
Demosponge EST Sequencing Reveals a Complex Genetic
Toolkit of the Simplest Metazoans
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Abstract

Sponges (Porifera) are among the simplest living and the earliest branching metazoans. They hold a pivotal role for
studying genome evolution of the entire metazoan branch, both as an outgroup to Eumetazoa and as the closest
branching phylum to the common ancestor of all multicellular animals (Urmetazoa). In order to assess the transcription
inventory of sponges, we sequenced expressed sequence tag libraries of two demosponge species, Suberites domuncula and
Lubomirskia baicalensis, and systematically analyzed the assembled sponge transcripts against their homologs from
complete proteomes of six well-characterized metazoans—Nematostella vectensis, Caenorhabditis elegans, Drosophila
melanogaster, Strongylocentrotus purpuratus, Ciona intestinalis, and Homo sapiens. We show that even the earliest
metazoan species already have strikingly complex genomes in terms of gene content and functional repertoire and that
the rich gene repertoire existed even before the emergence of true tissues, therefore further emphasizing the importance of
gene loss and spatio-temporal changes in regulation of gene expression in shaping the metazoan genomes. Our findings
further indicate that sponge and human genes generally show similarity levels higher than expected from their respective
positions in metazoan phylogeny, providing direct evidence for slow rate of evolution in both ‘‘basal’’ and ‘‘apical’’
metazoan genome lineages. We propose that the ancestor of all metazoans had already had an unusually complex genome,
thereby shifting the origins of genome complexity from Urbilateria to Urmetazoa.
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Introduction
Some of the fundamental points of interest in animal evo-
lution are the historical and phylogenetic origins of genome
complexity, genetic origins of germ layers, and the relation
of the species’ morphological characteristics to the amount
and variability of genetic information. The view that simple
animals have simple genomes and that genome complexity
should increase proportionally with phenotypic complexity
is rapidly fading with insights gained from sequence data of
basal metazoan species (Steele 2005). Some of the earlier
work on cnidarians (Kortschak et al. 2003; Kusserow
et al. 2005; Miller et al. 2005; Matus et al. 2006) offered
glimpses into the unexpectedly diverse gene pool of the
simplest eumetazoans—animals defined by the presence
of true tissues usually originating from all three germ layers.
Complete genome sequence of the starlet sea anemone
Nematostella vectensis further showed that much of the
genomic complexity in terms of gene content and struc-
ture was already present in the common ancestor of all
Eumetazoa (Putnam et al. 2007; Hui et al. 2008). One of
the few branches of multicellular animals that does not be-
long to Eumetazoa and is located at the base of the mono-

phyletic tree (Wainright et al. 1993; Muller 1995) of the
kingdom Animalia is the phylum Porifera—sponges (fig. 1).

Sponges are, by all standards, living fossils. They are the
simplest extant and probably the earliest branching meta-
zoan phylumwith a known fossil record dating back at least
580 My, prior to the Cambrian explosion (Li et al. 1998).
Their ancient origin and basal position in the animal king-
dom make them an important subject for metazoan ge-
nome evolution studies. Sponges are one of the two
phyla within the Parazoa group, characterized by the lack
of true tissues, organs or organic systems, and with simple
embryonic development (Ereskovsky and Dondua 2006).
However, despite their simple morphology and basal posi-
tion in the metazoan phylogeny, indications exist that
sponges harbor a number of genes found in deuterostomes
but missing in protostomes. For example, in our previous
analyses, we found evidence of protein kinases (BtkSD)
and a GTPase, previously thought to exist only in deuter-
ostomes (Cetkovic, Muller et al. 2004; Harcet et al. 2005;
Cetkovic et al. 2007). Several gene families that demon-
strate ancient duplications and diversifications have also
been documented in sponges (Hoshiyama et al. 1998;
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Ono et al. 1999; Suga, Koyanagi et al. 1999; Suga, Ono et al.
1999; Nichols et al. 2006; Suga et al. 2008). The recent avail-
ability of raw sequencing reads from the Amphimedon
queenslandica sequencing project provided evidence for
the existence of even more genes in sponges—most no-
tably the homeobox (Wiens, Batel et al. 2003; Wiens,
Mangoni et al. 2003; Larroux et al. 2007), Wnt (Adamska
et al. 2007; Lapebie et al. 2009), and several other transcrip-
tion factors (Larroux et al. 2008), pushing the origin of key
metazoan developmental genes and pathways back to the
very root of Metazoa (Tessmar-Raible and Arendt 2005;
Arendt 2008; Philippe et al. 2009). Albeit shown on a limited
set of sequenced genes, sponge proteins were predomi-
nantly found to be more similar, in terms of sequence sim-
ilarity and gene architecture, to their vertebrate than worm
(Gamulin et al. 2000) and fruit fly orthologs (Perina et al.
2006; Cetkovic et al. 2007). However, as of yet no systematic
analysis of sponge gene inventory has been performed. In
order to evaluate genetic complexity of sponges on a larger
scale, we employed the random expressed sequence tags
(ESTs) sequencing approach on two demosponge species
from different habitats—the marine Suberites domuncula
and the freshwater Lubomirskia baicalensis. Our objective
was to determine the presence, as well as the degree of
similarity and functional characteristics, of the assembled
sponge transcript homologs in complete genomes of six
well-characterized metazoan organisms.

