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In Escherichia coli, protein degradation in synthetic circuits is commonly achieved by the ssrA-
tagged degradation system. In this work, we show that the degradation kinetics for the green
fluorescent protein fused with the native ssrA tag in each cell exhibits the zeroth-order limit of the
Michaelis—-Menten Kinetics, rather than the commonly assumed first-order. When measured in a
population, the wide distribution of protein levels in the cells distorts the true Kinetics and results in
a first-order protein degradation Kinetics as a population average. Using the synthetic gene-
metabolic oscillator constructed previously, we demonstrated theoretically that the zeroth-order
kinetics significantly enlarges the parameter space for oscillation and thus enhances the robustness
of the design under parametric uncertainty.
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Introduction

One of the most characterized protein degradation systems in
Escherichia coli is the AAA + protease family, which includes
CIpXP and CIpAP. These proteases recognize and degrade ssrA-
tagged proteins (Gottesman et al, 1998). The ssrA tag and its
variants were fused to many proteins (Andersen, 1998) to
reduce their half-lives for various synthetic circuits (Elowitz
and Leibler, 2000; Fung et al, 2005; Austin et al, 2006). Such
synthetic biological circuits enable the testing of operating
principles governing biological networks and the exploration
of potential applications that are not limited by natural
systems (Becskei and Serrano, 2000; Farmer and Liao, 2000;
Gardner et al, 2000; Becskei et al, 2001; Atkinson et al,
2003; Bulter et al, 2004; You et al, 2004; Basu et al, 2005). A
modified version of the ssrA tag has also been engineered
recently to allow controllable degradation (McGinness et al,
2006). In vivo data (Andersen, 1998) showed that ssrA-tagged
proteins display a first-order degradation kinetics, suggesting a
relatively high Ki,, whereas in vitro data (Hersch et al, 2004)
showed a much lower K;,, (75nM), which leads to a zeroth-
order kinetics. This discrepancy raised the issue of protein
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degradation reaction order used in designing synthetic circuits
and prompted us to examine the kinetics of protein degrada-
tion in detail.

Interestingly, we observed that the degradation kinetics for
the native ssrA tag in single cells was in fact zeroth-order.
However, population measurements showed that the degrada-
tion kinetics was first-order. This discrepancy is another
example of single-cell behavior masked by population average.
Using both experimental and theoretical analyses, we showed
that the discrepancy was caused by the long-tailed distribution
of the initial protein level. Moreover, through simulation and
mathematical analysis, we demonstrated that the difference
between the single-cell and the population measurements
would exist even when all the degradation processes were
synchronized. Therefore, the discrepancy was not a result of
the asynchronous dynamics.

Furthermore, theoretical analysis showed that the kinetic
form of protein degradation can have a profound effect on the
parametric robustness of biological circuits (Buchler et al,
2005). The importance of accurate kinetic model for protein
degradation in predicting circuit properties had also been
highlighted (Kim and Tidor, 2003). Through computational
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Experimental results reveal discrepancy between protein degradation dynamics at the single-cells and population level. (A, C) Time-course measurements

of protein degradation for individual cells. The kinetics is zeroth-order for LAA-tagged GFP (A) and is first-order for ASV-tagged GFP (C). These data are representative
of more than four independent experiments. Insets: when plotted on the semi-log scale, the single-cell degradation dynamics is curved for LAA, because it is zeroth-
order, whereas the dynamics is linear for ASV. (B, D) The bulk degradation kinetics measured by fluorescence plate reader. The kinetics measured in bulk (A) is first-
order for both LAA and ASV. The error bar represents average of four samples. The solid line is an exponential fit of the data. The kinetics of one of the single-cell
measurements is also plotted for comparison (@ ). The data are normalized against the initial time point to facilitate comparison. Insets: when plotted on the semi-log
scale, the bulk degradation kinetics is close to linear (first-order), whereas the single-cell dynamics is curved (zero-order) for LAA only.

analysis, we showed that when the protein degradation
kinetics approaches the zeroth-order limit of the Michaelis-
Menten Kinetics, the parametric robustness of synthetic
oscillators can be significantly enhanced. Therefore, the
zeroth-order ssrA tag used in the gene-metabolic oscillator
reported previously (Fung et al, 2005) may improve the
robustness of the oscillation.

