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Abstract

Accurate, automated extraction of clinical stroke information from unstructured text has sev-

eral important applications. ICD-9/10 codes can misclassify ischemic stroke events and do

not distinguish acuity or location. Expeditious, accurate data extraction could provide con-

siderable improvement in identifying stroke in large datasets, triaging critical clinical reports,

and quality improvement efforts. In this study, we developed and report a comprehensive

framework studying the performance of simple and complex stroke-specific Natural Lan-

guage Processing (NLP) and Machine Learning (ML) methods to determine presence, loca-

tion, and acuity of ischemic stroke from radiographic text. We collected 60,564 Computed

Tomography and Magnetic Resonance Imaging Radiology reports from 17,864 patients

from two large academic medical centers. We used standard techniques to featurize

unstructured text and developed neurovascular specific word GloVe embeddings. We

trained various binary classification algorithms to identify stroke presence, location, and

acuity using 75% of 1,359 expert-labeled reports. We validated our methods internally on

the remaining 25% of reports and externally on 500 radiology reports from an entirely sepa-

rate academic institution. In our internal population, GloVe word embeddings paired with

deep learning (Recurrent Neural Networks) had the best discrimination of all methods for

our three tasks (AUCs of 0.96, 0.98, 0.93 respectively). Simpler NLP approaches (Bag of

Words) performed best with interpretable algorithms (Logistic Regression) for identifying

ischemic stroke (AUC of 0.95), MCA location (AUC 0.96), and acuity (AUC of 0.90). Simi-

larly, GloVe and Recurrent Neural Networks (AUC 0.92, 0.89, 0.93) generalized better in

our external test set than BOW and Logistic Regression for stroke presence, location and

acuity, respectively (AUC 0.89, 0.86, 0.80). Our study demonstrates a comprehensive

assessment of NLP techniques for unstructured radiographic text. Our findings are
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suggestive that NLP/ML methods can be used to discriminate stroke features from large

data cohorts for both clinical and research-related investigations.

1. Introduction

Radiographic findings on head computed tomography (CT) or magnetic resonance imaging

(MRI) are frequently used to support or confirm the diagnosis of ischemic stroke in clinical

practice. Radiologists interpret images in narrative reports that detail stroke occurrence and

other pertinent information including acuity, location, size and other incidental findings.

Because of their unstructured nature, radiology reports do not make it easy to employ these

information-rich data sources for either large-scale, retrospective review, or for real-time iden-

tification of stroke in the clinical workflow. The ability to automate the extraction of meaning-

ful data from radiology reports would enable quick and accurate identification of strokes and

relevant features such as location and acuity. Such a system could help clinicians triage critical

reports, target patients eligible for time-sensitive interventions or outpatient follow up, and

identify populations of interest for research [1].

Natural language processing (NLP) is a field that spans multiple scientific disciplines

including linguistics, computer science, and artificial intelligence. The main objective of NLP

is to develop and apply algorithms that can process and analyze unstructured language. A dis-

tinctive subfield of NLP focuses on the extraction of meaningful data from narrative text using

Machine Learning (ML) methods [2]. ML-based NLP involves two steps: text featurization and

classification. Text featurization converts narrative text into structured data. Examples of text

featurization methods include Bag of Words (BOW), Term Frequency-Inverse Document Fre-

quency (TF-IDF) and word embeddings [2, 3]. Word embedding methods, including Word2-

Vec and Global Vectors for Word Representation (GloVe) [3–5], learn a distributed

representation for words. The result of these methods is a numerical representation of text that

can be subsequently used for myriad applications. One particular medical application of these

methods is the classification of salient findings from unstructured radiographic reports. After

converting language into relevant binary or continuous features through text featurization,

supervised classification models can separate reports into desired categories (i.e. presence or

absence of acute middle cerebral artery stroke). These models are trained on a portion of the

cohort, and then tested on unseen data to determine how accurately they classify observations.