We performed comparative genomics analysis on two
separate sets of 4,646 unique S. domuncula and 1,335
unique L. baicalensis transcripts, assembled from two inde-
pendent single-pass random EST sequencing runs. Apart
from different habitats where the two demosponge species
were collected, we sampled cells in different developmental
stages, further extending the range of transcribed genes in-
cluded in the final EST library. We searched for sponge pro-
tein homologs within a comprehensive nonredundant
proteome database of six metazoan organisms with avail-
able complete genomes: cnidarian N. vectensis (starlet sea

anemone), nematode Caenorhabditis elegans (worm),
arthropod Drosophila melanogaster (fruit fly), echinoderm
Strongylocentrotus purpuratus (purple sea urchin), urochor-
date Ciona intestinalis (sea squirt), and vertebrate Homo sa-
piens (human). Results obtained with the L. baicalensis data
set, although on a smaller sample, reiterate findings drawn
from the S. domuncula analysis and are, for the purpose of
brevity, presented in the supplementary supporting infor-
mation (SI) (Supplementary Material online).

This paper presents the first step toward the systematic
elucidation of the transcriptional inventory of sponges,
which will in turn help infer the complexity of the Urme-
tazoa genome, and provide an indication of genome dy-
namics across the entire metazoan lineage.

Methods
Background information on sponges, sequencing protocols
and the outline of the analysis with detailed description of
methods and procedures, as well as the full description of
the analysis pipeline are described in the supplementary SI
(Supplementary Material online). Here, we briefly outline
the key steps in EST sequencing and bioinformatic analysis.

Both sponge cDNA libraries were randomly sequenced
(see supplementary SI, Supplementary Material online) re-
sulting in 13,384 S. domuncula and 2,573 L. baicalensis EST
transcript sequences, respectively. Reads were organized in-
to separate databases and processed independently. ESTs
were cleaned from sequence contaminants (e.g., vectors)
and from poly-A and poly-T tails and assembled using
the CAP3 Sequence Assembly Program (Huang and Madan
1999) for a final yield of 4,646 S. domuncula and 1,335 L.
baicalensis assembled transcripts longer than 100 bp.

Sponge transcripts were compared using BlastX (no se-
quence filtering and a default E value cutoff of 10) against
the STRING extended ortholog database v6.3 (von Mering
et al. 2003) and assigned a COG/KOG category based on
three-nearest neighbor consensus rule (category is assigned
if the three best matches [smallest E value] for each query
sequence originate from the same orthologous group, i.e.,
have the same COG ID).

We constructed a proteome database of six metazoan
species with complete genomes by acquiring Ensembl pro-
teomes of nematode, fruit fly, sea squirt, and human. Starlet
sea anemone and sea urchin proteomes were obtained
from NCBI GenBank. Additionally, we obtained from NCBI
nematode, fruit fly, sea squirt, and human proteins not
found in Ensembl data sets. Final database contained a total
of 176,973 nonredundant protein sequences.

