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Advances in cellular and molecular interrogation of kidney tissue have ushered a new
era of understanding the pathogenesis of kidney disease and potentially identifying
molecular targets for therapeutic intervention. Classifying cells in situ and identifying
subtypes and states induced by injury is a foundational task in this context. High
resolution Imaging-based approaches such as large-scale fluorescence 3D imaging
offer significant advantages because they allow preservation of tissue architecture and
provide a definition of the spatial context of each cell. We recently described the
Volumetric Tissue Exploration and Analysis cytometry tool which enables an interactive
analysis, quantitation and semiautomated classification of labeled cells in 3D image
volumes. We also established and demonstrated an imaging-based classification using
deep learning of cells in intact tissue using 3D nuclear staining with 4′,6-diamidino-
2-phenylindole (DAPI). In this mini-review, we will discuss recent advancements in
analyzing 3D imaging of kidney tissue, and how combining machine learning with
cytometry is a powerful approach to leverage the depth of content provided by high
resolution imaging into a highly informative analytical output. Therefore, imaging a small
tissue specimen will yield big scale data that will enable cell classification in a spatial
context and provide novel insights on pathological changes induced by kidney disease.

Keywords: 3D imaging, cytometry analysis, kidney injury, artificial intelligence, deep learning

INTRODUCTION

Understanding the biology and function of an organ requires detailed assessment of various cells
and structures in the intact tissue environment (Asp et al., 2019; Stewart et al., 2019; Barwinska
et al., 2021). This is particularly needed for the kidney, an organ with complex architecture where
zonation of specialized cells and structures is directly linked with physiological function (Hato
et al., 2013; El-Achkar and Dagher, 2015; Berry et al., 2017; Barwinska et al., 2021; Ferkowicz
et al., 2021). Furthermore, disease states are associated with alteration in tissue architecture and
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changes in cell distribution, activity, and/or state (Wilson et al.,
2019; Lake et al., 2021; Muto et al., 2021). Technological
advancements such as single cell RNA sequencing that provide
high content information at the cell and molecular levels have
enhanced our ability to further classify cells into subtypes,
and study alterations in cell states, which could be linked to
disease pathogenesis and outcomes (Park et al., 2018; Lake et al.,
2019, 2021; Wilson et al., 2019; Menon et al., 2020). Innovative
approaches in high content and high-volume imaging of kidney
tissue are also rapidly evolving (Winfree et al., 2017a, 2018, 2021;
Singh et al., 2019; Black et al., 2021a,b; Ferkowicz et al., 2021; Lipp
et al., 2021; Liu et al., 2021; Melo Ferreira et al., 2021; Neumann
et al., 2021), and these advancements are urgently needed to: (1)
provide a platform of discovery based on imaging data, thereby
delivering a unique context within an intact tissue environment
and (2) anchor and interpret in situ emerging findings from
technologies that lose the spatial context (Winfree et al., 2021).
In the last decade, we saw an evolution of imaging kidney tissue
from a qualitative toward a highly quantitative science (Winfree
et al., 2017b, 2021; Singh et al., 2019; Martins et al., 2020;
Black et al., 2021a,b; Melo Ferreira et al., 2021; Neumann et al.,
2021). This progress has been enhanced by the advancements
in various modalities of microscopy that could perform high-
resolution large-scale imaging. The ability to image multiple
labels simultaneously (multiplexing) has significantly increased
the depth of content acquired (Singh et al., 2019; Woloshuk
et al., 2020; Ferkowicz et al., 2021; Melo Ferreira et al., 2021;
Neumann et al., 2021). Furthermore, imaging in all 3 dimensions
using optical sectioning has allowed faithful preservation of tissue
architecture and spatial context (Puelles et al., 2016; Klingberg
et al., 2017; Winfree et al., 2017b; Ferkowicz et al., 2021; Lake
et al., 2021; Liu et al., 2021). These advancements were catalyzed
by the availability of novel software tools that allow streamlined
image processing and quantitative analysis (Dao et al., 2016;
Winfree et al., 2017a; Czech et al., 2019; Stoltzfus et al., 2020).
These significant developments were discussed during the 2021
Indiana University O’Brien Center for Advanced Microscopy
Analysis workshop (Dunn et al., 2021).

