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Abstract: The power conversion efficiencies (PCEs) of metal-oxide-based regular perovskite solar
cells have been higher than 25% for more than 2 years. Up to now, the PCEs of polymer-based
inverted perovskite solar cells are widely lower than 23%. PEDOT:PSS thin films, modified PTAA
thin films and P3CT thin films are widely used as the hole transport layer or hole modification layer
of the highlyefficient inverted perovskite solar cells. Compared with regular perovskite solar cells,
polymer-based inverted perovskite solar cells can be fabricated under relatively low temperatures.
However, the intrinsic characteristics of carrier transportation in the two types of solar cells are
different, which limits the photovoltaic performance of inverted perovskite solar cells. Thanks to the
low activation energies for the formation of high-quality perovskite crystalline thin films, it is possible
to manipulate the optoelectronic properties by controlling the crystal orientation with the different
polymer-modified ITO/glass substrates. To achieve the higher PCE, the effects of polymer-modified
ITO/glass substrates on the optoelectronic properties and the formation of perovskite crystalline thin
films have to be completely understood simultaneously.

Keywords: p-type polymers; inverted perovskite solar cells; nucleation; crystal growth; perovskite
thin film; interfacial contacts

1. Introduction

Conductive polymers are widely used in organic photovoltaics (OPVs) and dye-
sensitized solar cells (DSSCs) as the hole transport layer (HTL) due to their high trans-
parency, large work function and high carrier mobility [1–6]. Poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS) and polyaniline thin films are the most commonly used
p-type polymer in organic-related solar cells [7–10]. Ten years ago, the power conversion
efficiencies (PCEs) of OPVs and DSSCs were lower than 10% mainly due to large potential
loss [11,12] and strong exciton binding energy [13,14] of the active layer. Fortunately, the
organic light-absorbing materials can be replaced by the high-quality perovskite crystalline
thin films which can be fabricated by using various solution process techniques under low
temperatures ranging from 60 ◦C to 140 ◦C [15–19], which have largely boosted the PCE of
organic-based solar cells to be higher than 20% in the recent decade. The PEDOT:PSS thin
film was used in the first inverted perovskite solar cells, which resulted in a moderate PCE
of 3.9% [20]. The PEDOT:PSS thin films are deposited on top of the ITO/glass substrates as
the HTL and electron-blocking layer (EBL), which can influence the open-circuit voltage
(VOC), short-circuit current density (JSC) and fill factor (FF) of the resultant perovskite
solar cells by varying the molecular structure of the PEDOT chains and the thickness of
the PEDOT:PSS thin films [21–24]. However, the PCE values of PEDOT:PSS-based in-
verted perovskite solar cells are lower than 20%, mainly due to the relatively low VOC
and FF [25–30], which are originated from the potential loss at the perovskite/PEDOT:PSS
interface. Poly(triarylamine) (PTAA)- and poly[3-(4-carboxybutyl) thiophene-2,5-diyl]
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(P3CT)-based thin films have been widely used to replace the PEDOT:PSS thin films, which
can increase the VOC and FF of the resultant perovskite solar cells simultaneously [31–34].
It can be explained as being due to the reductions of potential loss and carrier recombi-
nation in the perovskite layer and at the perovskite/HTL interface [35–38]. The surface
wettabilities of the PEDOT:PSS, P3CT-X (X: Na, K, Rb, Cs) and PTAA thin films are super-
hydrophilic, hydrophilic and hydrophobic, respectively, which can largely influence the
film discontinuity and grain size of the deposited perovskite thin films [39,40].

Hydrophobic NiOx- and CuOx-based thin films are also widely used in the inverted
perovskite solar cells as the HTL [41,42]. The photovoltaic performance of NiOx-based
inverted perovskite solar cells can be increased to be higher than 20% by using an organic
interlayer in between the perovskite thin film and the HTL [43–47]. In other words, the
formation of high-quality perovskite crystalline thin films is not only related to the surface
wettability [48–50] but is also dominated by the nucleation process of perovskites on top
of the organic layers. Conceptually, the formation of uniform nucleation sites can form
preferred oriented perovskite crystalline thin films, which is similar to the crystal growth
of perovskites on top of the single-crystalline wafer [51] or organic self-assemble (SAM)
monolayer modified substrates [52,53].

On the other hand, the surface properties of HTL dominate the grain size, surface
roughness and crystal orientation of the resultant perovskite thin films and thereby in-
fluence the contact quality at the electron transport layer (ETL)/perovskite interface.
In the inverted perovskite solar cells, C60 and (phenyl-C61-butyric acid methyl ester)
PCBM thin films are widely used as the ETL [54–57]. It is noted that the surface rough-
ness of perovskite crystalline thin films determines the formation of the s-shaped J-V
curves in the PCBM/MAPbI3 heterojunction solar cells [58–60]. Besides, the solution-
processed bathocuproine (BCP) and thermal evaporated BCP can be used to modify the
C60-derivatives-based ETL, which largely increases the FF of the resultant perovskite solar
cells [61–64]. BCP molecules and oxygen-containing functional group of PCBM molecules
can passivate the electron-poor defects at the grain boundaries of perovskite thin films due
to the sub-nanometer scale. C60 molecules can passivate the electron-rich defects at the
grain boundaries of perovskite thin films due to the electron chargeable property. However,
the VOC hysteresis can still be observed in the J-V curves, which indicates that the surface
defects of perovskite crystalline thin films are not completely passivated by the capping
layer. In other words, the crystal orientation of perovskite thin films plays an important
role, which determines the types of surface defects in the top region.