We searched the proteome database with S. domuncula
and L. baicalensis ESTs by BlastX with cutoff levels at 1 �
10�5 and 1 � 10�40. For each query sponge transcript, sin-
gle best match per proteome was selected (up to six subject
sequences) and multiply aligned using Muscle together
with the translated sponge sequence. Ortologies were con-
firmed with reciprocal BlastT hits at the same cutoff.

Pathway reconstitution was performed by running
a pairwise sequence search against the KEGG-curated set
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FIG. 1. Phylogenetic relationships within the metazoan kingdom.
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of human proteins (Kanehisa et al. 2008) and mapping the
percent identity of the alignment to KEGG metabolic and
signaling pathways with MADNet (Segota et al. 2008).

Results and Discussion

Functional Characterization
We successfully classified 3,077 (66%) S. domuncula and
814 (61%) L. baicalensis transcripts using the STRING da-
tabase (von Mering et al. 2003) and a stringent assignment
process (discussed in the Methods section). The graphical
distribution of functional classes for S. domuncula is given
in figure 2; L. baicalensis functional characterization is pre-
sented in supplementary table S1 (Supplementary Material
online). Distribution of functional classes is consistent
with that of both human and fruit fly complete proteomes
(Tatusov et al. 2003), withmost abundant categories in pro-
cesses of signal transduction (T), translation (J), and protein
turnover (O), indicating the adequate coverage of the se-
quenced EST libraries, even in the case of L. baicalensis.

Presence of Homologs
In order to minimize false-positive matches, all similarity
searches were performed at two E value cutoff levels—less
and more stringent (1� 10�5 and 1� 10�40, respectively).

With the less stringent cutoff, of 4,646 unique S. domuncula
transcripts, 3,290 (;71%) showed a positive match to pro-
teins from one or more species in our database (tabulated
results for each transcript are presented in the supplemen-
tary SI, supplementary table S3, Supplementary Material
online). Lubomirskia baicalensis results had slightly lower
hit count—791 of 1,335 (;60%; supplementary table S4,
Supplementary Material online). Most sponge transcript
homologs originate from the sea anemone and, surpris-
ingly, human proteomes. The sea urchin is ranked third
by the number of hits, whereas the urochordate Ciona
has significantly fewer hits. Both protostomes, the fruit
fly and particularly nematode, also have far fewer hits than
the human and sea anemone and are ranked last.

The exclusive matches (i.e., sponge homologs present in
only one of six proteomes) follow the same trend of hit
counts: the sea anemone followed by human and sea ur-
chin. The sea squirt, fruit fly, and nematode have drastically
less exclusive matches. The general tendency of homolog
presence across lineages is even more apparent if we
group exclusive S. domuncula homologs into higher
order taxonomies, shown in figure 3. Apart from the sea
anemone—the single diploblast representative with the
highest number of exclusive hits—an unexpectedly high
number of sponge gene homologs are found only in the

FIG. 2. Functional characterization of Suberites domuncula transcripts. A total of 3,077 transcripts were classified into KOG/COG categories
giving rise to a total of 3,130 class assignments (some COGs belong to more than one class). Distribution over functional classes is given in the
central pie chart, with each super category slice broken down into separate pie charts in the corners (Poorly characterized and uncharacterized
function categories [R and S] are combined with uncharacterized category [X] in a separate pie chart the top left corner). Overall class
distribution follows that of other metazoan genomes, with most abundant functions in signal transduction, protein turnover, translation, and
transcription. Functional categorization for Lubomirskia baicalensis is shown in the supplementary SI, Supplementary Material online.
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three deuterostomes; the sea urchin, Ciona, and human cu-
mulative count is 167, of which 55 (33%) are found exclu-
sively in the human proteome. Figure 3 also shows that
1,863 S. domuncula transcripts (;57% of 3,290 genes with
at least one homology) are shared within all six phyla. De-
tailed breakdown of sponge homolog presence across six
phyla is presented in supplementary SI and supplementary
figure S2 (Supplementary Material online).