In this mini-review we will focus on advancement in
large scale 3D imaging of kidney tissue and analysis using
tissue cytometry with the Volumetric Tissue Exploration and
Analysis (VTEA) software tool (Figure 1; Winfree et al.,
2017b; Ferkowicz et al., 2021). We will also discuss how
incorporating novel machine learning approaches and algorithms
with tissue cytometry has enhanced the ability to expand and
transform the analysis of image volumes toward discovery
(Winfree et al., 2021). Particularly, developing deep neural
networks that allow classification of cells independent of specific
labels will not only increase the power and usefulness of
cytometry in classifying cells based on imaging data (Woloshuk
et al., 2020), but will also enable unbiased and non-exhaustive
discovery of cell subtypes in situ. These novel subtypes can
then be visualized and mapped back in the image volumes,
which will allow biological interpretation. Therefore, this could
become a unique opportunity whereby the learning could
become interpretable. Furthermore, when large scale 3D imaging
is coupled with advanced computational tools that allow

processing of large image volumes, hundreds thousand cells
or more could be analyzed from a single tissue specimen,
thereby allowing the generation of big data from these
imaging experiments.

TISSUE CYTOMETRY

Tissue cytometry refers to the process of surveying all cells
within an image volume of a tissue, and transforming cells
into “analysis-ready” objects with associated variables based
on labels (such as fluorescence marker intensities) or spatial
parameters. Frequently, the nuclei are used as fiduciaries
for the cells because: (1) nuclear staining can be easily
incorporated into most experimental designs, and (2) nuclei can
be consistently segmented using several standard approaches
(Winfree et al., 2017b, 2021; Dunn et al., 2019). The segmented
nuclei representing individual cells could then be used in an
analytical pipeline that allows quantitative analysis based on
the various parameters associated with each cell. The simplest
form of analysis is a plot displaying 2 dimensions in the x
and y axis, where specific gates could be drawn based on a
threshold such as fluorescent label intensity (Figure 1). Two
key components of tissue cytometry are obtaining quantitative
measurements of the cell populations of interest and direct
visualization by mapping back the cells of interest into the
image volume. The latter allows on-the-spot validation of the
“choice” of cells (whether by direct gating or other methods) and
biological interpretation (particularly when specific distribution
patterns start to emerge). Multiple software tools (open-source
or commercial) have been developed to perform image analysis,
and can be used for tissue cytometry (Gerner et al., 2012;
Winfree et al., 2017a; Stoltzfus et al., 2020, 2021; Stirling et al.,
2021). We have described the VTEA tool (Winfree et al., 2017b),
which was applied specifically to perform tissue cytometry
on 3D image volumes of kidney tissue (Figure 1). Potential
advantages of VTEA include: open-source as a plugin to ImageJ,
a single platform that allows image processing, segmentation and
cytometry analysis, extensibility and easy incorporation of novel
computational approaches, leveraging existing ImageJ tools for
image analysis, interactive interplay between the image volume
and the analytical process used. We have used tissue cytometry
with VTEA in various settings such as to study the abundance
and distribution of epithelial and immune cells in the mouse
and human kidney (Winfree et al., 2017b; Ferkowicz et al.,
2021; Lake et al., 2021), understand the association of epithelial
and immune cells to injury in the setting of human acute and
chronic kidney disease and stone disease (Lake et al., 2021),
quantify and localize the activation of c-JUN in the mouse
kidney (Lafavers et al., 2019), study changes in lymphatics in
various models of kidney injury (Black et al., 2021a,b). Large
scale 3D imaging and tissue cytometry with VTEA is a key tissue
interrogation technology used by the Kidney Precision Medicine
Project (KPMP) consortium to extract cellular and molecular
information from kidney biopsies of patients with kidney disease
(De Boer et al., 2021; El-Achkar et al., 2021; Lake et al., 2021).
Therefore, the application of tissue cytometry in analyzing kidney
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FIGURE 1 | Volumetric Tissue Exploration and Analysis (VTEA) basic workflow. VTEA is a user-friendly platform that allows interactive exploration of image volume
(1) where image processing, segmentation, analysis and exploration could occur in a single workspace (2). In the analytical plot, each dot represents a cell with
various features. The simplest analysis is in the form of a 2D scatter plot displaying features on the x and y axis (3). Gates can be drawn to chose and quantify a
specific population of cells that can be directly visualized in the image volume (4). Conversely, regions of interest can be drawn in the image (5) to locate cells of
interest in the scatter plot (6). This process allows for an explorative interplay between the image and the analytical space. Red arrowhead shows different tabs
available in the workspace. Figure adapted and used with permission from Winfree et al. (2017b).

tissue is expanding, and has proven to be complementary to other
technologies that do not preserve the tissue architecture.

