure with outer columnar cells at the basal edge (Fig 1A) as previously reported [18], the

cells at the basal surface of spheroids cultured in Pro-M medium adopted morphologies char-

acteristic of myoepithelial cells and expressed the myoepithelial markers, alpha smooth muscle

action (α-SMA/Acta2) and calponin-1 (Cnn1) (Fig 1A). Additionally, these spheroids dis-

played enhanced expression of α-SMA and the integrin β4 subunit, which is also a myoepithe-

lial marker [36], as well as decreased expression of the pro-acinar marker AQP5 (Fig 1B and

1C). Additionally, cells along the basal surface of spheroids cultured in Pro-M medium have

significantly flatter nuclei compared to those cultured in Pro-A medium, quantitated by the

increased ratio of nuclear diameter to height (Fig 1E and 1F), which is a characteristic of myoe-

pithelial cells [27, 35]. Altogether, these data suggest that mSG-PAC1 cells exhibit phenotypic

plasticity and are capable of differentiating into pro-acinar or myoepithelial phenotype in 3-D

culture depending upon culture conditions.

Transcriptome analysis support the phenotypic plasticity of mSG-PAC1

spheroids

To further explore the physiological relevance of mSG-PAC1 cell plasticity, we employed Clar-

ion S microarrays to identify transcriptional profiles of mSG-PAC1 cells culture as spheroids

in either Pro-M or Pro-A medium. The availability of single-cell RNA sequencing data

(scRNA-seq) from murine salivary gland myoepithelial cells and acinar cells [37], allowed us

to perform GSEA. We found that the myoepithelial gene sets from both developing (P1) and

adult glands are significantly enriched in mSG-PA1 spheroids culture in Pro-M medium,

whereas the acinar gene sets from developing (P1) and adult glands are enriched in

mSG-PAC1 spheroids cultured in Pro-A medium (Fig 2). Additionally, GSEA analysis using

scRNA-seq data from the murine mammary gland [38] showed that myoepithelial specific

genes are modestly enriched in mSG-PAC1 spheroids cultured in Pro-M medium (S1 Fig in

S1 Appendix). Notably, genes specific to luminal progenitor and mature luminal cells are sig-

nificantly enriched mSG-PAC1 spheroids cultured in Pro-A medium (S1 Fig in S1 Appendix).

These analyses further demonstrate the plasticity of mSG-PAC1 cells and support the utility as

a discovery tool to identify mechanisms that regulate myoepithelial cell fate decisions.

Transcriptome analysis reveals enhanced expression of genes involved in

processes associated with myoepithelial differentiation, as well as

myoepithelial markers, and YAP/TAZ targets

Using the Transcriptome Analysis Console (TAC) from ThermoFisher, we found that the

expression of 3870 genes were changed by 2-fold or greater. The expression of 2183 genes were

upregulated and 1678 were downregulated in Pro-M compared to Pro-A. The top five hundred

genes upregulated in myoepithelial spheroids were compared to hallmark and curated gene

sets available from the Molecular Signatures Database (MSigDB) from the Broad Institute.

Spheroids cultured in Pro-M medium display enhanced expression of genes associated with

processes important to myoepithelial differentiation including tissue morphogenesis (Fig 3A),

cell differentiation (Fig 3B), cell projection organization, cytoskeletal organization, and actin

filament-based processes, among others (Fig 3C).

Not surprisingly, genes that were significantly upregulated in spheroids cultured Pro-M

medium included genes for myoepithelial markers, including α-SMA (Acta2) and calponin

(cnn2/cnn3) and others (Fig 4A). Moreover, these spheroids display a reduction in the
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Fig 1. mSG-PAC1 cells can be induced to express myoepithelial markers and characteristics. (A) Representative confocal images of

mSG-PAC1 spheroids cultured for six days in Matrigel in either a medium (Pro-A) that promoted pro-acinar phenotype or a medium