Results

The ssrA-tagged protein degradation exhibits a
zeroth-order kinetics

To determine the kinetic order of protein degradation, we fused
the corresponding codons of two different versions of the sstA
tags, AANDENYALAA (LAA) and AANDENYAASV (ASV), to
the coding sequence of the green fluorescent protein (GFP) and
expressed them under an IPTG-inducible promoter in glucose
medium. The fluorescence property of GFP provides a
convenient way for measurement, both at the population
and the single-cell level. After resuspension in acetate to wash
away IPTG and to induce a time lag in growth, the protein
degradation in the nondividing cells was measured using
quantitative time-lapse fluorescence microscopy. The LAA tag
is naturally found in E. coli and the ASV tag is a modified
version of LAA, which has a longer half-life (Andersen, 1998).
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Interestingly, the degradation dynamics of the LAA-tagged
GFP for individual cells displayed a zeroth-order Kkinetics
(Figure 1A), similar to the in vitro data reported previously
(Hersch et al, 2004). This result indicates that the protein level
is significantly higher than the K, of the protease in a
Michaelis-Menten kinetics. However, when measured in a
bulk solution, the degradation dynamics exhibited a first-order
kinetics (Figure 1B), which indicates that the protein level is
much smaller than the K.

To eliminate the potential effect of residual IPTG, we added
chloramphenicol, a translation inhibitor, to the media during
protein degradation measurements. The discrepancy between
single-cell and population kinetics still existed (Supplemen-
tary Figure S1), indicating that residual IPTG was not the cause
for the observed phenomenon. In addition, a quantitative
western blot showed that the initial GFP-LAA level at
population level is higher than 10 uM (data not shown), which
is much larger than the K, of CIpXP (75nM) for LAA-tagged
protein (Hersch et al, 2004). Thus, it is reasonable to
observe that the degradation kinetics of LAA-tagged protein
is zeroth-order.

In contrast, GFP tagged with ASV, which has a longer half-
life, displays first-order degradation kinetics at both the single-
cell and the population levels (Figure 1C and D). It is possible
that the LAA- and ASV-tagged proteins may be degraded by
different proteases. The more dominate protease for the

© 2007 EMBO and Nature Publishing Group
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Figure 2 Experimentally determined initial protein distribution and population average of single-cell data. (A) Initial protein distribution from the single-cell
measurements of GFP-LAA. The distribution is long-tailed and similar to the exponential distribution. The range ratio is over 160-fold. The black line represents a fitted
exponential distribution of the initial protein level. (B) The average of single-cell data from microscopy (+) also gives first-order kinetics, similar to the bulk
measurements using a fluorescence platereader (A). The data are normalized to the initial time point to allow comparison between different types of measurements.

degradation of LAA-tagged protein is ClpXP, whereas CIpAP
plays a minor role (Farrell et al, 2005). The last three amino
acids of the ssrA tag have been shown to be the binding site for
ClpX (Flynn et al, 2001). Therefore, proteases other than ClpXP
may also be responsible for the degradation of GFP-ASV. Using
the Keio-knockout collection (Baba et al, 2006), we showed
that the AclpX strain showed more proteolytic activity than the
AclpA strain (Supplementary Figure S2). This result suggests
that CIpAP plays a more significant role in the degradation of
ASV-tagged proteins. This finding may explain the difference
in the single-cell degradation kinetics between the LAA- and
ASV-tagged proteins.

The GFP-LAA level has a wide distribution

To prove the cause of the kinetic discrepancy between single-
cell and population measurements, we found that the initial
protein level distribution from the LAA experiment displays a
long-tailed distribution with a range over 160-fold (Figure 2A).
Averaging the single-cell data from the LAA experiment
produced a first-order degradation kinetics, consistent with
the measurements performed in bulk solutions (Figure 2B).
The large initial protein distribution could be caused by
plasmid instability. We tested this possibility by measuring the
percentage of cells that still retains the plasmid after induc-
tion with IPTG. After 2, 3, and 4h of induction, we plated
approximately 200 cells onto a LB plate without any antibiotics
and allowed the cells to growth overnight. We picked 100
colonies to test for ampicillin resistance (the antibiotic
resistance in the GFP expression plasmid) and all 100 colonies
grew in the presence of ampicillin. Therefore, plasmid lost
during the course of induction does not seem to be the cause of
the long-tailed distribution observed in our experiments.