TISSUE CYTOMETRY AND MACHINE
LEARNING

Since multiple parameters can be extracted for each single
cell using high resolution multiplexed imaging, advancing the
analytical approach to take into account the effect of all
these parameters in thousands of cells becomes a big data
problem. It is then reasonable to incorporate machine learning
algorithms to help cluster, classify and visualize cell subtypes
into the analytical space. Indeed, the extensibility of VTEA to
incorporate available libraries of machine learning algorithms
is a significant development that enables a semi-automated
unsupervised classification of cells (Winfree et al., 2022). We
demonstrated that this approach could be useful in classifying
cells from reference kidney tissue (Woloshuk et al., 2020). In
addition, the ability to understand cell-cell and cell-structure

interactions could be enhanced by performing neighborhood
analysis, as implemented, for example in CytoMAP or VTEA
(Stoltzfus et al., 2020; Lake et al., 2021; Winfree et al., 2022).
We recently used VTEA to perform a cell centric neighborhood
analysis on >1.2 million cells from various kidney biopsies of
patients with kidney disease (Lake et al., 2021). This approach
uncovered spatial associations that were validated by other
transcriptomics-based technologies. One of the key advantages
of performing such cell-centric neighborhood analysis (percent
of cells within a distance from each cell) is the ability to merge
analysis from various specimens into one analytical space, since
such analysis is by default normalized (Lake et al., 2021).

Multiplexing various probes into one imaging experiment
offers significant advantages for cell classification based on
particular labels. For example, using highly multiplexed detection
such as imaging mass cytometry or co-detection by indexing
allows the classification of multiple cell subtypes (Singh et al.,
2019; Melo Ferreira et al., 2021; Neumann et al., 2021). However,
multiplexing has limitations, particularly in its application in 3D
and its practicality when kidney tissue is of limited availability
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FIGURE 2 | Unique nuclear staining signatures of various kidney cell types. DAPI staining alone reveals distinct signatures of chromatin condensation states and
nuclear morphology of (a) thick ascending limbs (TAL), (b) proximal tubules (PT), (c) collecting ducts (CD), (d) T-cells, (e) neutrophils, (f) eosinophils, and (g)
endothelial cells. Scale bar = 5 µm.

(Winfree et al., 2021). In addition, using pre-specified labels
limits the potential of agnostic discovery of novel cell types and
subtypes based on imaging data. To circumvent these limitations,
we recently devised a deep learning approach to classify cells
based only on nuclear staining (Woloshuk et al., 2020). The
premise is based on the fact that nuclear staining has unique
features for each cell type (Figure 2) and its changes could
represent alterations in cell states (Gustafsdottir et al., 2013;
Eulenberg et al., 2017). Therefore, these studies are confined
within a biologically interpretable context (Woloshuk et al.,
2020). This work presented us also with a unique opportunity
to test several unexplored questions such as: is 2D enough or do
we need the information in 3D image volumes of nuclei? Can
we use classical machine learning classifiers that extract features
or do a deep neural network work better? Does the context of
the nucleus (i.e., neighboring nuclei) improve cell classification
accuracy? Our results showed that we could successfully classify
cells from human reference kidneys into eight different classes
based on machine learning approaches, but the highest accuracy
was achieved with a 3D deep neural network trained on 3D
image volume of nuclei with context (Woloshuk et al., 2020). Our
efforts are currently to extend this approach to kidney disease,
and use the 3D leaning network to uncover cell subtypes induced
by injury. This could be done by using various approaches.
For example, the features extracted by the 3D network from
the nuclear staining could be used to reclassify and visualize
cells using tissue cytometry. Importantly, novel machine learning
tools could be applied on these features to achieve non-exhaustive
learning and agnostically discover new cell subtypes that can be
further vetted using tissue cytometry. This will be discussed next.

LEVERAGING MACHINE LEARNING FOR
AGNOSTIC DISCOVERY

Agnostic discovery is the exploration process for the
identification and localization of novel kidney cell subtypes

induced by injury. In an agnostic discovery scenario, obtaining
labeled cell examples for the injury cell subtypes is a hard task
for many reasons: first, the nature of injury to the morphology
of kidney cells due to disease is unknown so accurate labeling
is difficult; second, we may not yet have a suitable marker for
such cells, which makes us unable to correctly label them using
cytometry; finally, due to lack of knowledge regarding the injury
it is even hard for us to know the definite count of number
of possible injury subtypes. While lack of labeled data makes
agnostic discovery a difficult task, recent advances in supervised
classification can help us in this regard (Figure 3).

In supervised classification, identifying novel classes (example:
novel injury states) for which no examples are available in the
training data (ground truth datasets used in training machine
learning classifier) has received wide-spread attention from
the machine learning community in recent years. There are
different approaches for solving such machine learning tasks.
Most prominent among these is called zero-shot learning (ZSL),
which is well studied by the deep learning community (Romera-
Paredes and Torr, 2015; Zhang and Saligrama, 2015). ZSL is
also becoming a promising direction in the medical domain. In
recent works, ZSL has been used in diagnosis and classification of
disease in chest radiographs (Hayat et al., 2021; Paul et al., 2021).
Bayesian non-exhaustive classification is another prominent
direction (Görür and Edward Rasmussen, 2010; Ben-Yosef and
Weinshall, 2018).