According to the theoretical calculations, the highest PCE of the inverted perovskite
solar cells is about 30% [65,66], which is lower than the highest prediction value from
Shockley–Queisser (S.-Q.) limit because the absorption bandgap of lead trihalide-based
perovskite material is higher than the optimal absorption bandgap [67,68]. Up to now, the
highest PCE values of regular perovskite solar cells and inverted perovskite solar cells
are 25.59% [69] and 23.32% [70], respectively. In the best regular perovskite solar cell, a
mesoporous-TiO2/compact-TiO2 bilayer structure is used as the ETL. In the best inverted
perovskite solar cell, a phenylethylammonium iodide (PEAI)-modified PTAA thin film
is used as the HTL while improving the contact quality at the ETL/perovskite interface
via the treatment of PEAI molecules. Compared with the photovoltaic performance of
the most regular perovskite solar cells, the VOC and FF of the most inverted perovskite
solar cells are relatively lower mainly due to the larger potential loss and higher carrier
recombination. In other words, there is still room for improvement in the PCE of inverted
perovskite solar cells.

In this review, we focus on the understanding of highly efficient inverted perovskite
solar cells. In the following sections, the working mechanism of perovskite solar cells will
be mentioned first. The research progress of the polymer-based inverted perovskite solar
cells will be mentioned in order to discuss the possible future directions, which is divided
into three sections: PEDOT:PSS-based perovskite solar cells, PTAA-based perovskite-based
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solar cells and P3CT-X-based solar cells. Finally, the ways to realize 25% inverted perovskite
solar cells are discussed.

2. Working Mechanisms of Perovskite Solar Cells

Figure 1 presents the device architectures of a regular-type perovskite solar cell and
an inverted-type perovskite solar cell. In the regular perovskite solar cell, the n-type metal
oxides are widely deposited on top of the FTO/glass substrates with a post-sintering treat-
ment. The metal oxide layer can be TiO2, SnO2, ZnO and Al-doped ZnO, which collects
the photogenerated electrons and blocks the photogenerated holes simultaneously. In the
inverted perovskite solar cell, the p-type polymers and p-type metal oxides are widely
fabricated on top of the ITO/glass substrates with a post-thermal annealing process at
about 100 ◦C. The high-quality perovskite crystalline thin films can be fabricated by using
the two-step spin coating method with an interdiffusion process [71–73], the one-step spin
coating method with a washing-enhanced nucleation (WEN) process [74–76] and the vac-
uum thermal co-evaporation technique [77–79]. The organometal trihalide perovskite can
be CH3NH3PbI3 (MAPbI3), CH(NH2)2PbI3 (FAPbI3) and Csx(MAyFA1−y)1−xPb(IzBr1−z)3,
mainly due to the low absorption bandgap [80–82], large absorption coefficient [83–85],
small exciton binding energy [86–88], long exciton (carrier) lifetime [89–91] and high carrier
mobility [92–94]. The capping layers for the regular perovskite solar cell and inverted per-
ovskite solar cell are p-type small molecules [95–97] and n-type small molecules [98–100],
respectively. In other words, the p-type capping layer (n-type capping layer) has to collect
the photogenerated holes (electrons) and passivate the electron-rich defects (electron-poor
defects) in the top region of the perovskite crystalline thin films, as shown in Figure 2. In the
regular perovskite solar cell, the use of a hole modification layer can increase the hole collec-
tion efficiency and block the photogenerated electrons from the perovskite layer [101–103].
In the inverted perovskite solar cells, the film quality of the ETL and the contact quality at
the ETL/perovskite interface can be improved via a BCP/IPA solution treatment process,
which can improve VOC, JSC and FF simultaneously [104–106]. Au (Cu) and Ag (Al) metals
are used as the anode electrode and cathode electrode, respectively.
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Figure 1. Device architectures of an inverted perovskite solar cell and a regular perovskite solar cell.
ETL and HTL denote electron transport layer and hole transport layer, respectively.