Previous efforts to automate diagnoses from radiologic text have resulted in algorithms that

can identify pneumonia, breast cancer, and critical head CT findings [1, 3]. Specifically, Zech

and colleagues found that simpler featurization and classification techniques perform compa-

rably to more sophisticated deep learning approaches in identifying binary critical head CT

classifiers (i.e. critical v. non critical; ischemia v. no ischemia) [1]. However, clinicians and

radiologists use diverse language patterns to characterize stroke features. For instance, “sub-

acute” is a relative term and can describe strokes that occurred anywhere from hours to

months prior to the diagnostic study. Specific descriptions of ischemia on head CTs (i.e. hypo-

densities or sulcal effacement) or MRIs (decreased Apparent Diffusion Coefficient (ADC))

provide clinicians with more context that allows them to infer timing, severity and likely diag-

nosis. We hypothesized that simpler NLP featurization approaches that rely on counting how

many times a relevant word occurred in text, like BOW or tf-idf, may not sufficiently capture

the language describing stroke features. Word-embedding approaches that account for word

relationships might better identify characteristics of interest.
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In this study, we aimed to: 1) expand the application of NLP to identify both the presence

of ischemia and relevant characteristics including location subtype, and acuity; and 2) compare

whether a neurovascular-tailored NLP featurization algorithm (GloVe) outperforms simpler

methods (BOW, tf-idf) in identifying key qualifying characteristics.

2. Methods

Study population

We collected 60,564 radiology reports consisting of head Computed Tomography (CT), or CT

Angiography (CTA) studies, brain Magnetic Resonance Imaging (MRI), or MR Angiography

(MRA) studies from a cohort of 17,864 patients over 18 with ICD-9 diagnosis codes of ische-

mic stroke (433.01, 433.11, 433.21, 433.31, 433.81, 433.91, 434.01, 434.11, 434.91 and 436)

from 2003–2018 from the Research Patient Data Registry (RPDR), at Massachusetts General

and Brigham and Women’s Hospitals (Fig 1, S1 Table in S1 File) [6]. We chose these four

imaging modalities because a generalizable algorithm that identifies stroke characteristics

from multiple imaging report subtypes would have greater practical application. We externally

validated our best performing classification methods on 500 radiographic reports from 424

patients who were admitted to Boston Medical Center between 2016–2018. Boston Medical

Center is the largest safety-net hospital in New England, and thus has a markedly different

racial-ethnic and socioeconomic population than our training cohort. The Partners Human

Research Committee and Boston Medical Center local IRBs approved this study.

Manual radiographic report labeling

1,359 original radiology reports from 297 patients (883 Head CTs or CTAs, 476 MRIs or

MRAs) were hand-labeled by study team members trained by attending physicians and/or

senior staff members (Fig 1). Each report included the text, type of scan (CT, MRI, CTA, or

MRA), date, and report time (S1 Appendix in S1 File). Reports were distributed randomly

among the labelers. Each reporter independently labeled 1) the presence or absence of ische-

mic stroke, 2) middle cerebral artery (MCA) territory involvement, and 3) stroke acuity. Stroke

occurrence, acuity, and MCA location were classified as either present or absent. Labelers

identified “stroke” if the report definitively reported a diagnosis of ischemic stroke or if ische-

mic stroke was determined as probable by the labeler based on the radiology report text. A

stroke was labeled as acute if: the reporting radiologist reported it as acute in their report, dif-

fusion restriction or apparent diffusion coefficient hypointensity without T2 prolongation was

mentioned on MRI report, or it was interpreted as having occurred within the last 7–10 days.

MCA stroke location was defined as a reported MCA territory or thrombus in MCA with cor-

responding symptoms in the history section of report. We focused on the identification of

MCA stroke as this stroke subtype is particularly clinically actionable via thrombectomy and at

high risk for stroke sequelae including edema and hemorrhagic transformation. Study data

were collected and managed using a Research Electronic Data Capture (REDCap) electronic

database [7]. Each report was separately labeled twice. Any discrepancies between the two

labels were reviewed by attending neurologists CJO or SS. If labelers felt that identification of

stroke occurrence or characteristics were indeterminate, they were labeled as absent. A board-

eligible Attending Neurocritical Care physician (CJO) conducted a blinded analysis, and then

adjudicated 300 radiology reports by review of images. In an assessment of 10% of the final

reports labels from both the derivation and external cohorts by a trained physician and labeler