(Pro-M) that promoted a myoepithelial phenotype and then immunostained for αSMA, calponin, AQP5 and DNA. Images are

maximum projection images of five Z-slices acquired at 40X in 0.4 μm increments. Scale bar, 25 μm. Images are representative of three

and two independent experiments for α-SMA and calponin, respectively. (B-D) Relative mRNA expression of α-SMA (B), the integrin β4

subunit (C) or AQP5 (D) in mSG-PAC1 cells cultured for six days in Matrigel either in Pro-A or Pro-M medium. Expression is

normalized to β-actin and then to expression in Pro-A condition. Data are from three independent experiments and plotted as the

mean ± s.e.m. analyzed by Student’s T-test. ND = not detected. ��p<0.01, ����p<0.0001. (E, F) mSG-PAC1 cells cultured in Pro-M

medium display significantly flatter nuclei in cells at the basal periphery pf the spheroid. (E) Graphical representation of the method used

to quantify nuclear shape using ImageJ. (F) Spheroids were cultured in either Pro-A or Pro-M medium for 6 days and immunostained

for nuclei using DRAQ5. Width and height of nuclei relative to the basement membrane were quantitated in each cell at the basal

periphery of spheroids using ImageJ Fiji. Data are from three independent experiments. Plotted is the mean nuclear width/height

measured for each of eighteen spheres (n = 18) ± s.e.m. and analyzed by Student’s T-test. ����p<0.0001.

https://doi.org/10.1371/journal.pone.0268668.g001
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expression of the acinar maturation marker, AQP5 (Fig 4A), which phenocopies the reduction

in expression observed by qPCR (Fig 1D). These data suggest that culturing mSG-PAC1 cells

in Pro-M medium inhibits their acinar differentiation and promotes differentiation towards a

myoepithelial lineage. Interestingly, several genes upregulated in Pro-M medium are estab-

lished YAP/TAZ target genes, including connective tissue growth factor (Ctgf), cysteine-rich

protein 61 (Cyr61), thrombospondin (Thbs1), Ajuba Lim protein (Ajuba), and ankyrin repeat

domain 1 (Ankrd1) (Fig 4B), suggesting YAP/TAZ signaling pathway may be an important

regulator of this differentiation event.

Subcellular localization of TAZ is associated with α-SMA expression

during morphogenesis of the SMG

Since many of the genes upregulated in the microarray were canonical target genes of YAP

and TAZ, we sought to investigate their role in the differentiation of the myoepithelial layer in

mSG-PAC1 cells. YAP/TAZ signaling has been reported to be important in the development

and differentiation of branched organs [39–42], and since TAZ has been implicated as a regu-

lator of myoepithelial differentiation in mammary epithelial cells [41], we asked whether TAZ

contributed to myoepithelial differentiation in the murine submandibular salivary gland. We

first compared the expression and subcellular localization of TAZ in the submandibular gland,

at various stages of embryonic development (Fig 5). While TAZ was expressed at E14 and

lasted through E19, its expression was increased in acini at E15 and E16 (Fig 5) concurrent

with the onset of myoepithelial differentiation [33]. Interestingly, there was also a switch in the

subcellular localization of TAZ during this time. While TAZ seemed primarily cytosolic at E14

and E19, its localization appeared nuclear in a subset of suprabasal cells of developing acini at

Fig 2. The culture of mSG-PAC1 spheroids in Pro-M or Pro-A results in the expression of myoepithelial or acinar enriched

genes respectively. GSEA using scRNA-seq gene-sets generated from murine SMG from P1 pups or adult mice [37] showed murine

myoepithelial gene upregulation in Pro-M medium and murine acinar gene upregulation in Pro-A medium. (A, B) myoepithelial

cells from P1 and adult mice, (C, D) pro-acinar cells from the Smgc and PSP clusters from P1, and (E) acinar cells from adult mice.

NES = Normalized Enrichment Score and FDR = False Discovery Rate. �FDR q-value< 0.25 represent significant enrichment.

https://doi.org/10.1371/journal.pone.0268668.g002
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E15 and E16 (Figs 5 and 6A). Quantitation of TAZ nuclear localization supported this conclu-

sion (Fig 6B). Moreover, this nuclear localization of TAZ was associated with αSMA expres-

sion in these cells, suggesting a possible relationship between TAZ activity and myoepithelial

differentiation during salivary gland development (Fig 6A).

