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Abstract
Background Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and sleep 
symptoms in Parkinson’s disease (PD). However, the long-term effects of STN-DBS on sleep and its relationship with QoL 
outcome are unclear.
Methods In this prospective, observational, multicenter study including 73 PD patients undergoing bilateral STN-DBS, we 
examined PDSleep Scale (PDSS), PDQuestionnaire-8 (PDQ-8), Scales for Outcomes in PD-motor examination, -activities 
of daily living, and -complications (SCOPA-A, -B, -C), and levodopa-equivalent daily dose (LEDD) preoperatively, at 5 
and 24 months follow-up. Longitudinal changes were analyzed with Friedman-tests or repeated-measures ANOVA, when 
parametric tests were applicable, and Bonferroni-correction for multiple comparisons. Post-hoc, visits were compared with 
Wilcoxon signed-rank/t-tests. The magnitude of clinical responses was investigated using effect size.
Results Significant beneficial effects of STN-DBS were observed for PDSS, PDQ-8, SCOPA-A, -B, and -C. All outcomes 
improved significantly at 5 months with subsequent decrements in gains at 24 months follow-up which were significant for 
PDSS, PDQ-8, and SCOPA-B. Comparing baseline and 24 months follow-up, we observed significant improvements of 
PDSS (small effect), SCOPA-A (moderate effect), -C, and LEDD (large effects). PDSS and PDQ-8 improvements correlated 
significantly at 5 and 24 months follow-up.
Conclusions In this multicenter study with a 24 months follow-up, we report significant sustained improvements after bilat-
eral STN-DBS using a PD-specific sleep scale and a significant relationship between sleep and QoL improvements. This 
highlights the importance of sleep in holistic assessments of DBS outcomes.
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LEDD  Levodopa equivalent daily dose
PDSS  Parkinson’s Disease Sleep Scale
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mary Index
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SCOPA-A, -B, and -C  Scales for outcomes in PD-motor 
examination, activities of daily 
living, and motor complications

STN  Subthalamic nucleus

Introduction

Subthalamic nucleus (STN) deep brain stimulation (DBS) 
is a safe and effective treatment option improving quality 
of life (QoL) [18], motor [28], and non-motor symptoms 
(NMS) [14] in patients with advanced Parkinson’s disease 
(PD) who suffer from motor complications or pharmacother-
apy-refractory tremor [46].

Members of the Non-motor Parkinson’s Disease Study Group of 
the International Parkinson’s and Movement Disorders Society are 
listed in the Acknowledgement section.

 * Haidar S. Dafsari 
 haidar.dafsari@uk-koeln.de

Extended author information available on the last page of the article

http://orcid.org/0000-0001-8849-4233
http://crossmark.crossref.org/dialog/?doi=10.1007/s00415-020-09743-1&domain=pdf


1831Journal of Neurology (2020) 267:1830–1841 

1 3

In patients with PD, sleep symptoms are common and 
associated with QoL impairments [44]. Previous studies, 
using PD-specific clinician-rated scales [14] and patient-
based self-reported questionnaires [4, 25, 37, 38], have pro-
vided evidence for beneficial effects of STN-DBS on sleep 
symptoms [38]. More recently, a study by Choi et al. found 
significant sustained improvements in sleep disturbances up 
to 3 years after STN-DBS [6]. But the study was limited by 
the single center design of their study, the cohort sample size 
(45 patients completed the last follow-up, and the mean dis-
ease duration of patients (17.2 years ± 6.2), which is longer 
than most DBS studies [12, 18, 49, 51].

These results were supported by studies using polysom-
nography which showed an improvement of sleep architec-
ture [1, 7, 35], time of wakefulness after sleep onset [1, 7, 
37], time of REM sleep time [35, 37], and periodic limb 
movements [3]. However, long-term beneficial effects on 
sleep symptoms and if these relate to an improvement of 
QoL after STN-DBS have not been studied sufficiently. A 
study by Lyons et al. reported negative results for daytime 
sleepiness at 24 months follow-up after STN-DBS but did 
not investigate overall quality of sleep and nocturnal sleep 
symptoms [30].

Here we report subjective sleep symptoms at 5 months 
and 24 months follow-up in patients with PD undergoing 
STN-DBS. We hypothesized that sleep symptoms signifi-
cantly improve from baseline to 24 months follow-up and 
that this beneficial effect is significantly correlated with an 
improvement of QoL after STN-DBS.