The highest FF values of regular perovskite solar cells and inverted perovskite solar
cells are 85% [107] and 86% [108], respectively. The high FF values can be mainly explained
as due to the existence of organic dipoles in the organometal trihalide perovskites, which has
been demonstrated theoretically and experimentally [109,110]. The photoinduced organic
dipolar alignment suggests that the electron flow and hole flow are spatially separated in
the perovskite crystal and thereby eliminate the defect-mediated carrier recombination after
the exciton self-dissociation. It is noted that the photogenerated hole transportation is better
than the photogenerated electron transportation in the bifacial inverted perovskite solar
cells, which results in the higher FF under a sunlight illumination from the semitransparent
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cathode electrode [111]. In other words, the hole mobility in the regular perovskite solar cell
is higher than the electron mobility in the inverted perovskite solar cell, as shown in Figure 3.
Fortunately, the carrier mobility of perovskites is related to the crystal orientation [112–114].
Therefore, it is possible to improve the photovoltaic performance of inverted perovskite
solar cells via tuning the polycrystalline thin film to the most appropriate orientation plane
in order to facilitate the collections of photogenerated carriers without the potential loss
and carrier recombination. Conceptually, the molecular packing structure of the p-type
polymers determines the preferred crystal orientation of the perovskite crystalline thin
films, thereby dominating the photovoltaic performance of the resultant perovskite solar
cells. In other words, the molecular structure and molecular packing structure of the HTL
on top of the ITO/glass (FTO/glass) substrate can be used to understand the photovoltaic
performance of the PEDOT:PSS-, PTAA- and P3CT-X-based inverted perovskite solar cells.
The photovoltaic performance of the best PEDOT:PSS-, modified PTAA- and P3CT-X-based
inverted perovskite solar cells is listed in Table 1.
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Table 1. Photovoltaic performance of the best PEDOT:PSS-, modified PTAA- and P3CT-X-based
inverted perovskite solar cells under one sun illumination (AM 1.5 G, 100 W/cm2).

P-Type Polymer Perovskite
Grain Size and
Thickness of

Perovskite (nm)
VOC (V) JSC

(mA/cm2) FF (%) PCE (%) Ref.

PEDOT:PSS MAPbI3 1500/470 1.060 23.10 86.0 21.05 [108]
Modified PTAA (MAFA)Pb(ICl)3 350/550 1.155 24.13 83.7 23.32 [70]

P3CT-X (CsMAFA)Pb(IBr)3 300/400 1.120 22.78 83.6 21.33 [115]

3. PEDOT:PSS Thin-Film-Based Perovskite Solar Cells

In the first inverted perovskite solar cell, a PEDOT:PSS thin film is used as the HTL,
which results in a moderate PCE of 3.9%. The PEDOT:PSS (1:6 wt%) thin films were
widely used in the poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methylester
(P3HT:PCBM) blended thin-film-based OPVs as the HTL mainly due to the efficient hole-
collection and electron-blocking abilities. Figure 4a presents the molecular structures of
PEDOT and PSS polymers. The PEDOT and PSS are p-type polymer and large-bandgap
polymer (insulator), respectively. The long-chain PEDOT polymers can be doped by shot-
chain PSS polymers, thereby forming the linear molecular structure, which increases the
doping concentration and work function of the PEDOT chains in the PEDOT:PSS thin
films [116–118]. In the non-modified PEDOT:PSS thin-film-based perovskite solar cells,
the highest PCE is lower than 17% mainly due to the relatively low VOC and FF. The
PEDOT:PSS thin films are amorphous and hydrophilic surfaces, which results in the high
nucleation density during the formation of perovskite crystalline thin films, as shown in
Figure 4b. In other words, the grain sizes of perovskite crystalline thin films deposited
on top of the PEDOT:PSS/ITO/glass samples are smaller than 500 nm, which results in
the sub-micrometer-sized perovskite grains, thereby forming the carrier recombination
centers in the grains to reduce the VOC and FF of the resultant solar cells. The PCE of the
PEDOT:PSS thin-film-based perovskite solar cells can be increased from 15% to 18% via
adding p-type graphene oxide (GO) into the HTL [119]. Conceptually, the carbon-based
hydrophobic additives into the HTL can increase the grain size of perovskite crystalline thin
films, which can increase the VOC, JSC and FF simultaneously [120–122]. However, there
is a trade-off between the grain size and surface roughness in the perovskite crystalline
thin film because the thickness of the solution-processed C60-derivatives-based ETLs is
about 50 nm. The smaller grain size results in the higher defect density in the perovskite
crystalline thin film, thereby reducing the VOC and FF. The larger grain size results in the
roughed perovskite crystalline thin film, which cannot be completely covered by a 50 nm
thick ETL and thereby reduces the VOC and FF.

GO contains the hydroxyl (-OH), oxo (=O) and carboxyl (-COOH) groups [123]. The
hydroxylgroup can increase the surface wettability of GO thin films, thereby increasing
the contact quality at the perovskite/GO-doped PEDOT:PSS interface. The oxo group
can passivate the electron-poor defect in the bottom surface of the perovskite crystalline
thin films. After the dehydrogenation reaction of the carboxyl group, the ester group can
be the nucleation site of the perovskite thin film, thereby increasing the contact quality
at the perovskite/p-type GO interface. However, the formation of hydrogen iodide (HI)
molecules can result in the iodide vacancies in the bottom region of the resultant perovskite
crystalline thin film. On the other hand, the sulfonic acid (-SO3H) groups of the PSS in the
PEDOT:PSS thin film can be considered as the nucleation sites at the perovskite/PEDOT:PSS
interface after the dehydrogenation reaction. In other words, the dehydrogenation reaction
of the PSS polymers can form the iodide vacancies in the perovskite crystalline thin film,
which can be used to explain the formation of JSC hysteresis in the J-V curves of the
PEDOT:PSS thin-film-based perovskite solar cells [124–126]. On the other hand, the metal
oxides (MoOx, GeO2 and NiOx) are added into the PEDOT:PSS thin films in order to
increase the photovoltaic performance of the PEDOT:PSS thin-film-based perovskite solar
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cells [127–129]. Their experimental results show that the addition of metal oxides into the
PEDOT:PSS thin films improves the hole collection efficiency and the contact quality at the
perovskite/HTL interface.
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4. PTAA Thin-Film-Based Perovskite Solar Cells