TAZ regulates the expression of myoepithelial genes in spheroids

To determine whether TAZ expression is altered when mSG-PAC1 spheroids are cultured for

six days in Pro-M medium to promote a myoepithelial-like phenotype, we examined TAZ

Fig 3. Genes upregulated in mSG-PAC1 spheroids cultured in Pro-M medium are associated with processes

involved in myoepithelial differentiation. Gene microarrays were performed on RNA isolated from mSG-PAC1

spheroids cultured either in Pro-A or Pro-M medium. N = 3 independent experiments. The top 500 genes most highly

expressed by spheroids cultured in the Pro-M medium compared to those expressed in Pro-A M were used to compute

overlap with hallmark and curated gene sets from Molecular Signatures Database (MSigDB) from the Broad institute.

Genes more highly expressed in the Pro-M conditions are associated with (A) tissue, (B) cellular, and (C)

myoepithelial developmental processes.

https://doi.org/10.1371/journal.pone.0268668.g003
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expression by immunofluorescence microscopy. The data revealed that TAZ expression was

increased in spheroids cultured in Matrigel in Pro-M medium compared with those cultured

in Pro-A medium (Fig 7A), with a subset of cells displaying nuclear localization (Fig 7A,

insets). Moreover, these spheroids displayed enhanced expression of the canonical YAP/TAZ

target genes, CTGF and CYR61 when compared to spheroids cultured in Pro-A medium (Fig

7B and 7C), suggesting that TAZ expression and activity in epithelial cells contributes to the

differentiation of the myoepithelial layer.

Our data suggest that the expression and activity of TAZ contributes to the differentiation

of the myoepithelial layer in mSG-PAC1 cells cultured in Matrigel. Therefore, we next asked

whether the expression of TAZ was required for the expression of myoepithelial markers. We

Fig 4. mSG-PAC1 spheroids cultured in Pro-M medium up regulate myoepithelial markers & YAP/TAZ target

genes. (A) List of myoepithelial genes upregulated in mSG-PAC1 spheroids Pro-M medium cultured in for six days.

Data is presented as the fold increase compared to spheroids cultured in Pro-A medium. (B) List of YAP/TAZ target

genes upregulated in by spheroids cultured Pro-M medium. Data is presented as the fold increase compared to

spheroids cultured in Pro-A medium.

https://doi.org/10.1371/journal.pone.0268668.g004
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treated Matrigel cultures of mSG-PAC1 cells in Pro-M medium with siRNA targeting TAZ.

Two distinct siRNA sequences resulted in a significant reduction in TAZ expression levels (Fig

7D and S2 Fig in S1 Appendix). Inhibiting TAZ expression did not significantly alter the

expression of YAP or the acinar marker AQP5 (Fig 7D and S2 Fig in S1 Appendix). However,

there was a significant reduction in the expression of myoepithelial markers, α-SMA and cal-

ponin using two independent siRNAs (Fig 7D and 7E and S2 Fig in S1 Appendix), suggesting

that TAZ plays an important role in the transcriptional regulation of these myoepithelial

genes. Interestingly, the expression of the integrin β4 subunit was not significantly altered by

knockdown of TAZ, suggesting that the expression of the integrin β4 subunit is regulated by a

different mechanism.

Discussion

In our current study, we first demonstrated the phenotypic plasticity of mSG-PAC1 salivary

gland epithelial cells. We then used these cells to develop a 3-D cell culture model to study

myoepithelial differentiation. Employing this model, we identified a role for the transcriptional

co-activator TAZ in contributing to this differentiation process.

The regulation of YAP and/or TAZ activity is important for the proper development and

differentiation of many branched organs, including the salivary gland [39–43]. In the develop-

ing gland, YAP promotes the transcription of genes that contribute to the expansion of ductal

progenitors and the suppression of YAP activity by the LATS kinase, a component of the

Hippo pathway, is required for proper ductal maturation [40]. The activity of TAZ in the

Fig 5. Expression of TAZ during SMG morphogenesis. Representative confocal images of embryonic SMGs from

E14 through E19 immunostained for TAZ and DNA. Images are a single Z-slice acquired at 63X representative of four

SMGs. Scale bar, 10 μm. Insets represent a magnified view of TAZ and DNA around the basal edge of each pro-acinus.