The control search results with a more stringent E
value cutoff level of 1 � 10�40 follow the same trend
of homolog presence, with exactly the same ranking of
matching organisms. In fact, the results tend to be more
robust in terms of the relative increase in the number of
exclusive hits to the human proteome (33 of 1,424 vs. 55
of 3,290).

The closest relatives of metazoans are unicellular choa-
noflagellates. A recent report on the sequenced genome of
choanoflagellate Monosiga brevicollis estimates the gene
count at;9,200 (King et al. 2008). Although theMonosiga
genome shows evidence of cell adhesion and signaling pro-
tein domains needed for transition to multicellularity, pre-
viously thought to be exclusively metazoan, the total gene
count amounts to only half the number found in the sea
anemone genome. Moreover, a preliminary scan against
the S. domuncula EST data set reveals 1,140 genes, mostly
involved in the signaling processes, present in sponge, and
either missing or significantly divergent in theM. brevicollis
genome (supplementary SI and supplementary table S5,
Supplementary Material online) leading to a conclusion
that the choanoflagellate genome is not nearly as complex
as any known metazoan genome neither in terms of gene
number nor repertoire. If we use the missing gene count to
assess the size of the S. domuncula transcriptome, we can
arrive at a conservative estimate of ;12,000 genes—again
suggesting that a large gene and module explosion event

occurred in the metazoan ancestor. This is in turn consis-
tent with the characteristics of the recently sequenced Tri-
choplax genome (;12,000 genes), postulated to have
branched off after the sponges (Srivastava et al. 2008).

It could be argued that our homolog presence results
may be biased by differences in quality of annotation
and completeness of the compared organisms’ genomes/
proteomes. However, there is no correlation between
the protein count per species in our database and the num-
ber of best Blast hits to sponge proteins per compared or-
ganism (supplementary SI and supplementary fig. S2,
Supplementary Material online), especially in the proto-
stome domain where extensive gene loss has been previ-
ously documented (Ogura et al. 2005; Hui et al. 2009).
This signifies that Blast hits largely are true homologs.
Moreover, the apparent overrepresentation of human pro-
teome in the entire data set originates primarily in the fact
that many proteins are present with several (highly redun-
dant but not identical) transcript variants, whereas only
a single variant was selected as the best match.

No lophotrochozoan complete genomes were, to date,
available for inclusion into our database. However, we have
compared our EST sequences with several incompletely se-
quenced or insufficiently annotated Lophotrochozoan ge-
nomes or EST data sets. The results, albeit must be
considered inconclusive, are in accordance with our find-
ings regarding the richness of the sponge genome reper-
toire (supplementary table S6, Supplementary Material
online).

Our findings not only support previous conclusions
about genome complexity dynamics across metazoan lin-
eages (Dehal et al. 2002; Kortschak et al. 2003; Sodergren
et al. 2006) but also more importantly show that sponges,
the simplest and oldest extant animal phylum, also have
highly complex genomes with gene content similar to that
of cnidarians and vertebrates. This in turn demonstrates
that there is low correlation between gene repertoire and
morphological complexity even without considering the
emergence of true tissues and a variety of cell types—rather,
we place the origins of genome complexity to a gene accu-
mulation process at the base of the metazoan tree of life.