To avoid overrepresentation of the cells expressing low
levels of GFP, we excluded the cells with low GFP level (first
bar in Figure 2A) in the analysis. This elimination decreased
range ratio to ~ 10 (first bar in Figure 2A), but did not alter the
masking effect by population diversity (Supplementary Figure
S3). Excluding more low-GFP cells further reduced the range
distribution and gradually eliminated the discrepancy between
single-cell and population measurements.

The non-Gaussian, long-tailed distribution of proteins was
also observed elsewhere (Krishna et al, 2005). The long-tailed
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distribution is proposed to be caused by the noise in molecular
partitioning during cell division and the noise in protein
synthesis rate (Krishna et al, 2005).

Discrepancy between single-cell and population
measurements is explained by wide distributions
of protein or protease levels

To explain how a population of cells exhibiting zeroth-order
kinetics at the single-cell level can create a first-order
kinetics at the population level, we developed a stochastic
model based on the Gillespie algorithm (Gillespie, 1976) to
simulate the proteolysis (see Supplementary Information, for
more detail). We first tested the hypothesis that initial
protein distribution resulted from protein expression noise is
the cause of this discrepancy. The initial protein level, a,,
varies for different cells following either an exponential or a
normal distribution, and the degradation kinetics for each
cell is modeled using the Michaelis-Menten kinetics with a
K., smaller than the protein level (zeroth-order degradation).
One thousand cells were used in each simulation. When a,
follows the exponential distribution, the population average
of the zeroth-order degradation kinetics from single-cell
becomes first-order, provided that the range of distribution
is sufficiently large (Figure 3A). This is not true, however,
for normally distributed a,, regardless of the range of the
distribution (Figure 3B).

We also investigated the role of protease distribution on the
discrepancy. We performed the simulation with an exponen-
tially or a normally distributed protease levels, but with no
initial protein distribution. Given a large enough range ratio,
both exponential and normal protease distributions caused
the population degradation dynamics to appear first-order
(Figure 3C and D). These results demonstrate that a wide
distribution in either the protein expression level or the
protease level could distort the protein degradation kinetics in
a population average.

As our experimental data displayed a wide (160-fold)
exponential distribution of initial proteins, this condition is
sufficient to give rise to the apparent first-order kinetics at the
population level from the zeroth-order single-cell dynamics.
The presence of protease distribution, however, might further
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Figure 3 Theoretical analysis of the discrepancy between single-cell and population measurements for LAA-tagged proteins. (A) Average of single-cell stochastic
simulation of the zeroth-order degradation kinetics with exponentially distributed initial protein levels. Each line is an average of 1000 cells with degradation kinetics that
falls into the zeroth-order regime. Different line represents different range ratio of the initial protein distribution. Range ratio is defined as the highest protein level divided
by the lowest protein level at time=0. When the range ratio becomes sufficiently large, the dynamics approaches first-order. (B) Average of single-cell stochastic
simulation of the degradation kinetics with normally distributed initial protein levels. With the same range ratios as exponential distribution, normal distribution of initial
protein levels does not approach first-order kinetics. (C, D) Average of single-cell stochastic simulation of the degradation kinetics with exponentially (C) and normally (D)
distributed protease levels. The initial protein level is the same for all cells in this simulation. Exponential protease distribution will also create first-order kinetics using the
same range ratio as the exponential initial protein distribution in (A). With normal protease distribution, high- and low-range ratio causes deviation from first-order kinetics

at the population level.

contribute to the masking effect as well. In contrast, the first-
order degradation kinetics in single cells will produce first-
order degradation kinetics at the population level, regardless
of the population diversity.