(HS), percent agreement for stroke presence, MCA location, and acuity were 91%, 87%, and

93%, respectively, suggesting good to excellent inter-rater reliability. Additionally, a board-cer-

tified Neurologist and Neurointensivist (CJO) assessed the percent agreement of 300 reports
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and raw images. She found percent agreement for presence of ischemic stroke, MCA location,

and acuity were 97%, 95%, and 98%, respectively. The most common cause for discrepancies

resolved upon adjudication included small chronic strokes, strokes referred to in the report

that were only identified on a prior scan, or subtle early changes that were consistent with

symptoms listed in the report and available to the radiologist (S1 Appendix in S1 File).

Fig 1. Flow diagram of Natural Language Processing (NLP) methodology. Text featurization with GloVe and binary classification lead to Receiver Operator Curves

(ROC) for stroke occurrence, MCA location and stroke acuity. Representative ROC curves for each of the text featurization methods are displayed. RPDR = Research

Patient Data Registry; CT = Computed Tomography; CTA = Computed Tomography Angiography; MRI = Magnetic Resonance Imaging; MRA = Magnetic Resonance

Angiography; BOW = Bag of Words; tf-idf = Term Frequency-Inverse Document Frequency; GloVe = Global Vectors for Word Representation; CART = Classification

and Regression Trees; OCT = Optimal Classification Trees; RF = Random Forests; RNN = Recurrent Neural Networks.

https://doi.org/10.1371/journal.pone.0234908.g001
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Text preprocessing and featurization

To remove basic non-uniformities in unstructured text data, we used the following steps to

preprocess radiology reports for further analysis.

1. We removed any incomplete reports, header text (i.e. patient or visit information, proce-

dure details), non-diagnostic standardized language (i.e. names or electronic provider sig-

natures), non-narrative text including “= = = = = =“.

2. We converted commonly used word groups, "word tokens", to "n-grams", or a single word

group unit without spaces. For example, middle cerebral artery was converted to:

“middlecerebralartery".

3. We standardized all whitespace, removed punctuation and converted all text to lowercase.

After preprocessing, narrative text was "featurized” to convert unstructured data into classi-

fiable, numeric information for a machine learning algorithm [8, 9]. We compared simple tra-

ditional text featurization methods (BOW, tf-idf) with a recent word embedding technique

trained on neurology-specific text. The specific featurization techniques used in our analysis

are detailed below and more comprehensively in Table 1 and S1 Appendix in S1 File:

1. Bag of Words (BOW): Bag of words is the simplest model for text featurization, disregard-

ing context, semantic proximity and grammar. Each word, or grouping of words (n-gram)

in the main corpus/body of the text is considered a distinct feature. The value of each fea-

ture corresponds to the number of times a word was found in a given report.

2. Term Frequency-Inverse Document Frequency (tf-idf): The term frequency-inverse docu-

ment frequency method (tf-idf) re-weights document features based on the relative impor-

tance of the word in the text [2]. Weighting of words is positively correlated to the number

of times a word appears in a given document, but is offset by frequency in the training

corpus.

3. Global Vectors for Word Representation (GloVe): GloVe is a word-embedding method

that quantifies how often pairs of words co-occur in some window in a given text, since

these frequencies are likely to have semantic meaning (S1 Fig in S1 File) [4]. For example,

the pairs of terms “ice”-“solid” and “steam”-“gas” co-occur much more frequently than

pairs “ice”-“gas” and “steam”-“solid.” Exact frequencies depend on the specific training set

GloVe uses.

Radiologic stroke featurization training corpus for GloVe

Since standard widely available text corpora do not provide frequent exposure to our concepts

of interest (i.e. ischemic stroke), and more specifically the likely co-occurrence of word pairs

relevant to stroke, we developed a neurovascular specific corpus to train our GloVe featuriza-

tion algorithm, including:

1. The complete set of neurology articles on UpToDate™, to capture general neurologically

focused medical language [19].