The p-type PTAA polymer was proposed to replace the Spiro-OMeTAD small molecule
in the regular perovskite solar cells as the HTL and capping layer mainly due to higher
glass transition and melting temperature [130,131]. In the regular perovskite solar cells, the
thickness of the p-type capping layer is higher than 100 nm in order to completely cover
the roughed perovskite crystalline thin film. To increase the hole mobility, dopants are
widely added into the HTL. However, the dopants in the HTL also resulted in the shorter
lifespan of the resultant perovskite solar cells mainly due to the diffusion of dopants into
the active layer. Up to now, the highest PCE values of the PTAA-based regular perovskite
solar cells and the Spiro-OMeTAD-based regular perovskite solar cells are 22.1% [132] and
25.6% [69], respectively. In recent years, the record high PCE values of regular perovskite
solar cells were achieved by using the doped Spiro-OMeTAD thin films as the HTL. In
other words, the nanometer-sized PTAA polymers cannot effectively passivate the surface
defects at atomic scales, which results in the relatively lower VOC and FF. Figure 5a presents
the molecular structure and energy diagram of a PTAA polymer.

In the inverted perovskite solar cells, the micrometer-sized grains of the perovskite
thin film can be formed on top of the hydrophobic PTAA thin film [133], which can reduce
the surface defect density of the resultant perovskite thin film. When a p-doped PTAA thin
film is used as the HTL, the PCE of the inverted perovskite solar cells can be increased to
17.5% [31]. However, the PCE was still lower than 20%, mainly due to the potential loss in
the thick PTAA thin film. In recent years, it was found that an ultrathin face-on PTAA can
be used to modify the ITO thin film, which results in higher FF and VOC values. To form
pinhole-free closelypacked perovskite thin film on top of the hydrophobic PTAA thin film,
a two-step solvent treatment process [134] and a p-type MoO3 dopant [135] can be used to
increase the surface wettability, thereby increasing the PCE to be higher than 20%. On the
other hand, the used CuCrO2:PTAA inorganic-organic composite thin film increases the
photovoltaic performance of the resultant perovskite solar cells mainly due to the improved
hole mobility of the HTL [136].
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In the best inverted perovskite solar cell, the PEAI small molecules are used to modify
the surfaces of the ultrathin PTAA polymers and perovskite thin film simultaneously [70],
as shown in Figure 5b. As an interlayer in between the perovskite crystalline thin film and
the face-on PTAA polymers, the phenyl group of the PEAI can lie on the face-on PTAA
polymers due to the π-π stacking, thereby forming the upward ethylammonium iodide
group, which can be considered as the nucleation site of the perovskite thin film. As an
interlayer in between the PCBM thin film and the perovskite crystalline thin film, the
downward ethylammonium iodide group can passivate the iodide vacancy and organic
cation vacancy, thereby forming an upward phenyl group, which can facilitate the molecular
packing structure of the PCBM thin film via the π-π contact. In other words, the electron
mobilities of the perovskite crystalline thin film and PCBM thin film can be simultaneously
increased when the PEAI small molecules are used to modify the surface of the perovskite
crystalline thin film, which can be used to explain the high VOC and FF.

5. P3CT-X Thin-Film-Based Perovskite Solar Cells

The P3CT-Na polymer was proposed to be an alternative material to the HTL in the
inverted perovskite solar cells, which resulted in a high PCE of 16.6% [33]. The P3CT-Na
polymer is synthesized by mixing P3CT and NaOH in a water solution via the substitution
from hydrogen anion to sodium anion. In the first P3CT-Na-based inverted perovskite
solar cell, the PCE is limited to be lower than 17% mainly due to the relatively low FF
and VOC. Figure 6 presents the molecular structure and energy diagram of a P3CT-Na
polymer. P3CT is a hydrophobic polymer, which cannot be effectively dissolved in a water
solution at room temperatures. The concentration of the used P3CT-Na/water solution
is about 0.15 wt%, which shows that the P3CT-Na polymers can be partially dissolved in
water solution due to the hydrophilicity of the Na sites. When the Na cation is replaced
by K, Rb, Cs or CH3NH3 cation, the PCE of the P3CT-X-based inverted perovskite can be
increased to be higher than 20% [34,137]. The main concept is that the larger cation size
can minimize the formation of sub-micrometer-sized P3CT-X aggregates, thereby forming
edge-on P3CT-X polymers on top of the ITO/glass substrate. The molecular structure
of P3CT shows that the P3CT-X aggregates have hydrophobic surfaces due to the face-
on packing structure. Figure 7 presents the edge-on P3CT-X and face-on P3CT-X on top
of the ITO thin film. It is noted that the hydrophobic face-on P3CT-Na aggregates can
be effectively removed from the solution by using the double-filtering process, thereby