Materials and methods

Design and ethical approval

This is an ongoing, prospective, observational, multicenter, 
international study including consecutively enrolled patients 
from three DBS centers (Cologne, Manchester, and London) 
as part of the NILS study [9]. It was authorized by local eth-
ics committees (United Kingdom: NRES SouthEast London 
REC3, 0000010084; 10/H0808/141; Cologne 012–145, Ger-
man Clinical Trials Register: #6735) and was carried out in 
accordance with the Declaration of Helsinki. All patients 
gave written consent prior to study procedures.

Participants

PD diagnosis was based on the UK Brain Bank criteria and 
DBS screening was carried out according to guidelines 
of the International PD and Movement Disorders Society. 
Patients were considered eligible for DBS treatment if the 
levodopa test resulted in > 30% improvement of motor exam-
ination assessed by the Unified PD Rating Scale-III. Patients 

were excluded from DBS treatment if clinically relevant neu-
ropsychological or neuropsychiatric disorders were found in 
assessments by a multi-disciplinary team including special-
ized neuropsychiatrists and neuropsychologists.

Clinical assessment

Patients were assessed at baseline (MedON) and at 5 and 
24 months follow-up visits after surgery (MedON/StimON) 
with following scales:

(1) Sleep symptoms: the patient-based self-reported PD 
Sleep Scale (PDSS) was employed to investigate fif-
teen disease-specific aspects of sleep rated on a visual 
analog scale (item 1: ‘Overall sleep quality’, item 2: 
‘Sleep onset insomnia’, item 3: ‘Sleep maintenance 
insomnia’, item 4 ‘Nocturnal restlessness in legs or 
arms’, item 5: ‘Fidgeting in bed’, item 6: ‘Distressing 
dreams at night’, item 7: ‘Distressing hallucinations 
at night’, item 8: ‘Nocturia’, item 9: ‘Urinary inconti-
nence due to motor OFF’, item 10: ‘Wakefulness due 
to numbness/tingling’, item 11: ‘Wakefulness due to 
painful muscle cramps’, item 12: ‘Early waking due to 
painful posturing’, item 13: ‘Tremor on wake up’, item 
14: ‘Sleep refreshment’, item 15: ‘Unexpectedly fall-
ing asleep at daytime’). The clinimetric properties of 
the overall PDSS and its specific items and their strong 
relationship with other sleep–wake disorder scores (e.g. 
the strong correlation between PDSS item 15 and the 
Epsworth Sleepiness Scale) have been well established 
[5, 50]. PDSS items respectively range from 0 (maxi-
mum impairment) to 10 (no impairment). Therefore, 
the PDSS total score ranges from 0 (maximum impair-
ment) to 150 (no impairment).

(2) QoL: the PD Questionaire-8 (PDQ-8) has previously 
been used in patients with PD and STN-DBS [13, 47]. 
The PDQ is recommended for assessments of QoL by 
the Movement Disorders Society Scales Committee 
[33] and commonly used for DBS studies in PD [18, 
45]. Results are reported as PDQ-8 Summary Index 
(PDQ-8 SI) to help the interpretation of results and 
simplify comparisons with other studies. The PDQ-8 
SI ranges from 0 (no impairment) to 100 (maximum 
impairment).

(3) Mood disorder: the Hospital Anxiety and Depression 
Scale subscales for anxiety and depression (HADS-A 
and -D) was used to examine specific mood disorders 
[11, 42]. The HADS-A and -D subscale range from 
0 (no anxiety/depression) to 21 (maximum anxiety/
depression).

(4) Motor disorder: the Scales for Outcomes in PD 
(SCOPA)-A, -B, and -C were used to assess respec-
tively motor examination, activities of daily living, and 
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motor complications. The SCOPA is an abbreviated 
version of the Unified PD Rating Scale from which 
it was derived [31] and the two scales highly corre-
late [32]. The SCOPA-A, -B, and -C range from 0 (no 
impairment) to 42, 21, and 12 respectively (maximum 
impairment).

(5) The therapeutic medical regimen was recorded calcu-
lating the total levodopa equivalent daily dose (LEDD) 
and the LEDD of dopamine agonists according to the 
method of Tomlinson et al. [49].