2. Stroke, Pathophysiology Diagnosis and Management, to capture stroke-specific language

[20].

3. Yousem’s Neuroradiology: The Requisites, to capture neuroradiology specific language

[21].
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4. A random sample of 10,000 radiology reports from 2010–2017, separate to our testing and

training set, to capture language specific to radiology reports of all types.

This training resulted in the first neuroradiology specific set of vector representations,

which we made available for other clinical NLP applications and can be found at http://www.

mit.edu/~agniorf/files/Glove_Neurology_Embeddings.csv. Our GloVe model parameters

included word vector dimension of 100, number of iterations of 50, a window size of 10, and a

learning rate of 0.05.

Report classification

To classify the radiology reports for our three outcomes of interest 1) presence of stroke, 2)

stroke location (MCA territory), and 3) stroke acuity, we created predictive models using logis-

tic regression, k-Nearest Neighbors (k-NN), Classification and Regression Trees, (CART)

Optimal Classification Trees (OCT) with and without hyperplanes (OCT-H), Random Forest,

and Recurrent Neural Networks (RNN) (Table 2; S2 Fig and S1 Appendix in S1 File) [10–16].

Our analysis leverages a wide range of traditional state-of-the-art algorithms including linear

regression, tree-based, ensemble, and Neural Network models. The choice of RNN among the

various types of NN structures was based on prior research in the NLP field that indicated

superior performance when applied to sequential text [16, 22]. RNN coupled with LSTM gates

allow for back propagation of information, and thus are able to leverage the order of words in

the text [17]. In the derivation cohort, we reported results across a comprehensive combina-

tion of all text featurization and predictive techniques outlined above. We performed further

external validation using 500 “unseen” reports from an additional medical center, leveraging

our two combinations of text featurization techniques and binary classification algorithms.

Specifically, we report the performance of interpretable, simple models that use Logistic

Regression with BOW and the more complex RNN models coupled with neurology-specific

GloVe embeddings.

For validation of our models, we used a grid search and 10-fold cross-validation to select

the appropriate values of tuning parameters for all binary classification algorithms. Our

parameters for model development included the selection of the regularization term λ, using a

maximum of 1000 iterations and a tolerance threshold of 0.01 for logistic regression and the k

parameter for the k-NN algorithm from the range of [5, 10, 15, 20]. We selected minimum

bucket and maximum depth parameters for tree-based methods across a range of 1–10, and

used AUC, entropy, gini, and misclassification accuracy to refine and select the final model.

The maximum number of greedy trees for Random Forest was set to 200. Our RNN model

used an LSTM network with two hidden layers, including a layer of sentence vectors, and a

second layer in which the relations of sentences are encoded in document representation [23].

Further details about the cross-validation process can be found in the S1 Appendix in S1 File.

We trained our models on 75% of the original cohort of 1,359 reports and tested on a with-

held test set of 25% for internal validation. For our derivation cohort, we used bootstrapping

to randomly split the data five times into training and testing sets. The entire external valida-

tion cohort was tested across all five splits of the data. To evaluate model performance on both

cohorts, we compared discrimination by reporting Area Under the Curve (AUC) with confi-

dence intervals. We also reported sensitivities, specificities, accuracy, precision, and recall. In

the derivation cohort for each prediction task, we report the latter metrics only for the best per-

forming method (GloVe/RNN). For both the internal and external validations, we prioritized

sensitivity, and chose a threshold in which sensitivity of>90% produced the highest specific-

ity. For each outcome on our derivation cohort, we evaluated the models’ calibration using cal-

ibration curves. Moreover, we selected the two best performing classifiers and compared them
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using the McNemar test [24]. A 2-sided P-value of 0.05 was considered significant. Similar to

other NLP studies, we used this test to validate the hypothesis that the two predictive models

are equivalent [25]. We report the average performance across all five partitions of the data for

Table 1. Natural language processing and machine learning classifier descriptions. A. Natural Language Processing Methods. B. Classification Algorithms.