Scale bar, 5 μm. White arrows emphasize the co-localization of TAZ and the nuclear marker DRAQ5. White

arrowheads emphasize nuclei showing no TAZ co-localization.

https://doi.org/10.1371/journal.pone.0268668.g005
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developing salivary gland is also regulated by the LATS kinases and this regulation is needed

for normal branching morphogenesis [42]. During salivary gland morphogenesis, TAZ is

sequestered at cell-cell junctions by a mechanism dependent upon LATS kinases. RNAi-medi-

ated depletion of LATS resulted in defects in branching morphogenesis, and duct formation.

These phenotypes were associated with the loss of the localization of TAZ at cell-cell junctions

and inappropriate TAZ activation [42]. In our studies, we examined the subcellular localiza-

tion TAZ in embryonic buds at E14-E19. Consistently, we also found that TAZ was localized

at cell-cell junctions in the majority of cells in epithelial buds at E15 and E16. However, in a

subset of cells at the basal surface that expressed α-SMA, TAZ was co-localized in the nucleus.

This localization is consistent with a role for TAZ in regulation myoepithelial differentiation

in the developing salivary gland. Others have demonstrated that the interaction of cells with

the basement membrane regulates the activation of YAP or TAZ depending on contexts [44–

48]. Thus, the interaction of outer cuboidal epithelial cells with the maturing basement mem-

brane of developing buds of the salivary gland may activate TAZ to promote myoepithelial dif-

ferentiation. It will be important to directly demonstrate a functional role for TAZ in

regulating myoepithelial differentiation during the development of the salivary gland in vivo
and to determine whether integrin-mediated adhesion plays a role in this regulation.

Interestingly, in the mammary gland, loss of TAZ leads to defects in morphogenesis, as well

as a loss of the proper balance of luminal to basal epithelial cells [41]. Additionally, TAZ was

identified in a screen for transcriptional regulators that can trigger phenotypic switches

between luminal and basal/myoepithelial differentiation using mammary epithelial cell lines

[41]. Expression of recombinant TAZ in luminal cells led them to adopt a myoepithelial phe-

notype, while the inhibition of TAZ in basal/myoepithelial cells resulted in a luminal pheno-

type [41]. Our results are consistent with these findings. Our data also showed that conditions

Fig 6. Expression of α-SMA expression and TAZ in E15 and E16 SMGs. (A) Representative confocal images of E15 and E16 embryonic

SMGs immunostained for TAZ, α-SMA, and DNA. Images are a single Z-slice acquired at 63X representative of four SMGs. White arrows

represent cells with α-SMA expression and with TAZ co-localization with the nuclear marker DRAQ5. White arrowhead indicates a

representative cell lacking α-SMA expression and also the lack of TAZ co-localization with the nuclear marker DRAQ5. Images are single

z-slices acquired at 63x. Size bar, 5 μm. (B) The expression of TAZ colocalized with nuclei at E14, E15, E16 and E19 was measured using

ImageJ. Only cells on the basal surface of developing buds were analyzed. Plotted is the integrated fluorescence intensity of nuclear

TAZ ± s.d for individual nuclei measured from four single slice confocal images acquired at 63X from two glands for each timepoint. a.

u = arbitrary units. Measurements taken from each individual image are shown different colors. �p<0.05 using one-way ANOVA followed

by Tukey Post-hoc test. ns = not significant.

https://doi.org/10.1371/journal.pone.0268668.g006
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that promote myoepithelial differentiation inhibit the expression of the acinar marker, AQP5,

but our data did not implicate TAZ in this regulation. However, a recent study demonstrated

that inappropriate activation of TAZ (and not YAP) inhibited acinar differentiation [49]. The

mechanism for TAZ-specific transcription is not fully understood. In the case discussed above,

the ability of TAZ to regulate mammary epithelial cell fate was dependent upon its interaction

with a component of the SWI/SNF chromatin remodeling complex [41]. An interestingly

recent study suggests that specificity is governed by the ability of TAZ (and not YAP) to

“phase separate” together with its DNA-binding partner TEAD4 and co-activators [50]. The

notion of liquid-liquid phase separation of transcriptional regulators is a relatively new area of

investigation into mechanisms of transcriptional control [51]. It will be interesting to deter-

mine how widely it is applicable to TAZ-specific transcription in other contexts.