Analytical modeling of the protein degradation
kinetics

We constructed an analytical model to examine the effect of
initial protein level distribution on the population Kinetics (see
Supplementary Information for more detail). For simplicity,
we let the zeroth-order protein degradation rates be identical in
each cell. The single-cell zeroth-order degradation kinetic is
represented by

P(a,, kq,t) = ao, — kat;  t<ao/kq

P(ao, kq,t) =0; t>ao/kyq,

where P(a,, kg, t) is the concentration of the protein, a, is the
initial protein concentration, kq is the degradation rate and t is
the time. We first allowed the initial protein level, a,, to follow
an exponential distribution ranging from a to b. When
averaged over all cells, the degradation kinetics is separated
into three regions: (i) no cell has reached the zero protein level
(kgt<a), (ii) some cells have reached the zero protein
boundary (a<kgt<b), and (iii) all the proteins are degraded
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in all cells (kqt>b). The first region will always be zeroth-
order, and the third region will always be a flat line (slope
equals to zero). The second region, however, is exponential in
time. The size of the second region depends on the range of
distribution. In the limiting case where the distribution is
infinitely wide, a—0 and b— o, then we have
<P>(t) =1le k! which is exactly an exponential form with
the initial concentration corresponding to the mean of the
initial GFP distribution. Thus, the range of the exponential
distribution defines the deviation from the first-order kinetics.
Because the range of distribution of the initial GFP level
observed in our single-cell measurement is over 160-fold
(Figure 2A), it is sufficient to give rise to the first-order kinetics
that we obtained from bulk measurement. When the initial
protein level follows a normal distribution, the population
average contains an exponential term raised to ¢, plus other
time-dependent terms (Supplementary Information). There-
fore, normally distributed initial protease level will not yield
exact first-order population degradation kinetics.

We also derived an analytical solution for the case where the
degradation rate, which is related to the protease level, follows
an exponential or a normal distribution (Supplementary
Information). The resulting analytical solution of the popula-
tion dynamics yields a nonlinear combination of exponential
terms. A combination of initial protein and protease dis-
tribution can also create an apparent first-order population
degradation kinetics.

© 2007 EMBO and Nature Publishing Group
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Figure 4  Effect of zero-order degradation kinetics on the metabolator. (A) Network diagrams of the metabolator. The promoter ginAp2 is activated by AcP. The
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Zeroth-order protein degradation kinetics
enhances the robustness of gene-metabolic
oscillator

We also investigated the effect of protein degradation on
synthetic oscillators. We used the metabolator (Fung et al, 2005)
as an example, which is a synthetic gene-metabolic oscillator
that integrates transcriptional regulation into the metabolism to
generate oscillation. The metabolator is consisted of a flux-
carrying network with two interconvertible metabolite pools:
Acetyl-CoA (AcCoA) and Acetyl-phosphate (AcP) (Figure 4A).
These two pools of metabolites are catalyzed by two enzymes,
phosphotransacetylase (pta) and acetyl-CoA synthetase (acs).
The expression of pta and acs are negatively and positively
regulated by AcP, respectively. The oscillation dynamics of the
metabolator is driven by the glycolytic flux. The integration of
genetic and metabolic control is a hallmark found in many
natural oscillators (Hirota et al, 2002; Rutter et al, 2002; Rudic
et al, 2004; Turek et al, 2005).

In the original metabolator model (Fung et al, 2005), protein
degradation was described as a first-order process, which was
lumped together with the term describing dilution by cell
growth. To investigate the effect of protein degradation
kinetics, we modified the original model by including a

Michaelis-Menten  kinetics for protein degradation,
R4 = —%, with a K, of 75nM (Hersch et al, 2004) (see
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Supplementary Information). Thus, this current model in-
cludes a protein degradation kinetics that falls in the zeroth-
order regime and a first-order protein dilution due to cell
growth. When the zeroth-order degradation rate, kq o, is equals
to zero, the current model reduces to the original model where
only the first-order degradation term exists. Linear stability
analysis was then used to map the parametric loci that give rise
to Hopf bifurcation (See Supplementary Information for
details). Figure 4B shows that by including the zeroth-order
process, the parameter space of oscillation significantly
increased. When k4 (=0, the x-axis represents the range of
first-order degradation rate, kg1, at which oscillations will
occur with the original model. Increasing kg4 significantly
enlarges the parameters space that leads to oscillation.