Polymers 2022, 14, 823 8 of 22

forming edge-on P3CT-Na polymers on top of the ITO/glass substrate, which increases the
PCE of the resultant inverted perovskite solar cells to be higher than 20% mainly due to
the relatively high JSC values [35–37]. The higher JSC value might be originated from the
better crystallinity of the perovskite crystalline thin film and the better contact quality at
the perovskite/P3CT-Na interface, which results in the higher exciton generation and the
higher exciton dissociation (hole collection), respectively. On the other hand, the addition
of graphdiyne into the P3CT-K thin film increases the photovoltaic performance of the
resultant perovskite solar cells mainly due to the better surface wettability of the HTL,
which improves the homogenous coverage and reduces grain boundaries of the perovskite
thin film [138].
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When the P3CT-X polymer is used to replace the PEDOT:PSS polymer, the JSC hys-
teresis characteristic almost disappears in the J-V curves of the inverted perovskite solar
cells. In other words, the use of edge-on P3CT-X polymers can decrease the formation of
iodide vacancies in the inner region of the perovskite grains. Conceptually, the hydrophilic
cations in the upper side and bottom side of the edge-on P3CT-X polymers can connect
with the perovskite crystalline thin film and ITO thin film, respectively. The formation of
edge-on P3CT-Na polymers is related to the surface chemical compositions (oxygen defect
density) of the ITO thin films [139]. The experimental results show that the formation of
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edge-on P3CT-Na polymers on top of the Sn-rich ITO thin film is better, which results in
a hysteresis-free and highly stable inverted perovskite solar cell. The extremely low JSC
hysteresis characteristic in the J-V curves shows that the upward Na sites of the edge-on
P3CT-Na polymers are used to replace the organic cations as the nucleation sites of the
perovskite crystalline thin films, thereby minimizing the formation of iodide vacancies.

6. Understanding of Highly-Efficient Inverted Perovskite Solar Cells

The formation of closelypacked perovskite crystalline thin films plays an important
role in realizing the highlyefficient perovskite solar cells. The WEN process has been widely
used to form the smooth and high-quality perovskite crystalline thin films on top of the
various hydrophilic or hydrophobic substrates because the used antisolvents can balance
the nucleation and crystal growth rates. However, the nucleation and crystal growth of the
perovskite crystalline thin film are also related to the surface properties of the substrates.
In 2015, it was found that the grain sizes of the perovskite crystalline thin films can be
increased by decreasing the surface wettability of the substrates [140]. Therefore, the PTAA
and poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)-benzi (poly-TPD) thin films are widely
used as the HTL of the inverted perovskite solar cells [141–144]. To completely cover
the surface of the roughed ITO thin film, the thickness values of the conjugated polymer
thin films are larger than 50 nm. Therefore, the additional dopants have to be used in
order to increase the hole mobility of the thick conjugated polymer thin films. Besides,
the micrometer-sized perovskite grains result in the relatively roughed surface, which can
be used to explain why the thicker C60/PCBM bilayer or ZnO/PCBM bilayer is used as
the ETL to cover the perovskite crystalline thin film. The device architecture of a thick
HTL-based inverted perovskite solar cell is plotted in Figure 8. In the inverted perovskite
solar cells, the photogenerated holes can be collected at the perovskite/HTL interface.
Then, the photogenerated electrons must diffuse to the ELT/perovskite interface, which
influences the generation efficiency of photocurrents. In other words, the hole mobility
of HTL, the electron mobility of perovskite thin film and the electron mobility of ETL
can significantly influence the carrier collection efficiency and carrier recombination rate
simultaneously. The highest PCE of the thick HTL-based inverted perovskite solar cells is
limited to be lower than 22% mainly due to the relatively low FF which is about 80%. In
general, the nanosecond time-resolved photoluminescence decaying curves show that the
photogenerated hole collection efficiency at the perovskite/HTL interface is high when the
PEDOT:PSS, PTAA and P3CT-X thin films are used as the HTL [25,145,146], which means
that the contact quality at the perovskite/HTL interface and hole mobility of the used HTL
are both high. In other words, the limited PCE of the inverted perovskite solar cells is
mainly due to the potential loss and carrier recombination, which can be used to explain
the relatively low VOC and FF.