Fig 7. mSG-PAC1 cells cultured in Pro-M medium display characteristics of myoepithelial cells. (A) Increased expression of TAZ in the

cells at the periphery mSG-PAC1 spheroids cultured in Pro-M. Representative confocal images from 2 independent experiments of

mSG-PAC1 cells cultured for six days in Matrigel in either Pro-A or Pro-M medium and immunostained for TAZ (red) and DRAQ5

(pseudocolored blue). Insets represent a magnified view of nuclear staining. Images are maximum projection images of two z-slices acquired

at 40X in 0.4 μm steps. Size bar, 25 μm. (B, C) Relative mRNA expression of YAP/TAZ target genes, CTGF (B) and CYR61 (C), in

mSG-PAC1 cells cultured in Matrigel in either Pro-A or Pro-M medium. Expression normalized to β-actin and the expression in Pro-A

medium. Data are from three independent experiments plotted as the mean ± s.e.m. analyzed by Student’s T-test. ��p<0.01; ���p<0.001.

(D) SiRNA targeting TAZ expression inhibits the expression of α-SMA. Plotted is the relative mRNA expression of YAP, TAZ, AQP5, and

α-SMA in mSG-PAC1 spheroids cultured in Matrigel in Pro-M medium. Expression is normalized to β-actin and the expression in cells

treated with non-targeting (NT) siRNA. Data are from 4 independent experiments and plotted as the mean ± s.e.m. analyzed by Student’s T-

test. ns, not significant, ��p<0.01; ���p<0.001; ����p<0.0001. (E) SiRNA targeting TAZ also inhibited the expression of calponin, but not

the expression of the integrin β4 subunit. Plotted is the relative RNA expression of TAZ, calponin, and the integrin β4 subunit in

mSG-PAC1 spheroids cultured in Matrigel and Pro-M medium. Expression is normalized to β-actin and the expression of these genes after

treatment with NT siRNA. Data are from three (calponin) and four (TAZ, Integrin β4) independent experiments and plotted as the

mean ± s.e.m. analyzed by Student’s T-test. ns, not significant, ��p<0.01.

https://doi.org/10.1371/journal.pone.0268668.g007
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Although we have identified conditions that promote the ability of mSG-PAC1 cells to reca-

pitulate aspects of either acinar [18] or myoepithelial differentiation as reported here, we have

not been able to identify culture conditions that allow mSG-PAC1 cells to differentiate into

mature acinar or myoepithelial cells, or to simultaneously differentiate into both acinar and

myoepithelial cells in the same Matrigel culture. It is important to note, however, that the addi-

tion of serum to Pro-A medium is not sufficient to promote mSG-PAC1 spheroids toward a

myoepithelial phenotype, suggesting that components Pro-A medium may have an inhibitory

effect on myoepithelial differentiation. Indeed, FGF2 has been shown to inhibit YAP/TAZ-

dependent transcription in some contexts [52]. Thus, FGF2 may function to maintain a pro-

acinar phenotype by suppressing TAZ activity.

Additional environmental signals are likely required to support the further differentiation

of mSG-PAC1 cells. During development, both morphogenesis and differentiation of the sali-

vary gland require signals from the surrounding mesenchyme, as well as developing nerve and

endothelial networks [53, 54]. Signals from the mesenchyme have recently been shown to pro-

mote acinar differentiation [19]. It is not yet known whether myoepithelial differentiation also

requires signals from surrounding cells types. The identification of environmental signals that

regulate both acinar and myoepithelial differentiation may provide the needed information to

allow the modelling of these differentiation events in culture.