Sequence Conservation
In order to compare the rates of sequence change between
different metazoan lineages, we determined the extent of
sponge transcript similarity to their respective homologs in
six metazoan species. Distributions of sponge transcripts
according to the count of the highest similarity homologs
are shown in figure 4. The majority of sponge proteins most
closely match the sea anemone proteome, whereas only
slightly fewer are, again surprisingly, most similar to human
proteins. The sea urchin is ranked third, whereas the sea
squirt, fruit fly, and especially nematode are drastically un-
derrepresented in terms of best-matching homologs. The
results further support our finding that besides gene reper-
toire, the sequence divergence (i.e., the sequence distance)
is also highest in lineages leading to the nematode, fruit fly,
and sea squirt. A detailed demonstration of how sponge
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FIG. 3. Venn diagram of Suberites domuncula transcript homologs
across taxonomic groups—diploblasts (Nematostella vectensis),
protostomes (Drosophila Melanogaster and Caenorhabditis elegans),
and deuterostomes (Strongylocentrotus purpuratus, Ciona intestina-
lis, and Homo sapiens). Most sponge transcripts (1,863) were found
in all three groups. However, the largest set of exclusive homologies
is found within the deuterostomes (167, nearly 10%), demonstrating
the breadth of a sponge gene repertoire.
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proteins are related to the six proteomes is shown in
figure 5, where we quantified the relative sequence distance
between each sponge transcript and a corresponding set of
homologs from three species in our database. If we consider
that some of these homologs are not whole transcript
matches but rather domain or fragment similarities, by
using the multiple alignment approach (see Methods
and supplementary SI, Supplementary Material online),
it is still evident that even at the level of protein modules
there is an unusual degree of similarity between sponge and
human coding sequences. This implicates a slow evolution-
ary rate in both sponge and human genomes that cannot
fully be attributed either to possible long generation time
in sponges or the low population count in humans (fig. 6A).
As a consequence, we can speculate that the two genomes
generally may be very similar (at least at the level of
protein-coding sequence) to a metazoan ancestor.

Enrichment of Clade-Specific Functions
We subsequently performed the analysis of functional gene
category (according to the STRING/COG classification) en-
richment across six phyla based on similarity to sponge
transcripts. Sponge transcripts were subdivided within

each functional class according to the organism where
the best hit is found (Table 1), and count frequencies were
tested for statistically significant deviation patterns from
the overall functional distribution. Interestingly, the signal
transduction category (T) showed high bias toward human
homologs and away from the cnidarians, suggesting that the
signaling machinery conservatively propagated throughout
the entire metazoan lineage, sharing most features (i.e., the
‘metazoan signaling toolkit’ [Erwin 2009]) with higher ver-
tebrates, whereas cnidarians significantly diverged either by
gene loss or by sequence divergence. On the other hand,
the translation and ribosome biogenesis processes show
the opposite trend, with increasing divergence from lower
to higher metazoans.

Signaling Pathway Reconstruction
Another demonstration of the increase in the functional
toolkit with the transition to metazoans is the identifica-
tion of modules required for most metazoan signaling cas-
cades (figs. 6B and C). By comparing S. domuncula
transcripts with human proteins involved in signaling path-
ways and cell adhesion processes, we were able to demon-
strate the presence of equivalent functional elements

FIG. 4. Distribution of Suberites domuncula transcripts according to the closest matching homolog across six phyla on (A) a total set of found
homologies (i.e., any one of six proteomes matched a sponge transcript); (B) with hits present in all six phyla at less stringent cutoff; and
(C) more stringent cutoff values. Surprisingly, regardless of the comparison method and threshold, human proteins show highest similarity to
almost 30% sponge transcripts. This ranks human similarities second best, right next to sea anemone.
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sufficient to reconstitute key processes in signaling and cell
adhesion pathways. Some of the domains and modules
have been identified with low similarity to their human ho-
mologs and will need direct experimental validation of
their precise roles and mechanisms. However, we argue
that the increased available repertoire of metazoan-only
functional modules may have alleviated and increased
the combinatorial potential of the domain shuffling pro-
cesses suggested by King et al. (2008) and have diversified
elementary adhesion functions (mostly performed through
cadherin domains in M. brevicollis) into cellular signaling
cascades.