Statistical analysis

Normality of distribution of clinical scores was tested with 
the Shapiro–Wilk method. Significant longitudinal changes 
of outcome parameters were analyzed with Friedman-tests 
or repeated-measures ANOVA, when parametric tests were 
applicable. As we used multiple tests, the Bonferroni-correc-
tion for multiple comparisons was applied. The already cor-
rected p-values are presented here (significance threshold: 
p = 0.05). Post-hoc Wilcoxon signed-rank t-tests, respec-
tively were employed to investigate significant changes 
between the three visits. To investigate the magnitude of 
changes, we calculated effect sizes ([mean  Testvisit 1 − mean 
 Testvisit 2]/SD  Testvisit 1) [8] and relative changes ([mean 
 Testvisit 2 − mean  Testvisit 1]/mean  Testvisit 2).

Furthermore, we investigated the relationship between 
changes of all outcome parameters at 24 months follow-
up by computing Spearman correlations between change 
scores  (Testchange scores = Testbaseline −  Testfollow-up). We also 
explored Spearman correlations for change scores from 5 to 
24 months follow-up for LEDD (total and dopamine agonist) 
and PDSS (total score and items).

Results

The study included 73 patients (47 males) with PD undergo-
ing bilateral STN-DBS. Patients were aged 61.9 years ± 7.7 
with 10.4 years ± 5.0 disease duration. The median Hoehn 
and Yahr was 2.5 (interquartile range: 2.0–3.0).

Clinical outcomes at baseline, 5 months, 
and 24 months follow‑up

Friedman-tests, repeated-measures ANOVA resulted in sig-
nificant longitudinal changes of all outcome parameters (see 
Table 1 and Fig. 1). Comparing baseline to 5 months follow-
up, post-hoc Wilcoxon signed-rank, t-tests found significant 
improvements of all outcome parameters (all p < 0.001) with 
subsequent decrements in these gains from 5 to 24 months 
follow-up. This decrement reached statistical significance 
for PDSS total score, PDQ-8 SI, HADS-D (all p < 0.001), 

HADS-A (p = 0.011), and SCOPA-B (p = 0.011). Nonethe-
less, comparing baseline to 24 months follow-up, signifi-
cant beneficial effects of bilateral STN-DBS were observed 
for PDSS total score, SCOPA-A, -B, -C, total LEDD, and 
dopamine agonists LEDD (SCOPA-B p = 0.046, all other 
p < 0.001).

Effect sizes from baseline to 5 months follow-up were 
‘small’ for HADS-A and -D, ‘moderate’ for PDQ-8 SI, 
SCOPA-A, -B, and dopamine agonists LEDD, and ‘large’ 
for PDSS, SCOPA-C, and total LEDD (see Table 2). From 
baseline to 24 months follow-up effect sizes were ‘small’ 
for PDSS and SCOPA-B, ‘moderate’ for SCOPA-A, -C, and 
dopamine agonists LEDD, and ‘large’ for total LEDD.

We recorded psychotropic medication in all patients: 
stable treatment regimens from baseline to last assessment 
were administered for two patients with quetiapine (25 and 
50 mg), one patient with agomelatine (25 mg), one patient 
with amitriptyline (100 mg), one patient with opipramole 
(50 mg), and one patient with citalopram (50 mg). In two 
patients psychotropic medication changed during the course 
of the study: one patient was switched from mirtazapine 
(30 mg) to quetiapine (100 mg) at 5 months follow-up as 
visual hallucinations had developed and one patient was 
postoperatively started on quetiapine (150 mg) as the patient 
developed suicidal ideation.

Explorative analyses of PDSS items at baseline, 
5 months, and 24 months follow‑up

Friedman-tests for PDSS items found significant longitu-
dinal changes of all items except ‘Nocturia’ (see Table 1).

Comparing baseline to 5 months follow-up, post-hoc Wil-
coxon tests resulted in significant improvements of ‘overall 
sleep quality’ (p < 0.001), ‘sleep onset insomnia’ (p = 0.003), 
‘sleep maintenance insomnia’ (p < 0.001), ‘nocturnal rest-
lessness in legs or arms’ (p < 0.001), ‘fidgeting in bed’ 
(p = 0.001), ‘distressing hallucinations at night’ (p = 0.006), 
‘urinary incontinence during motor OFF’ (p = 0.020), ‘wake-
fulness due to numbness/tingling’ (p = 0.012), ‘wakefulness 
due to painful muscle cramps’ (p = 0.004), ‘early waking 
due to painful posturing’ (p = 0.001), ‘tremor on wake up’ 
(p = 0.002), ‘sleep refreshment’ (p = 0.029), and ‘unexpect-
edly falling asleep at daytime’ (p < 0.001).