We also explored the effect of the zeroth-order degradation
kinetics on other parameters of the metabolator. We chose the
parameters for the zeroth-order degradation based on litera-
ture data (Hersch et al, 2004; Farrell et al, 2005). The phase
diagram in Figure 4C shows that the zero-order degradation
kinetics gives a larger oscillatory region than the first-order
degradation kinetics. A point on the phase diagram is chosen
so that it falls within the zero-order boundary, but outside of
the first-order boundary. Using this set of parameters, the
model with first-order degradation kinetics reaches a stable
steady state (no oscillation), whereas the model with zero-
order degradation displays oscillation (Figure 4D).

Molecular Systems Biology 2007 5
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As the actual kinetic parameters for various components in
the synthetic circuit are unknown, the enlarged parameter
space for oscillation enhances the robustness of the design in
the presence of uncertainty. The enlarged parameter space for
oscillation when zeroth-order protein degradation occurs is
attributed to the insensitivity of the degradation rate to the
protein level. In this situation, proteins degrade at the same
rate even when the concentration is low, thus causing the
protein level to pass through its stationary point. This
insensitivity to the protein level control is more likely to
generate instability and oscillation. First-order degradation,
however, adjusts the degradation rate according to the protein
concentration. Hence, the first-order degradation is more likely
to maintain a steady state.

Discussion

This work demonstrates a discrepancy between single-cell and
population measurements. Typically, single-cell measure-
ments are important when multimodal distribution or
asynchronous dynamics exists. We showed that even single-
modal and synchronous single-cell dynamics can be masked
by population heterogeneity, depending on the initial protein
or the protease distribution. When the initial protein or
protease level exhibits a wide exponential distribution, the
zeroth-order protein degradation in single cell will appear to be
first-order as a population average. In the example shown here,
GFP-LAA level follows an exponential distribution with a wide
dispersion (160-fold), which is sufficient to explain the first-
order kinetics observed in population. Coupling with protease
distribution can also create first-order population kinetics from
zeroth-order single-cell kinetics.

The phenomenon described here also can explain differ-
ences between in vivo and in vitro protein degradation
measurements. For example, the K, value of CIpAP in vivo
(Farrell et al, 2005) has been estimated to be 10-fold higher
than the K, value measured in vitro (Flynn et al, 2001). This
difference may be caused by the masking effect of population
heterogeneity. Therefore, when considering the differences
between in vivo and in vitro measurement, population
heterogeneity might also need to be accounted for.

Zeroth-order kinetics had been shown to generate ultra-
sensitivity in enzymatic systems such as isocitrate dehydro-
genase (LaPorte and Koshland, 1983) and glycogen
phospholyase (Meinke et al, 1986). The ultrasensitivity
created by zeroth-order kinetics had been proposed to play
an important role in developmental threshold (Goldbeter and
Wolpert, 1990) and the responses to morphogen gradients in
Drosophila embryonic ventral ectoderm (Melen et al, 2005).
Here, we show that zeroth-order protein degradation expands
the parameter space for oscillation in the metabolator (Fung
et al, 2005). Interestingly, the LAA ssrA-tagged protein
degradation, which was used in the metabolator (Fung et al,
2005), displays a zeroth-order kinetics when measured in
single cells and may enhance the robustness of the synthetic
circuit. However, the exact model for oscillation could not be
ascertained until all kinetics involved are determined.

Zeroth-order degradation is generated when the level of
protein is significantly higher than the K, of the protease.

6 Molecular Systems Biology 2007

Hence, the protein level does not have to be high per se to
achieve zeroth-order degradation. In addition, protein locali-
zation can further enhance the local concentration of the
protein relative to the protease, thus allow the degradation
kinetics to occur in the zeroth-order regime even when the
number of protein per cell is lower than the K,,. Zeroth-order
degradation by ClpXP was also observed in the degradation of
CtrA, a master regulator in Caulobacter crescentus cell-cycle
regulation (Chien et al, 2007). The activity of CtrA is regulated
by proteolysis and phosphorylation (Jenal and Fuchs, 1998;
Holtzendorff et al, 2004; Biondi et al, 2006). A recent in vitro
experiment has shown that CtrA degradation by ClpXP
displays a low K,;, value which is comparable to its counterpart
in E. coli, when the adaptor molecule SspB is present (Chien
etal, 2007). Therefore, CtrA can potentially be degraded with a
zeroth-order kinetics inside C. crescentus and enhance the cell-
cycle oscillation as well.