In recent years, it was found that the ultrathin PTAA polymers can be used to modify
the surface of a roughed ITO thin film as the anode electrode, which can result in the
high PCE of 18.11% [147]. The PCE of the ultrathin-PTAA-based inverted perovskite
solar cells can be increased to be higher than 21% when the surface of the hydrophobic
PTAA polymers is modified by using the bipolar organic molecules, such as PEAI and
3-(1-pyridinio)-i-propanesulfonate (PPS) [148,149]. The PCE increases from 18% to 21%
with the decrease in the surface wettability of the ultrathin PTAA polymers, which is
mainly due to the increases in the FF and VOC. However, the increased FF and VOC cannot
be completely explained as being due to the small grains of the perovskite crystalline
thin films because the surface defect density is proportional to the grain size. The higher
deep-level defect density results in the lower FF and VOC due to the non-radiative carrier
recombination in the perovskite crystalline thin film [150]. The higher shallow-level defect
density results in the higher VOC because the shallow-level defects can be considered as the
dopants of the perovskite crystalline thin film [151]. Besides, the smaller grains can result
in a smoother perovskite crystalline thin film, which can be completely covered with a 50
nm thick PCBM thin film. When the grain size of perovskite crystalline thin films is larger,
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the thickness of the used ETL must be thicker in order to form a perfect PCBM/perovskite
planar heterojunction. The thicker ETL results in the higher electron recombination, thereby
decreasing the FF and VOC. In other words, the FF and VOC values are limited due to
the trade-off between the grain size and surface roughness of the perovskite crystalline
thin film.
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In 2015, the edge-on P3CT-Na polymer was used to modify the surface of the ITO
thin film as the anode electrode of the inverted perovskite solar cell [33]. The optimized
thickness of the P3CT-Na polymers is about 4 nm. Compared with the face-on PTAA
polymers, the surface of edge-on P3CT-Na polymers is more wettable because the upward
Na sites are hydrophilic. Besides, the upward Na sites of the P3CT-Na polymers can be
considered as the nucleation sites during the formation of the perovskite crystalline thin
film. Figure 9 presents the atomic-force microscopic images of an ITO/glass sample and
a P3CT-Na/ITO/glass sample. In the ITO/glass sample, the size of islands ranges from
200 nm to 500 nm. It is noted that the deposition of the P3CT-Na polymers does not
influence the surface morphology of the ITO thin film, which means that the ultrathin P3CT-
Na polymer is formed. In the MAPbI3/P3CT-Na/ITO/glass sample, the layered surface
morphology shows that the MAPbI3 perovskite particles are sub-micrometer-sized single
crystals, as shown in Figure 10. The grain size of the MAPbI3 crystalline thin film is similar
to the island size of the ITO thin film, which means that the MAPbI3 single-crystalline
grains grow on top of the edge-on P3CT-Na-modified ITO islands. The crystal orientation
of the MAPbI3 crystalline thin film deposited on top of the P3CT-Na/ITO/glass is mainly
along the (110) direction [152], which is consistent with the assumption that the upward Na
sites of the P3CT-Na polymers are the nucleation sites during the formation of the MAPbI3
single-crystalline grains.
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7. Roles of ETL in Inverted Perovskite Solar Cells

To realize the highly efficient inverted perovskite solar cells, the photogenerated
electrons in the light-absorbing layer must be collected effectively by the ETL. C60- and
C60-derivatives-based thin films are widely used as the ETL of the inverted perovskite
solar cells. In general, the ETL is an electron collection layer, a hole blocking layer and
a passivation layer, as shown in Figure 11a,c. Without the use of a capping layer (ETL),
the surface defects of the perovskite crystal can trap the photogenerated electrons and
holes, as shown in Figure 11b. When the surface defects are passivated by the capping
layer (ETL), the delocalized electrons and delocalized holes become free carriers, thereby
generating the photocurrents. In other words, the C60 and C60 derivatives can passivate
the surface defects of the perovskite crystalline thin films when they are used as the ETL
of the inverted perovskite solar cells. Figure 11d presents the molecular structures of
C60, PCBM and ICBA. When the C60 molecules are used as the ETL, the surface electron-
rich defects of the perovskite crystalline thin films can be passivated due to the negative
chargeability [153]. The negative chargeability of ICBA is better than that of C60 due to the
higher electron affinity and non-spherical symmetric structure [154], which can be used
to explain the improved photovoltaic performance of the inverted perovskite solar cells
when the C60 is replaced by the C70 as the ETL [155]. When the PCBM molecules are used
as the ETL, the surface electron-rich and electron-poor defects of the perovskite crystalline
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thin films can be passivated by the spherical fullerene and the oxygen of the functional
group, respectively [29]. Besides, the molecular structure also dominates the formation
of ordered molecular packing structure, which highly influences the electron mobility of
the resultant ETL. Conceptually, the electron mobility of C60 thin films (ICBA thin films)
is higher than that of ICBA thin films (PCBM thin films) due to the higher symmetry. In
other words, there is a trade-off between the surface defect passivation and the formation
of ordered molecular structure when the C60 derivatives are used as the ETL. On the other
hand, the non-fullerene electron acceptor was used as an interlayer in between the ETL and
perovskite crystalline thin film, which resulted in a high PCE of 22.09% mainly due to the
reduced surface defects and improved carrier transport [156].
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8. Challenges and Future Directions in Inverted Perovskite Solar Cells

Through the understanding of the PEDOT:PSS, PTAA and P3CT-Na-based inverted
perovskite solar cells, the main challenges and the possible future directions are discussed
in the following subsections.