Comparing baseline to 24 months follow-up, post-hoc 
Wilcoxon tests resulted in significant improvements of 
‘overall sleep quality’ (p < 0.001), ‘sleep maintenance 
insomnia’ (p = 0.001), ‘early waking due to painful postur-
ing’ (p = 0.014), ‘tremor on wake up’ (p < 0.001), and ‘unex-
pectedly falling asleep at daytime’ (p = 0.003). In contrast, a 
significant worsening was observed for ‘distressing dreams 
at night’ (p = 0.030). No significant changes were found for 
other PDSS items.
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Effect sizes of improvements from baseline to 
24 months follow-up were ‘small’ for ‘overall sleep qual-
ity’, ‘wakefulness due to numbness/tingling’, ‘early wak-
ing due to painful posturing’, ‘unexpectedly falling asleep 
at daytime’, and ‘moderate’ for, ‘sleep maintenance insom-
nia’ and ‘tremor on wake up’ (see Table 2). For PDSS 
items with worsening scores at 24  months follow-up, 
‘small’ effect sizes were found for ‘distressing dreams at 
night’ and ‘distressing hallucinations at night’. Other effect 
sizes were negligible.

Explorative correlation analyses between outcome 
parameters at 5 months and 24 months follow‑up

PDSS total score improvement significantly correlated with 
improvements of PDQ-8 SI and SCOPA-C at 24 months 
follow-up (see Table 3). No significant correlations were 
found for improvements of SCOPA-A and -B, HADS-A 
and -D, and LEDD reduction (total and dopaminagonists). 
Explorative analyses of change scores (1) from baseline to 
24 months follow-up and (2) from 5 to 24 months follow-up 

Fig. 1  Parkinson’s Disease 
Sleep Scale at preoperative 
baseline and postoperative 
follow-up at 5 and 24 months
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resulted in no significant correlations between LEDD (total 
and dopamine agonists) and PDSS items).

Discussion

In this prospective, observational, international, multicenter 
study including 73 patients with PD, we observed significant 
beneficial effects of bilateral STN-DBS on QoL, sleep and 
motor symptoms at 5 months and 24 months follow-up.

Table 1  Outcome parameters at baseline, 5 months and 24 months follow-up

Bold font highlights significant results
HADS-A and -D Hospital Anxiety and Depression Scale-anxiety and -depression subscales, LEDD levodopa equivalent daily dose, PDSS Par-
kinson’s Disease Sleep Scale, PDQ-8 SI 8-item Parkinson’s Disease Questionnaire Summary Index, SCOPA-A, -B, -C Scales for Outcomes in 
Parkinson’s disease-motor examination, -activities of daily living, -motor complications
Post-hoc comparisons (Wilcoxon signed-rank or t-tests):
Baseline vs 5 months follow-up: a = significant (p < 0.05);  aǂ = highly significant (p ≤ 0.001)
Baseline vs 24 months follow-up: b = significant (p < 0.05);  bǂ = highly significant (p ≤ 0.001)
5 vs 24 months follow-up: c = significant (p < 0.05);  cǂ = highly significant (p ≤ 0.001)
* Significant difference between visits (p < 0.05, Friedman test or repeated measures ANOVA)
** Highly significant difference between visits (p ≤ 0.001, Friedman test or repeated measures ANOVA)
a Friedman test or repeated measures ANOVA when parametric test criteria were fulfilled
b Wilcoxon signed-rank or t-tests when parametric test criteria were fulfilled

n Baseline 5 Months 
follow-up

24 Months 
follow-up

pa Post-hoc  testsb

Mean SD Mean SD Mean SD

PDSS total score ** 66 90.0 25.3 111.1 22.9 98.9 22.1 < 0.001 aǂ,  bǂ,  cǂ

PDSS item 1: ‘overall sleep quality’ ** 67 4.2 3.1 6.5 2.6 5.7 2.8 < 0.001 aǂ,  bǂ, c
PDSS item 2: ‘sleep onset insomnia’ ** 68 6.3 3.6 7.8 2.8 7.0 2.9 0.001 a, c
PDSS item 3: ‘sleep maintenance insomnia’ ** 66 4.8 3.7 7.2 3.1 6.7 3.0 < 0.001 aǂ,  bǂ

PDSS item 4: ‘nocturnal restlessness in legs or arms’ * 68 5.0 3.8 6.9 3.4 5.4 3.3 0.002 aǂ, c
PDSS item 5: ‘fidgeting in bed’ * 68 5.2 3.8 6.8 3.4 5.8 3.1 0.026 aǂ, c
PDSS item 6: ‘distressing dreams at night’ * 67 7.9 2.8 8.2 2.7 7.3 2.7 0.027 b,  cǂ