In summary, we demonstrate that our previously characterized salivary gland epithelial cell

line, mSG-PAC1, is capable of further differentiating into a myoepithelial-like layer in 3D

Matrigel culture. Moreover, we identify TAZ as a regulator of myoepithelial differentiation in

culture by regulating the transcription of myoepithelial genes. The expression pattern of TAZ

during the differentiation of myoepithelial cells of the developing salivary gland is consistent

with a similar role for TAZ in vivo.

Materials and methods

Cell culture

The establishment and characterization of the murine pro-acinar cell line, mSG-PAC1 was

accomplished via the collaboration of the LaFlamme and Larsen labs as previously described

[18]. These cells were maintained in a modification of the culture medium previously

described for the isolation of the mammary epithelial cell line MCF10A [55, 56], which con-

sisted of DMEM/F12 supplemented with 5% donor horse serum (Atlanta Biologicals,

#S12150), 100 U/ml penicillin/streptomycin (Hyclone, #SV30010), 20 ng/ml human recombi-

nant EGF (Gibco, #PHG0311L), 100 ng/ml Cholera Toxin (Sigma, #C8052), 2.5 μg/ml hydro-

cortisone (Sigma, #H0396), and 20 μg/ml human insulin (Sigma, #I9278). To induce a more

pro-acinar phenotype, human recombinant EGF was replaced with 100 ng/ml bFGF/FGF2

(Peprotech, #450–33) [19]. This medium is referred to as Pro-A. To induce more myoepithelial

characteristics, cells were cultured Pro-M medium, which consisted of DMEM/F12 medium

supplemented with 10% FBS (Atlanta Biologicals, #S11150) and 100 U/ml penicillin/strepto-

mycin (Hyclone, #SV30010). For three-dimensional (3-D) spheroid cultures, matrices were

prepared in 8-well chamber slides (Corning, #08-774-208). Matrices consisted of 100% Matri-

gel (Corning, #354230, protein concentration ~10 mg/ml, endotoxin <1.5 mg/ml). Approxi-

mately, 1000 cells were plated per well and cultured for 5–7 days in medium supplemented

with 2% Matrigel in either Pro-A ore Pro-M medium as indicated in the Figure Legends.

Submandibular salivary gland explants

Murine submandibular salivary glands were dissected as previously described [57] from

embryos harvested from timed-pregnant female mice (CD-1 strain, Charles River
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Laboratories) at E14, E15, E16, and E19 with E0 as designated by the discovery of a vaginal

plug. Embryonic salivary glands were placed on Whatman1Nuclepore filters in 35 mm Mat-

Tek dishes (MatTek, #P35G-1.5-14-C) and fixed in 4% paraformaldehyde at 4˚C overnight

and then processed for immunostaining.

Immunostaining

Spheroids cultured in Matrigel were fixed for 20 min in 4% paraformaldehyde, washed in 0.5%

PBST, permeabilized in 0.4% Triton-X-100/1X PBS for 20 min, and then washed in 0.5%

PBST before blocking 1–2 h in 20% donkey serum/PBST. Primary and secondary antibodies

were incubated overnight in 3% BSA/PBST. A list of antibodies and dilutions used for immu-

nostaining is provided in S1 Table in S1 Appendix.

Submandibular glands were washed in 0.5% PBST after overnight fixation in 4% parafor-

maldehyde, permeabilized in 0.4% Triton-X-100/PBS for 30 min and then washed in 0.5%

PBST before blocking 1–2 h in 20% donkey serum/PBST. Primary and secondary antibodies

were incubated overnight in 3% BSA/PBST. DRAQ5 (Cell Signaling) was used at a dilution of

1:1000 to detect nuclei. Coverslips and slides were mounted using SlowFade1Gold antifade

mounting medium (Life Technologies, #P36930).