8.1. PEDOT:PSS-Based Inverted Perovskite Solar Cells

The PEDOT chains in the PEDOT:PSS thin films are p-type heavily doped conduc-
tive polymers, which can effectively collect the photogenerated holes from the perovskite
thin films without the additional potential loss. However, the FF and VOC values of the
PEDOT:PSS-based inverted perovskite solar cells are widely lower than 80% and 0.95 V,
respectively. The main reason is the formation of small perovskite grains on top of the
hydrophilic PEDOT:PSS thin film, which forms high-density defects in the perovskite
crystalline thin film, thereby resulting in the non-radiative carrier recombination. A post-
solvent annealing process can be used to increase the grain size of the MAPbI3 thin films
from 250 nm to 1000 nm, which increases the JSC and FF of the resultant solar cells si-
multaneously [157]. However, the JSC hysteresis characteristic in the J-V curves can still
be observed, which means the existence of halide vacancies inside the crystalline grains
(point defects) in the bottom region of the perovskite thin film. Conceptually, the hydrogen
cations in the sulfonic acid (-SO3H) groups can be substituted by the sodium cations with
the addition of NaOH into the PEDOT:PSS/water solution [38], which results in the stable
PSS polymers. In other words, the use of a stable PEDOT:PSS thin film with the dehydro-
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genation reaction can reduce the formation of halide vacancies in the perovskite crystalline
thin film, which might improve the photovoltaic performance of the inverted perovskite
solar cells. Besides, it is predicted that the dehydrogenation reaction of the PSS polymers in
the PEDOT:PSS thin films can be performed by adding the organic halides, alkali halides
or alkali hydroxide into the PEDOT:PSS/water solution. On the other hand, the doping
concentration of PEDOT polymers can be largely increased by using the hydrogenosulfate
as the dopant [158], which might increase the VOC of the resultant perovskite solar cells.

8.2. PTAA-Based Inverted Perovskite Solar Cells

In the best inverted perovskite solar cell, the ultrathin PTAA polymer is modified
with the PEAI bipolar organic molecules, thereby forming the bridge between the PTAA-
modified ITO thin film and the perovskite crystalline thin film, which results in the high
PCE of 21.58% [70]. When the surface of the perovskite crystalline thin film is modified with
the PEAI molecules, the PCE increases from 21.58% to 23.72% [70]. On the other hand, the
PCE of the PPS-doped perovskite solar cells increases from 20.0% to 21.7% when the PPS
molecule is used as the chemical bridge [149]. The PPS dopants might mainly distribute in
the top region of the perovskite thin film and thereby passivate the surface defects [149].
Conceptually, the oxygens in the sulfonate acid group of the PPS molecules can passivate the
halide vacancies or the interfacial organic cations at the grain boundaries of the perovskite
crystalline thin film. In other words, the improved photovoltaic performance of the PTAA-
based inverted perovskite solar cells is mainly due to the vacancy reduction in the bottom
region and the defect passivation in the top region of the perovskite crystalline thin films.
The photovoltaic performance of the best regular and inverted perovskite solar cells is listed
in Table 2. Compared with the best regular perovskite solar cell, the lower PCE of the best
inverted perovskite solar cell is due to the lower JSC. In other words, it is possible to increase
the PCE of the PTAA-based inverted perovskite solar cells to be higher than 25% by using
the α-FAPbI3 crystalline thin film as the light-absorbing layer. However, the formation
of a stable FAPbI3 crystalline thin film on top of the bipolar organic-molecule-modified
ITO thin film will play the important role. It is noted that the grain sizes of the perovskite
thin film deposited on top of the mesoporous TiO2/compact TiO2/FTO/glass substrate
can be 1000 nm, which is larger than the grain size of the perovskite crystalline thin film
deposited on top of the PEAI-modified ITO/glass substrate. In other words, the grain size
of the FAPbI3 thin film deposited on top of the PEAI-modified ITO/glass substrate must be
larger than the island size of the ITO thin film which ranges from 200 nm to 400 nm (see
Figure 9). Fortunately, the substrate-induced small grain of the MAPbI3 crystalline thin
film can be merged to be larger than 1000 nm via the formation of MA-C60-MA cations
with the addition of C60molecules into the MAPbI3 precursor solution [159]. It can be
predicted that the C60-doped FAxMA1−xPbI3 thin films can also form merged grains via
the formation of C60-MA-C60molecules at the grain boundaries. On the other hand, the
PCE of the PTAA-based inverted perovskite solar cells is proportional to the molecular
weight of the used PTAA [160,161]. However, there is a trade-off between the solubility
and molecular weight of polymers [162], which might limit the highest molecular weight
of the used PTAA polymers in the inverted perovskite solar cells.

Table 2. Photovoltaic performance of the best regular and inverted perovskite solar cells under one
sun illumination (AM 1.5 G, 100 W/cm2).

Structure Type Perovskite
Grain Size and
Thickness of

Perovskite (nm)
VOC (V) JSC

(mA/cm2) FF (%) PCE (%) Ref.