PDSS item 7: ‘distressing hallucinations at night’ * 68 8.8 2.0 9.3 1.8 8.4 2.4 0.002 a,  cǂ

PDSS item 8: ‘nocturia’ 67 3.4 3.5 3.5 3.3 3.4 3.3 0.497
PDSS item 9: ‘urinary incontinence during motor OFF’ ** 68 7.8 3.3 8.7 2.4 7.7 3.0 0.001 a, c
PDSS item 10: ‘wakefulness due to numbness/tingling’ * 68 6.9 3.4 7.9 2.9 7.7 2.8 0.049 a
PDSS item 11: ‘wakefulness due to painful muscle cramps’ * 67 6.5 3.3 7.7 2.8 7.1 3.0 0.005 a, c
PDSS item 12: ‘early waking due to painful posturing’ ** 68 6.3 3.7 7.7 3.0 7.3 3.1 < 0.001 aǂ, b
PDSS item 13: ‘tremor on wake up’ ** 66 6.2 3.8 7.8 3.2 8.3 2.3 < 0.001 a,  bǂ

PDSS item 14: ‘sleep refreshment’ * 68 5.8 3.5 6.8 3.2 6.2 3.4 0.014 a, c
PDSS item 15: ‘unexpectedly falling asleep at daytime’ * 67 5.9 3.7 7.8 3.0 7.3 3.0 0.004 aǂ, b, c
PDQ-8 SI ** 72 33.1 17.1 22.7 14.1 30.1 18.7 < 0.001 aǂ,  cǂ

HADS-A 70 5.9 3.7 4.6 3.3 5.4 4.1 0.002 aǂ, c
HADS-D 70 4.9 3.0 3.9 2.9 5.2 3.2 0.006 a,  cǂ

SCOPA-A ** 67 12.6 6.0 8.6 4.9 9.1 5.0 < 0.001 aǂ,  bǂ

SCOPA-B ** 71 7.7 3.6 5.6 2.8 6.7 3.8 < 0.001 aǂ, b, c
SCOPA-C ** 71 5.3 3.1 2.8 2.6 2.9 2.4 < 0.001 aǂ,  bǂ

LEDD total (mg) ** 69 1103.8 503.4 641.4 365.1 702.3 442.0 < 0.001 aǂ,  bǂ

LEDD dopamine agonists (mg)** 69 293.0 245.4 153.9 139.3 133.4 116.2 < 0.001 aǂ,  bǂ
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Effects of STN‑DBS on specific aspects of sleep

The following specific aspects of sleep in PD significantly 
changed in the longitudinal follow-up of the study:

• Sleep onset and maintenance insomnia (items 2 and 3): 
in line with previous studies, we observed an improve-
ment of both types of insomnia at short-term follow-up 
[25]. Studies using polysomnography support these find-
ings with evidence of improvements of sleep continuity 
and depth [3], total sleep time and efficiency [1], and 
wakefulness after sleep onset which correlated with an 
improvement of the PDSS total score [37].

• Nocturnal restlessness (items 4 and 5): in line with previ-
ous studies, we observed an improvement of nocturnal 
restlessness at short term-follow-up [3, 4, 25].

• Nocturnal psychosis (items 6 and 7): previous studies 
have reported conflicting results for nocturnal psycho-
sis. A study by Peppe et al. including five patients with 
PD reported a significant improvement of ‘distressing 
dreams at night’ at short-term follow-up in pedunculo-
pontine DBS [39]. In contrast, a study by Hjort et al. 
including ten patients with PD undergoing STN-DBS 
found no evidence for an improvement of this aspect 
[25] which was confirmed by the results in our cohort. 
As neither study reported an improvement of ‘distressing 
hallucinations at night’, the present study is the first one 
to report a beneficial effect of STN-DBS on this aspect at 

Table 2  Relative changes and 
effect sizes at 5 months and 
24 months follow-up

ES effect size, HADS-A and -D Hospital Anxiety and Depression Scale -anxiety and -depression subscales, 
LEDD levodopa equivalent daily dose, PDSS Parkinson’s Disease Sleep Scale, PDQ-8 SI 8-item Parkin-
son’s Disease Questionnaire Summary Index, RC relative change, SCOPA-A, -B -C Scales for outcomes in 
Parkinson’s disease-motor examination, -activities of daily living, -motor complications
* ‘small’ effect size from baseline to 24 months follow-up
** ‘moderate’ effect size from baseline to 24 months follow-up
*** ‘large’ effect size from baseline to 24 months follow-up
a Effect sizes: ‘small’ (0.20–0.49), ‘moderate’ (0.50–0.79) and ‘large’ (≥ 0.80)