A

BOW tf-idf GloVe

Methodology Each feature represents a word. The value of

each feature is the absolute frequency of that

word in the document of interest. It can be

adapted to include short phrases called n-grams

(i.e. mca_stroke; acute_mca_stroke) [8].

Builds upon BOW by re-weighting the document

features based on the relative importance of each

word in the text. The relative weight is a function

of the term’s frequency in the training corpus

versus the document of interest [8].

GloVe constructs word embeddings,

representing individual words as d-dimensional

vectors. The text is then summarized as the sum

of its words. Terms that appear in the same text

context are associated with similar

representations [4].

BOW disregards context, semantic proximity

and grammar.

tf-idf disregards context, semantic proximity and

grammar.

Word vectors better account for grammar and

syntax.

Example “There is loss of grey-white matter consistent

with early ischemic stroke . Impression: There

is an ischemic stroke in the MCA

distribution.”

tf-idf will reassign the value of the commonly

used word “ is ” given that it occurs so commonly

in language. The occurrence of the word

“ stroke ” would be weighted more heavily.

“Ischemic stroke ” has a similar vector to

“Ischemic infarct ” as stroke and infarct are

synonymous. These vectors would be assigned

similar values.

“Stroke” = 2, as it is mentioned twice. “Is”
also = 2.

B

Logistic Regression k-NN Tree Based Methods Neural Networks

CART OCT RF

Description A statistical model that

uses a logistic function

to model a binary

dependent outcome

using one or more

inputs [10].

Classifies each

observation by

identifying the k most

similar observations.

The observation is

assigned to the class to

which the majority of

its neighbors belong

[11].

Trains a decision tree

with a top-down

approach starting at the

strongest predictor.

Subsequent predictors

are used to split the data

into smaller

classifications. Each leaf

(end node) of the tree

determines the

likelihood of the report

belonging to a specific

class [12].

Constructs the best

decision tree in a

single step, with each

split in the tree

formed with the

knowledge of the

other splits. While

CART splits one at a

time, OCT considers

all splits at once [13,

14].

Builds a large

number of CART

trees in parallel. A

classification

prediction is made

by averaging the

votes of all tree-

based models [15].

A computational model

consisting of multiple

input layers (each with

its own function that

informs subsequent

layers’ predictions) to

make a final

classification. RNN [16]

is a subtype that allows

back propagation of

information to leverage

the order of words in

the text [9, 17].

Interpretability High. Medium. High. High. Low. Low.

Potential features are

selected by researchers

and their independent

and adjusted weights

and significances can

be identified from the

model.

Nearest neighbors and

their features can be

visualized to infer the

rationale for

classification in low

dimensional spaces.

The single decision-tree

model allows

visualization of the

features that lead to

splits.

OCTs share the single

tree structure in

which splits can be

followed.

Unlike CART and

OCT, RF outcomes

are an average of

many trees using a

random subset of

variables.

RNNs are difficult to

interpret due to their

many layers and

bidirectional flow of

information.

Modifications Lasso regression

assigns a penalty for

complex models,

resulting in fewer

parameters to increase

interpretability and

reduce over-fitting.

The value of k is

selected using cross-

validation.�

The value of minimum

bucket, maximum depth

and complexity

parameter is selected via

cross-validation. �

Adding hyperplanes

to OCT (OCT-H)

authorizes multi-

variable rather than

single-variable splits

to improve

performance.

The number of trees

for each model is

selected via cross-

validation.

Long Short-Term

memory (LSTM)

networks is a subclass of

RNN that improves the

incorporation of time-

dependent variables in

the model [18].

Bag of Words (BOW); Term Frequency-Inverse Document Frequency (tf-idf); Global Vectors for Word representation (GloVe). k-Nearest Neighbors (k-NN);

Classification and Regression Trees (CART); Optimal Classification Trees (OCT); Random Forests (RF); Recurrent Networks (RNN).

�Cross-validation: Using different combinations of training set to optimize model parameters.

https://doi.org/10.1371/journal.pone.0234908.t001
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each evaluation criterion. Confidence intervals were calculated for the bootstrapped results.