RNA isolation & quantitative PCR (qPCR)

RNA was extracted with TRIzol (Ambion, ##15596026) and genomic DNA was removed with

TURBO DNaseI (ThermoFisher Scientific, #AM1907) according to the manufacturers’ proto-

cols. cDNA was synthesized from 500 ng-1μg of RNA using the iScript Reverse Transcription

Supermix kit (Biorad, #1708840). Equal concentrations of cDNA were used in the qPCR reac-

tions with iQ or iTaq SYBR Green Supermix (Biorad, #170–8880; #1725120). Reactions were

run in triplicate using the BioRad CFX96 Real-time C1000 Touch Thermal Cycler. Ct values

were normalized to β-actin. A list of primer sequences can be found in S2 Table in S1

Appendix.

RNA interference. mSG-PAC1 cells were cultured in Matrigel in Pro-M medium for two

days. After two days, the resulting spheroids were transfected with siRNA in OptiMEM over

the course of two consecutive days using Lipofectamine RNAiMAX, according to the manu-

facturer’s protocol. Non-targeting siRNA or siRNA targeting YAP or TAZ was transfected at a

final concentration of 400 nM. Transfection medium was replaced with Pro-M medium and

2% Matrigel for 24 hours prior to processing for RNA. siRNA sequences can be found in S3

Table in S1 Appendix.

RNA microarray and bioinformatic analysis

Microarrays were performed using RNA isolated as described above from mSG-PAC1 spher-

oids cultured in Matrigel in either Pro-A or Pro-M medium from three independent experi-

ments. Samples were analyzed using the mouse Clariom1 S array (Invitrogen, #902930) at the

Center for Functional Genomics at The University at Albany Health Sciences Campus, Rensse-

laer, NY, and analyzed using the Transcriptome Analysis Console (TAC) 4.0 software from

ThermoFisher. Principal component analysis (PCA) and volcano plots indicate that these cul-

ture conditions promote significant differences in gene expression (S3a, S3b Fig in S1 Appen-

dix). Gene overlaps were computed using hallmark and curated gene sets from Molecular

Signatures Database available from the Broad institute. Gene-set enrichment analysis was per-

formed using GSEA software [58] from the Broad Institute with published scRNA-seq gene

sets [37, 38]. Gene sets for myoepithelial, proacinar and acinar cells isolated from the murine

submandibular salivary gland were downloaded from Supplementary Fig 6 [37]. ScRNA-seq
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data sets from murine mammary glands for myoepithelial cells and luminal cells from preg-

nant females and luminal progenitor cells from virgin females were downloaded from Supple-

mental Table 5 [37, 38]. In instances where gene sets were larger than recommended for use in

GSEA, subsets of genes with the highest adjusted p values were generated for the analysis. Data

sets will be deposited in the NCBi Gene Expression Omnibus (GEO) data base once the manu-

script is accepted for publication.

Microscopy

Images were acquired using an inverted Nikon TE2000-E microscope with phase contrast and

epifluorescence, a Prior ProScanII motorized stage, and Nikon C1 confocal system with EZC1

and NIS-Elements acquisition software, or using the Zeiss LSM 880 confocal microscope with

AiryScan on an AxioObserver.Z1 motorized inverted microscope with Zeiss ZEN2.3 software.

Confocal images were acquired either at 40X, 63X, or 100X, and are represented as maximum

projection images or single slices, as indicated in the Figure Legends. Images were processed

and analyzed using the Imaris 9 software, where indicated in the Figure Legends.

Animal experiments

All animal experiments and procedures were performed in accordance with the Albany Medi-

cal College Institutional Animal Care and Use Committee (IACUC) regulations. In accor-

dance with protocols approved by the Albany Medical College IACUC, mouse submandibular

salivary glands (SMGs) were dissected from timed-pregnant female mice (strain CD-1, Charles

River Laboratories) at embryonic day 14 (E14), 15(E15), 16 (E16) or 19 (E19) with the day of

plug discovery designated as E0.

Statistical analysis

Statistical analyses were performed using the GraphPad Prism software employing either a

Student’s T-test or one-way Anova followed by Tukey Post-hoc analysis as indicated in the

Figure Legends. P values of<0.05 were deemed statistically significant.

Supporting information

S1 Appendix.

(PDF)
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