Baseline to 
5 months 
follow-up

Baseline to 
24 months 
follow-up

5 to 24 months 
follow-up

RC [%] ESa RC [%] ESa RC [%] ESa

PDSS total score* 23.4 0.83 9.9 0.35 − 11.0 0.53
PDSS item 1: ‘overall sleep quality’* 54.8 0.74 35.7 0.48 − 12.3 0.31
PDSS item 2: ‘sleep onset insomnia’ 23.8 0.42 11.1 0.19 − 10.3 0.29
PDSS item 3: ‘sleep maintenance insomnia’** 50.0 0.65 39.6 0.51 − 6.9 0.16
PDSS item 4: ‘nocturnal restlessness in legs or arms’ 38.0 0.50 8.0 0.11 − 21.7 0.44
PDSS item 5: ‘fidgeting in bed’ 30.8 0.42 11.5 0.16 − 14.7 0.29
PDSS item 6: ‘distressing dreams at night’* 3.8 0.11 − 7.6 0.21 − 11.0 0.33
PDSS item 7: ‘distressing hallucinations at night’* 5.7 0.25 5.7 0.25 0.0 0.00
PDSS item 8: ‘nocturia’ 2.9 0.03 0.0 0.00 − 2.9 0.03
PDSS item 9: ‘urinary incontinence during motor OFF’ 11.5 0.27 − 1.3 0.03 − 11.5 0.42
PDSS item 10: ‘wakefulness due to numbness/tingling’* 14.5 0.29 11.6 0.24 − 2.5 0.07
PDSS item 11: ‘wakefulness due to painful muscle cramps’ 18.5 0.36 9.2 0.18 − 7.8 0.21
PDSS item 12: ‘early waking due to painful posturing’* 22.2 0.38 15.9 0.27 − 5.2 0.13
PDSS item 13: ‘tremor on wake up’** 25.8 0.42 33.9 0.55 6.4 0.16
PDSS item 14: ‘sleep refreshment’ 17.2 0.29 6.9 0.11 − 8.8 0.19
PDSS item 15: ‘unexpectedly falling asleep at daytime’* 32.2 0.51 23.7 0.38 − 6.4 0.17
PDQ-8 SI − 31.4 0.61 − 9.1 0.18 32.6 0.52
HADS-A − 22.7 0.36 − 8.6 0.14 18.3 0.26
HADS-D − 20.4 0.34 6.9 0.11 35.4 0.47
SCOPA-A** − 31.7 0.67 − 27.8 0.58 5.8 0.10
SCOPA-B − 27.3 0.58 − 13.0 0.28 19.6 0.39
SCOPA-C** − 47.2 0.81 − 45.3 0.77 3.6 0.04
LEDD total (mg)*** − 41.9 0.92 − 36.4 0.80 9.5 0.17
LEDD dopamine agonists (mg)** − 47.5 0.57 − 54.5 0.65 − 13.3 0.15
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short-term follow-up. A connection to changes in dopa-
minergic medication seems possible, as the postoperative 
total LEDD reduction was > 40% at 5 months and > 35% 
at 24 months follow-up. However, correlation analyses 
provide no evidence for a linear relationship between 
improvements of total or dopamine agonists LEDD 
reduction and an improvement of specific PDSS items, 
such as nocturnal psychosis. Further studies are needed 
to investigate this issue.

• Nocturnal urinary symptoms (items 8 and 9): confirm-
ing negative results from previous studies [4, 6, 25], we 
found no effects of STN-DBS on ‘Nocturia’. However, to 
our knowledge, the present study is the first one to report 

an improvement of ‘urinary incontinence during motor 
OFF’ at 5 months follow-up. This observation could be 
explained by an improvement of nocturnal motor symp-
toms.

• Nocturnal sensorimotor symptoms (PDSS items 10–13): 
In line with previous studies, we found beneficial effects 
of bilateral STN-DBS on all PDSS items for nocturnal 
sensorimotor symptoms [25] at short-term 5 months 
follow-up.