Analysis was performed with R 3.5.2 and Python (scikit-learn, Tensorflow libraries) [26, 27].

3. Results

Of 1,359 hand-labeled reports from 297 patients in the derivation cohort, 925 had ischemic

strokes, 350 were labeled as “MCA territory” and 522 were labeled as acute. 129 patients were

female (43%), and median age at report time was 68 years [IQR 55,79] (S1 Table in S1 File). In

the validation cohort, 500 reports were used from 424 patients with a median age of 69 [IQR

59,79] at report time. The sample included 192 female patients (45%). After labeling, 266

reports were classified as strokes, 90 as “MCA territory” and 106 were characterized as acute.

We compared performance of multiple text featurization and classification methods to clas-

sify our outcomes of interest (Table 1). For stroke, MCA location, and acuity, we observed best

discrimination using our developed GloVe word embedding and RNN classifier algorithm

with AUC values of 0.961, 0.976, and 0.925 respectively (Table 2). For simpler tasks, like the

Table 2. Performance metrics for natural language processing and classification on the derivation cohort. A) Average AUC metric across all five splits of the data. B)

Sensitivity, Specificity, Accuracy and Precision for GloVe Models combined with RNN.

a)

Stroke

Average AUC (95%

CI)

Logistic

Regression

k-NN CART OCT OCT-H RF RNN

BOW 0.951 (0.943:0.959) 0.808

(0.767:0.848)

0.889 (0.868:0.91) 0.805

(0.774:0.836)

0.915 (0.899:0.92) 0.922

(0.902:0.942)

0.838

(0.811:0.866)

tf-idf 0.939 (0.933:0.945) 0.857

(0.825:0.889)

0.883

(0.859:0.907)

0.813

(0.801:0.825)

0.894

(0.853:0.906)

0.929

(0.909:0.948)

0.843

(0.816:0.869)

GloVe 0.904 (0.889:0.918) 0.867

(0.836:0.898)

0.734

(0.703:0.765)

0.722 (0.69:0.753) 0.767

(0.775:0.834)

0.892

(0.868:0.916)

0.961

(0.955:0.967)

Location

Average AUC (95%

CI)

Logistic

Regression

k-NN CART OCT OCT-H RF RNN

BOW 0.959 (0.944:0.974) 0.841

(0.816:0.867)

0.949 (0.93:0.969) 0.867

(0.838:0.896)

0.937

(0.919:0.955)

0.96 (0.943:0.978) 0.896

(0.873:0.926)

tf-idf 0.962 (0.943:0.981) 0.903

(0.873:0.933)

0.944 (0.918:0.97) 0.862

(0.828:0.896)

0.934

(0.917:0.951)

0.965

(0.947:0.983)

0.956

(0.936:0.977)

GloVe 0.906 (0.884:0.927) 0.843

(0.819:0.868)

0.734

(0.677:0.791)

0.699

(0.662:0.722)

0.809 (0.787:0.83) 0.873

(0.854:0.892)

0.976

(0.968:0.983)

Acuity

Average AUC (95%

CI)

Logistic

Regression

k-NN CART OCT OCT-H RF RNN

BOW 0.898 (0.874:0.922) 0.815

(0.775:0.854)

0.797

(0.748:0.846)

0.735

(0.705:0.764)

0.797

(0.742:0.852)

0.901

(0.883:0.919)

0.754

(0.733:0.779)

tf-idf 0.893 (0.865:0.921) 0.857

(0.826:0.888)

0.801

(0.762:0.839)

0.733

(0.703:0.764)

0.807

(0.764:0.843)

0.902

(0.876:0.923)

0.899

(0.875:0.922)

GloVe 0.881 (0.842:0.92) 0.842

(0.805:0.879)

0.73 (0.684:0.776) 0.719 (0.66:0.778) 0.82 (0.766:0.873) 0.866

(0.824:0.908)

0.925

(0.894:0.955)

b)