For zero-shot learning, the number of novel classes along
with side-information (also known as semantic information)
about all the classes needs to be provided upfront. During
training, the learning algorithm utilizes the side information
to compensate for the lack of labeled data for the unknown
class. Spatial neighborhood data around a cell can be used as
side-information. For instance, we expect that the concentration
of inflammatory immune cells (such as neutrophils or T-cells)
around injured kidney cells would be higher, and hence, such
side information will be relevant for classifying injured kidney
cell subclass instances. Another potential candidate for side
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FIGURE 3 | Agnostic discovery using machine learning and tissue cytometry. Proposed approach to use imaging data of cell nuclei in machine learning workflows
that allow non-exhaustive classification of new classes that could be visualized and further analyzed using tissue cytometry. Green arrows point to the two proposed
approaches: zero-shot and Bayesian non-exhaustive learning.

information is to use data from alternate modality, say, single cell
RNA sequencing and/or spatial transcriptomics data. Using such
data will not only help us identify novel kidney cells, but also will
provide more information regarding the pathways that control
the injury progression in the kidney cells over time. A challenge
of zero-shot learning is that it requires that the number of
novel classes is known during training time, which is often
not feasible for agnostic discovery. In that case, Bayesian non-
exhaustive classification can be used. Using Bayesian technique,
it learns some parametric probability distribution for the known
classes. During inference, it identifies instances which are far
away from the distribution of the known classes and create
a new class along with its probability distribution. Generally,
Dirichlet process Gaussian Mixture Model is used for non-
exhaustive classification (Görür and Edward Rasmussen, 2010;
Zhuang and Al Hasan, 2021). The challenge in Bayesian non-
exhaustive classification is that their performance becomes very
poor if the assumed data distribution does not follow the actual
data distribution.

CHALLENGES FOR IMAGE-BASED
CLASSIFICATION IN HUMAN KIDNEY
BIOPSIES

The novel imaging-based approaches discussed to characterize
cell types and subtypes in human kidney tissue specimens are
very promising. However, it is also important to discuss some
of the challenges and limitations that need to be addressed to

make these methodologies more robust and accessible. First,
variation in tissue processing practices and fixation may alter
the quality of the tissue and the downstream imaging data.
The effects of changes in tissue processing on the ability
to classify cells using tissue cytometry and machine learning
are unknown. Fortunately, collaborative studies (such as the
KPMP consortium) that are focused on interrogating kidney
tissue biopsy specimens are rigorously standardizing tissue
acquisition and processing, which would allow to set standards
and perform comparison with data acquired from archived
tissues originating from other sources (De Boer et al., 2021;
El-Achkar et al., 2021). Second, it is possible that some of
the changes in cell states that are induced by disease may not
be accompanied by significant alteration in nuclear activity or
morphology. Therefore, expanding classification strategies to
include another common marker that tracks changes in cell
morphology and activity in the cytoplasm such as F-actin will
likely increase the sensitivity and dynamic range of capturing
subtle changes in cell states. Finally, performing imaging and
data analysis is frequently limited to centers with appropriate
expertise and resources, which may limit accessibility to the
broader research community. Furthermore, the computational
breadth needed for data access, storage and transfer may also be a
restrictive factor. Therefore, increasing the accessibility of these
approaches by using and disseminating open-source software,
public imaging data repositories and accessible cloud-based
imaging visualization and analysis tools will provide reasonable
first steps to make these innovative tools more reachable by the
broader community.
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CONCLUSION AND FUTURE OUTLOOK

We highlighted in this mini-review advances in tissue cytometry
of kidney tissue, emphasizing novel analytical approaches
that transform imaging-based data into highly quantifiable
big data outputs that can also be used for discovery while
incorporating the richness of the spatial context. These advances
are crucial to understand kidney disease, which frequently
displays regional heterogeneity at the cellular and molecular
levels. Leveraging novel machine learning approaches will allow
unbiased discoveries such as novel cell types and subtypes
which are spatially anchored and linked to other features that
allow biological interpretation. In the future, we anticipate that
with relatively few labels, the combination of tissue cytometry
with machine learning will enable a form of enhanced “virtual
multiplexing,” which could classify most cell types in situ within
kidney tissue and allow the agnostic discovery of novel cell types

based on imaging. For the kidney, imaging and analyzing tissue
will certainly become a very important issue!
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