• Sleep refreshment (item 14): confirming previous studies 
we found a significant improvement of sleep refreshment 
at short-term follow-up [4]. Contrary to the results pub-

Table 3  Spearman correlations 
between outcomes at 24 months 
follow-up

Bold font highlights significant results
Higher PDSS total scores indicate less sleep–wake disturbances. Higher test PDQ-8 SI, HADS-A and -D, 
SCOPA-A, -B, and -C indicate more impairment of specific symptoms. Therefore, significant correlations 
with negative correlation coefficients between PDSS total and PDQ-8 SI and SCOPA-C indicate that an 
improvement of sleep is associated with improvements of QoL and motor complications
HADS-A and –D Hospital Anxiety and Depression Scale-anxiety and -depression subscales, LEDD levo-
dopa equivalent daily dose, PDSS Parkinson’s Disease Sleep Scale, PDQ-8 SI 8-item Parkinson’s Disease 
Questionnaire Summary Index, rho Spearman’s correlation coefficient, SCOPA-A, -B and –C Scales for 
outcomes in Parkinson’s Disease-motor examination, -activities of daily living, and -motor complications
* Significant correlation at the 0.05 level (2-tailed)
** Significant correlation at the 0.01 level (2-tailed)

PDSS PDQ-8 
Summary 
Index

HADS-A HADS-D SCOPA-A SCOPA-B SCOPA-C

PDQ-8 SI rho − 0.322**
p 0.007
n 70

HADS-A rho − 0.161 0.444**
p 0.191  < 0.001
n 68 71

HADS-D rho − 0.100 0.318** 0.561**
p 0.418 0.007  < 0.001
n 68 71 71

SCOPA-A rho − 0.042 .239* 0.071 0.086
p 0.741 0.050 0.571 0.491
n 65 68 67 67

SCOPA-B rho − 0.140 0.311** 0.144 0.295* 0.570**
p 0.251 0.008 0.234 0.013  < 0.001
n 69 72 70 70 68

SCOPA-C rho − .341** 0.298* 0.266* 0.089 − 0.008 0.195
p 0.004 0.011 0.026 0.462 0.951 0.101
n 69 72 70 70 68 72

LEDD
total

rho − 0.006 − 0.092 − 0.116 0.036 − 0.145 − 0.191 − 0.270*
p 0.963 0.446 0.342 0.767 0.247 0.113 0.024
n 68 71 69 69 66 70 70

LEDD 
dopamine 
-agonists

rho − 0.056 0.084 0.188 0.161 − 0.016 − 0.207 − 0.147
p 0.644 0.478 0.117 0.179 0.894 0.081 0.219
n 68 71 69 69 66 70 70
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lished by Choi et al., we observed a significant beneficial 
effect on sleep refreshment at 24 months follow-up.

• Daytime sleepiness (item 15): previous studies have 
reported negative results for this aspect of sleep–wake 
disturbances at short-term [25] and long-term [6, 30] 
follow-up after STN-DBS. To our knowledge, the pre-
sent study is the first one to report significant beneficial 
effects of STN-DBS on daytime sleepiness at long-term 
follow-up. Although a link between dopaminergic medi-
cation, in particular dopamine agonists, and daytime 
sleepiness or sleep attacks is well known [26], we found 
no evidence for a linear relationship between a total or 
dopamine agonists LEDD reduction and an improvement 
of this PDSS item. Further studies are needed to inves-
tigate possible higher-order relationships which might 
result from patient-specific adverse events thresholds.

• Overall sleep quality (item 1): in line with previous stud-
ies, the overall quality of sleep significantly improved 
at short-term [4, 25] and 24 months long-term follow-
up [6]. This may be a result of the above mentioned 
improvements of specific PDSS domains.

Mechanisms of effects of STN‑DBS on sleep

Sleep–wake disturbances are a collection of different symp-
toms and result from multi-neuropeptide dysfunction includ-
ing the central dopaminergic, hypocretinergic, noradrener-
gic, and serotonergic systems [21]. As the pathomechanisms 
of sleep–wake disturbances are diverse, various mechanisms 
of action may influence the effects of STN-DBS [10]:

• A direct modulation of the basal ganglia-thalamo-cortico 
loops may influence neural activity, e.g., in the motor 
circuitry which in turn could improve motor symptoms-
related sleep disorder [29]. Furthermore, a modulation 
of the medial thalamus could, e.g., improve restlessness 
in legs or arms [19]. Future studies are required to assess 
the role of directional DBS towards subregions of the 
STN and the adjacent target region [16, 17, 40]. Another 
possible explanation could be mediated through projec-
tions from the STN to the globus pallidus externus as 
electrophysiological animal studies have shown that dur-
ing STN-DBS the activity in the globus pallidus externus 
is increased which may result in an improvement of sleep 
[22, 24, 27, 34, 41].