Sensitivity Specificity Accuracy Precision Threshold

Stroke 0.902 0.872 0.892 0.935 0.69

MCA Location 0.902 0.911 0.908 0.766 0.42

Acuity 0.911 0.689 0.772 0.935 0.33

k-Nearest Neighbors (k-NN); Classification and Regression Trees (CART); Optimal Classification Trees (OCT); Random Forests (RF); Recurrent Networks (RNN).

https://doi.org/10.1371/journal.pone.0234908.t002

PLOS ONE Natural language processing techniques for stroke identification from radiology reports

PLOS ONE | https://doi.org/10.1371/journal.pone.0234908 June 19, 2020 8 / 16

https://doi.org/10.1371/journal.pone.0234908.t002
https://doi.org/10.1371/journal.pone.0234908


identification of stroke, logistic regression combined with BOW performed comparably to

more complex word embedding methods (AUC of 0.951 with Logistic Regression/BOW vs.

AUC of 0.961 with GloVe/RNN). However, the difference in discrimination was larger for

more nuanced features like acuity (AUC of 0.898 for Logistic Regression/BOW vs. 0.925 for

GloVe/RNN). The word embedding approach did not perform as well when paired with logis-

tic regression or single-decision tree methods (Table 2). Receiver Operator Curves (ROCs) are

included in Fig 2. We constructed calibration curves for our models, where best performance

is represented by a slope of 45˚, and the three best classifiers are included in Fig 3. Random

Forest classifiers suffered a decline in calibration, especially in the MCA location task at high

predicted probabilities. GloVe/RNN methods appeared to have the best calibration across

tasks.

In terms of accuracy, (the fraction of reports from both positive and negative classes that

are correctly classified), we found that GloVe/RNN models achieved up to 89 and 91% for

stroke presence and MCA location, respectively. Corresponding sensitivities and specificities

were both high (0.90 and 0.87 for stroke presence) and (0.90 and 0.91 for MCA location). For

the acuity task, while we prioritized sensitivity (0.91), accuracy was less (0.77), reflecting the

greater difficulty of this classification (Table 2). Precision/recall and full sensitivities/specifici-

ties for GloVe are included (S4 Table and S3 Fig in S1 File).

Finally, we used McNemar’s test to compare our best performing GloVe model with the

best performing simpler NLP model for each task. Specifically, we compared GloVe/RNN with

the second-best performing combination of supervised learning and text featurization tech-

nique. For the presence of stroke task, Logistic Regression coupled with BOW had a chi-

squared value of 4.79 (p = 0.056). For both the location and acuity outcome, we used the mod-

els of tf-idf/RF and showed that both had equivalent performances, 14.78 (p = 0.023) and 26.74

(p = 0.031) respectively. Detailed results for each split of the data are provided (S5 Table in S1

File).

In our external validation cohort, we tested our most sophisticated (GloVe/RNN) and the

simplest (BOW/Logistic Regression) methods. We found that BOW/Logistic Regression

(AUCs 0.89, 0.86 and 0.80 respectively for stroke, location, acuity) did not generalize as well as

GloVe/RNN (AUC 0.92, 0.89, 0.93) in the external population (Table 3). We continued to pri-

oritize sensitivities in the external validation population for GloVe/RNN (0.90–0.92), and spec-

ificities were decreased for stroke and MCA location (0.75, 0.70) compared to the internal

validation population (0.87, 0.91). Specificities remained the same (0.69) for the acuity task.

Discussion

Accurate automated information extraction will be increasingly important as more medical

researchers, hospital systems, and academic institutions leverage “big data” from electronic

medical records. Unlike structured, discrete data like laboratory values or diagnoses codes,

unstructured text is challenging to analyze. However, clinicians frequently record essential

observations, interpretations, and assessments that are otherwise absent from the remainder of

the medical record. In order to fully leverage our ability to access such data through the medi-

cal record, we must have validated methods to extract meaningful information. Specific to

radiology reports, there are several important applications of accurate automated extraction of

information through NLP. Automatic, real-time identification of specific subpopulations