Materials and methods

Strains and plasmids

GFPus.1-1aa and GFPu3.1-asv Was cloned into pZE12-luc between
Kpnl and Xbal restriction sites through PCR cloning, with the
degradation sequence flanked at the end of the reverse primer and
transformed into DH5aZ1 (both pZE12-luc and DHS5aZ1 are gifts of
Lutz and Bujard (1997)). For measuring the degradation dynamics,
PZE12-gfpmu.1_aav Was then transformed into BW25113, which
contains a native copy of lacl, along with pTB114, a pCL1920-derived
plasmid with a copy of lacI9.

Single-cell time-lapsed microscopy

Overnight cultures in M9 minimal media supplemented with 0.5% (w/v)
glucose, 1 mM MgSOy, 1pg/ml vitamin Bl, 100 uM CaCl,, 100 pg/ml
ampicillin, and 50 pg/ml of spectinomycin, were diluted into 10 ml of
fresh media in a shake flask at initial OD 0.1 and grew for about 20 min
before addition of 2 mM IPTG at 37°C. After 1-3 h of induction, 1 ml of
cells was harvested, (OD ~0.2-0.8) washed once, and resuspended in
M9 minimal media with 20 mM of acetate with or without chloram-
phenicol. During this period, no protein synthesis occurred and GFP
degradation kinetics was measured. The cells were then transferred to
an agar pad containing M9 minimal media with 20mM acetate,
supplements and antibiotics, and seal with a coverslip, as described in
Rines et al (2002). Time-lapse microscopy was performed using a
Nikon TE2000-S microscope with a x 60 DIC oil immersion objective.
Images were captured using a Cascade:650 from Roper Scientific
controlled through Metamorph software. The temperature of the
samples was maintained at approximately 37°C by an objective heater.
Brightfield (0.1s) and epifluorescence (0.1s) images were captured
every 1-5min, with both light sources shuttered between exposures.
The nutrient downshift caused a growth lag for around 3 h (Kao et al,
2004), thus remove the effects of cell division from proteolysis. In a
typical experiment, 100-200 cells were monitored.

Image analysis

The single-cell protein degradation Kkinetics was extracted by
automated image analysis software. The time-series bright field
images were used to generate a region mask for each cell. To create
the mask, we first utilized the background flattening and shading
correction function by the Metamorph software. The corrected images
were then converted to binary images with a predefined threshold and
segmented by custom-made software in MATLAB (the Mathworks
Inc.). An area filter was applied to all segmented region to remove
small areas caused by noise. An iterative algorithm was applied to
track individual cells along time-series images and enumerate each

© 2007 EMBO and Nature Publishing Group



tracked region. Finally, the numbered region masks were applied to the
fluorescent images to obtain the mean fluorescent intensity of each cell
at each time point.

Population measurements using fluorescence
microplate reader

GFP expressed cultures for the bulk degradation kinetics experiments
were prepared in the same way as in the experiments using time-lapsed
microscopy. The cells were in the same media and initial cell density as
the microscopy experiment and induced with 2 mM of IPTG until the
OD is around 0.2-0.8. When the cells were ready for the experiment,
the cells were washed once and either diluted or concentrated to
OD~0.3. A 200 pl portion of the diluted culture was transferred to 96-
wells plates (Corning) with black walls and clear bottom. For each
experiment, 4-8 wells were used. A 50 ul portion of silicon oil was
added to each well to prevent evaporation (Dekel and Alon, 2005). The
plate was then incubated in the microplate reader (Molecular Device,
SpectraMax Gemini XS) at 37°C with high-intensity continuous
shaking. Fluorescence measurements were taken every 3-5 min.

Mathematical modeling

The deterministic model of metabolator was simulated with Matlab
and Mathematica. The phase diagram was generated with MatCont
(Dhooge et al, 2003). The stochastic modeling was performed using
Matlab. The detail of the model can be found in Supplementary
Information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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