• A spread of current to nuclei in proximity of the STN, 
such as the pedunculopontine nucleus, which has previ-
ously been associated with an improvement of nighttime 
sleep and daytime sleepiness [39, 43]. While the exact 
borders of the pedunculopontine nucleus are difficult to 
define [23], a location approximately 5 mm ventral of 
the STN with even closer projections has been discussed 
[36].

• The reduction of dopaminergic medication require-
ments below patient-specific thresholds may at least in 
part influence sleep–wake disturbances, such as daytime 
sleepiness [26] or hallucinations [48]. Further studies are 
needed to distinguish between stimulation and medica-
tion effects on these NMS.

Relationship of sleep and other outcome 
parameters

The significant correlation between improvements of 
PDSS total score and PDQ-8 SI indicates the close con-
nection between sleep and QoL outcomes. The fact that 
Spearman correlations showed a significant relationship 
between improvements of motor complications and sleep 
symptoms is consistent with the observation that nocturnal 
motor symptoms, such as painful dystonic posturing, were 
improved at 24 months-follow-up and indicate the rela-
tive importance of nocturnal motor symptoms for subjec-
tive sleep outcomes. The observation that improvements of 
PDSS total score and HADS-A and -D were not significantly 
correlated indicates that sleep and mood disorders are sepa-
rately influenced by STN-DBS. Psychotropic medication 
was started or switched only in 2 out of 73 patients of our 
cohort during the course of this study. Therefore, it seems 
unlikely that observed beneficial effects of STN-DBS on 
sleep symptoms were based on these drugs. Additionally, as 
discussed above no relationship was found between changes 
of sleep symptoms and changes of dopaminergic and specifi-
cally dopamine agonist medication. As also the medication 
changes from 5 to 24 months follow-up were not correlated 
with PDSS changes, one might argue that medication side 
effects are unlikely causes for the observed changes of sleep 
symptoms between follow-up visits and therefore factors like 
disease progression or chronic DBS treatment itself might 
also contribute to the observed changes. Further studies are 
needed to investigate this issue.

Limitations

A number of limitations should be considered in this study. 
Although the cohort size in our study (n = 73) is one of the 
biggest in studies of its kind, the study cohort is relatively 
small and further prospective studies are required to con-
firm these findings. The multicenter design of our study 
is likely to reduce systematic bias caused by single center 
studies. We did not include laboratory-assisted assessments 
of sleep, such as multiple sleep latency test or polysom-
nography for sleep architecture as these measures require 
additional equipment and are rather costly. However, we 
were interested in a pragmatic assessment of a wide range of 
sleep–wake disturbances including complex symptoms, such 
as nocturia, nocturnal psychosis, motor state-related sleep 
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symptoms, and sleep refreshment, which cannot be captured 
by polysomnography. Due to the design of our database as 
a prospective, observational study, motor assessments were 
recorded in ON states (MedON/StimON) [15]. Although 
the current study did not find a relationship/correlation 
between change in motor exam and change in sleep, this is 
still an important potential contributor to the improvement 
in sleep and the relationship may have been masked because 
participants were only evaluated in ON states. Many of the 
studies that did find a relationship between motor and sleep 
outcomes used polysomnography. Furthermore, systematic 
follow-up examinations of motor states with and without 
medication and DBS could also provide useful information 
on patients’ non-dopaminergic, non-motor characteristics 
which may contribute to their sleep–wake disturbances 
[21]. Furthermore, this study did not assess apathy in detail 
and analyze the interplay between apathy and sleep/fatigue 
observed in previous studies by Eugster et al. and Bargiotas 
et al. [2, 20].

Conclusion

We observed significant long-term beneficial effects of STN-
DBS on overall quality of sleep and a wide range of spe-
cific sleep symptoms, such as sleep maintenance insomnia, 
early waking due to painful posturing, tremor on wake up, 
and daytime sleepiness. Improvements of sleep symptoms 
seem to be, at least in part, mediated by nocturnal motor 
symptoms. A significant correlation between sleep and QoL 
outcomes at 24 months follow-up epitomizes the relative 
importance of sleep symptoms for the holistic assessment 
of DBS outcomes.
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