Regular FAPbI3 2000/none 1.189 26.35 81.7 25.59 [69]
Inverted (MAFA)Pb(ICl)3 350/550 1.155 24.13 83.7 23.32 [70]
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8.3. P3CT-X-Based Inverted Perovskite Solar Cells

The P3CT-X polymers can be considered as the chemical bridges between the ITO
thin film and perovskite crystalline thin film via the hydrophilic Na sites, which triggers
the formation of edge-on P3CT-X polymers. X can be hydrogen ion, alkali metal cation or
organic cation. Conceptually, the best candidate of the downward X site is a hydrogen ion
because the carboxyl group can connect with the oxygen defect of the ITO thin film after
hydrogenation reaction. When the upward X sites of the P3CT-X polymers are hydrogen
ions, the HI molecules will be formed during the formation of FAPbI3 crystalline thin film
on top of the P3CT-X-modified ITO thin film via the hydrogenation reaction, which can
result in the formation of iodide vacancies. Ideally, the best candidate for the upward X
site is a FA cation which can be considered as the nucleation site during the formation
of FAPbI3 crystalline thin film on top of the P3CT-X-modified ITO thin film, as shown in
Figure 12a. In other words, the best P3CT-X polymer is an up-down asymmetric polymer,
which can be a perfect p-type molecular bridge between the ITO thin film and FAPbI3
crystalline thin film, as shown in Figure 12b. However, the surface oxygen defect density
of the ITO thin film must be related to the spacing between adjacent downward carboxyl
groups. The d-spacing value of the FAPbI3 crystal along the (110) direction is larger than
the spacing between adjacent upward carboxyl groups. To reduce the mismatch between
the d-spacing of the perovskite crystal and the spacing between adjacent upward carboxyl
groups of the P3CT polymer, a FAPbCl3 crystal of a FAPbBr3 crystal can be inserted as the
buffer layer due to the shorter lattice constant.
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8.4. An Ideal Polymer-MTL-Based Inverted Perovskite Solar Cell

Figure 13 presents the ideal polymer-based inverted perovskite solar cell. The edge-on
or face-on polymers have to form an ultrathin hole modification layer (HML) on top of
the roughened ITO thin film. Then, the solution-processed perovskite crystalline thin
film can be grown on top of the ultrathin conjugated polymer-modified ITO thin film,
which forms single crystalline perovskite grains (see Figure 10), thereby resulting in the
extremely high VOC and FF (see Tables 1 and 2). In other words, the formation of molecular
connection between the perovskite and HML (see Figure 12) results in the intrinsically high
photogenerated hole collection efficiency. To increase the JSC, the optical bandgap of the
light-absorbing layer used in the highly efficient inverted perovskite solar cells must be
decreased by using the α−FAPbI3 crystalline thin film [69]. It is noted that grain size of
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perovskite crystalline thin films used in the highly efficient perovskite solar cells ranges
from 300 nm to 2000 nm, which indicates that the photogenerated electrons can be collected
effectively when the surface defects of the single crystalline perovskite grains are passivated
by the capping layer (small molecular-based ETL). Besides, the thickness of the perovskite
crystalline thin film is less than 600 nm due to the high absorption coefficients in the visible
to near-infraredwavelength range. According to Table 2, it is predicated that the PCE of the
polymer-HTL-based inverted perovskite solar cell can be increased from 23.32% to 25.47%
by increasing the JSC value from 24.13 mA/cm2 to 26.35 mA/cm2.
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9. Conclusions

In summary, we have reviewed the three main p-type polymers (PEDOT:PSS, PTAA
and P3CT-X) used in the inverted perovskite solar cells as the HTL or HML. In the PE-
DOT:PSS thin-film-based perovskite solar cells, it is predicted that the surface defects and
point defects of the perovskite crystalline thin films can be reduced by adding p-type
hydrophobic conjugated small molecules and by replacing the hydrogen cations of the PSS
polymers with alkali metal ions, respectively, which can increase the VOC and FF of the
resultant solar cells. In the ultrathin face-on PTAA polymers-based perovskite solar cells,
the contact qualities at the perovskite/HML interface and the ETL/perovskite interface can
be improved by using the bipolar organic molecules, which increases the VOC, JSC and FF
simultaneously. In other words, it is worthwhile to develop new bipolar organic molecules
to replace PEAI and PPS molecules as the chemical bridges at the perovskite/HML inter-
face and the ETL/perovskite interface. In the ultrathin edge-on P3CT-X-polymer-based
perovskite solar cells, it is predicted that the perovskite crystalline thin film and the ITO thin
film can be perfectly connected with the up-down asymmetric P3CT-X polymers. Besides,
the substrate-induced sub-micrometer-sized FAxMA1−xPbI3 grains can be merged to form
micrometer-sized grains via the formation of the MA-C60-MA cations with the addition of
C60 molecules into the perovskite precursor solution, which can reduce the potential loss in
the light-absorbing layer, thereby increasing the VOC of the resulting solar cells.
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