Other Genome Characteristics
Data about other characteristics of the sponge genome,
such as gene structure or synteny, are scarce. Published re-
search (Gamulin et al. 1997; Muller et al. 2002; Cetkovic,
Grebenjuk et al. 2004) only indicates that sponge genes
usually resemble their vertebrate homologs with respect
to the intron counts and conserved splice site positions.
Similar findings were reported for cnidarians (Putnam
et al. 2007), annelids (Raible et al. 2005), and echinoderms
(Sodergren et al. 2006). Generally, there seems to be a pos-
itive correlation between gene repertoire and other features
of genome complexity amongmetazoans. Therefore, we can

FIG. 5. Suberites domuncula gene similarity profiles. Each symbol (dot, square, and triangle) in a ternary plot represents a single sponge
transcript, whereas the position of a symbol represents the relative sequence similarity to the three phyla, calculated from normalized pairwise
scores derived from a multiple alignment with all available homologs from all six phyla. Transcripts that are equally similar to proteins from all
three phyla will tend to move toward the center of the triangle, whereas those found near corners suggest a higher similarity to a single
phylum. Symbols in corners represent transcripts that are exclusively found only in a single phylum, whereas symbols on triangle sides denote
transcripts with one missing hit (to the phylum in the opposite corner). Overlaying contour map represents symbol density estimate and is
provided for clarity. General tendency for genes to migrate toward the human corner is apparent in all four plots (the difference between
human and starlet sea anemone is statistically insignificant).

the percent identity of the sponge transcript (or a fragment thereof) match to a human protein. Many of the identified similarities, especially in
the low-identity range, are shared domains of a human multidomain protein. Legend for panels (B) and (C) shown at the bottom.

!
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FIG. 6. Maximum parsimony phylogenetic tree (A) based on concatenated sequences of proteins involved in signaling pathways. Homologs with E
values of 1 � 10�20 or less in at least one organism were chosen for the analysis. Bootstrap values based on 1,000 replicates are shown on nodes.
Wnt signaling pathway modules (B) and cell adhesion modules (C) found through sequence similarity with equivalent human homologs and
mapped to respective standard KEGG pathways (http://www.genome.jp/kegg/pathway.html). The intensity ranging from yellow to red denotes
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anticipate that the sponge genome is most similar to cni-
darian and vertebrate genomes in synteny and intron char-
acteristics (e.g., density and conservation profile). The
expected sequence of the first complete sponge genome
A. queenslandica will eventually serve as final evidence.
However, sponges are a diverse group, and data from clas-
ses Hexactinellida and Calcarea should also significantly
contribute to our understanding of metazoan genome evo-
lution, shedding the final light at the origins of gene com-
plexity that lead to development of multicellular life. There
is an ongoing debate on the molecular phylogeny aspects of
basal metazoans (Dohrmann et al. 2008; Srivastava et al.
2008; Philippe et al. 2009; Sperling et al. 2009), and although
we did not address this issue directly, we hope that the data
provided in this paper will provide further evidence for un-
derstanding the complex relations between Porifera, Placo-
zoa, and Eumetazoa.

Conclusions
In this systematic analysis of the sponge gene repertoire, we
show that the genomic complexity, at least in terms of gene
content, was already present at the very beginning of an-
imal evolution, before the appearance of tissue-grade ani-
mals or any other complex morphological feature found in
all present day Metazoa. Striking similarities between
sponge and human protein-coding genes indicate a short
distance from both sponge and human genomes to the ge-
nome of the metazoan ancestor. Next, according to gene

content, sponges are more similar to the sea anemone, hu-
man, and sea urchin than to the sea squirt, fruit fly, or nem-
atode. Regarding the latter three, divergence from the
sponge/human repertoire seems to serve as a reliable sig-
nature of accelerated evolutionary rate in distinct meta-
zoan lineages. This also corroborates the findings that
many genes were eliminated from the genomes of analyzed
lineages (especially from two invertebrates) and further
emphasizes the importance of gene loss in evolutionary
processes. Our findings also raise many questions about
the roles of numerous genes/proteins in the life of such
a simple animal. Finally, the implication that sponges have
unusually complex genomes, especially in contrast to uni-
cellular eukaryotes, leads to a conclusion that the ancestor
of all metazoans (Urmetazoa) also had a complex genome
and strengthens a theory toward a Precambrian ‘‘gene ex-
plosion’’ view on metazoan evolution.

Supplementary Material
Supplementary supporting information, figures S2, and
tables S1, S2, S3 S4, S5, and S6 are available at Molecular Bi-
ology and Evolution online (http://www.mbe.oxfordjournals
.org/).
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