(such as patients with acute MCA stroke) can improve clinical workflow and management by

triaging eligible patients to timely treatments or higher levels of care [3]. NLP approaches can

facilitate research by identifying both populations (i.e. patients with stroke, tumor or aneu-

rysms) and outcomes (i.e. presence of hemorrhagic conversion or edema) more feasibly than
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manual review, and potentially more accurately than billing codes. Indeed, of our 1,359 radio-

graphic reports derived from patients with billing codes of stroke, only 925 (68%) had a radio-

graphically reported ischemic stroke, which raises the question as to whether NLP can assist in

improving diagnostic classification. In this study, we developed a comprehensive framework

to create a vector-based NLP method specifically targeted to identify stroke features from

unstructured text. We then tested the ability of multiple machine learning methods to classify

specific stroke features and compared performance. We designed our study to identify these

three tasks separately as opposed to a single task (“acute middle cerebral artery stroke”)

because our objective was to create an NLP identification system that can be expanded to mul-

tiple stroke types in the future.

Fig 2. Receiver operating curves for NLP classification. A, stroke presence; B, MCA location; C, acuity. These curves represent different combinations of text

featurization (BOW, tf-idf, GloVe) and binary classification algorithms (Logistic Regression, k-NN, CART, OCT, OCT-H, RF, RNN). GloVe and RNN achieved the

highest AUC for all three tasks (>90%). Similar results were achieved for simple tasks by BOW or tf-idf paired with Logistic Regression. The results presented average

the mean sensitivity and specificity over five random splits of the data. In a ROC curve the true positive rate (Sensitivity) is plotted as a function of the false positive rate

(1-Specificity) for different cut-off points of a parameter. Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular decision

threshold. The area under the ROC curve (AUC) is a measure of how well a parameter can distinguish between the two subpopulation groups.

https://doi.org/10.1371/journal.pone.0234908.g002
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We found that NLP methods perform well at extracting featurized information from radiol-

ogy reports (AUCs >0.9 for all three tasks). True to our hypothesis, word-embedding methods

like GloVe improved overall accuracy of feature identification, especially when paired with

deep learning methods like RNN, which are less interpretable (harder to distinguish features

contributing to performance) than simpler classification algorithms like logistic regression or

single-decision trees. However, RNN’s have been particularly successful in NLP applications,

where the sequence of words in the text can crucially alter the overall meaning of the corpus

[9]. Because the field of NLP is rapidly expanding, variations of featurization methods are used

and trialed for different purposes. We chose to use BOW, tf-idf and GloVe because they were

representative of the simplest, the most frequently used, or an innovative word-embedding

approach that better captures semantic meaning, respectively.

Fig 3. Calibration curves for NLP classification. A, stroke presence; B, MCA location; C, acuity. These curves represent different combinations of text featurization

(BOW, tf-idf, GloVe) and binary classification algorithms (Logistic Regression, RF, RNN). We created plots showing the relation between the true class of the samples

and the predicted probabilities. We binned the samples according to their class probabilities generated by the model. We defined the following intervals: [0,10%],

(10,20%], (20,30%], . . . (90,100%]. We subsequently identified the event rate of each bin. For example, if 4 out of 5 samples falling into the last bin are actual events, then

the event rate for that bin would be 80%. The calibration plot displays the bin mid-points on the x-axis and the event rate on the y-axis. Ideally, the event rate should be

reflected as a 45˚ line. The results presented are aggregated over five different splits of the data. We show results of the three best performing methods in each task.

https://doi.org/10.1371/journal.pone.0234908.g003
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We acknowledge that there are various widely accepted word embedding techniques, such

as Word2Vec, the Distributed memory (DM)-document vector (DV) model, the continuous

bag of words (cBoW) model, the continuous skip-gram (CSG) model, and FastText [1, 5, 28].

Recently, investigators also proposed a hybrid method, called Intelligent Word Embedding

(IWE), that combines semantic-dictionary mapping and a neural embedding technique for

creating context-aware dense vector representation of free-text clinical narratives [29]. How-

ever, our aim was to demonstrate whether a neurology-specific embedding model could

improve upon simpler techniques that do not consider context and semantic meaning in their

word representations. Given the significant computational resources required for the creation

of the embeddings and prior research demonstrating equivalence between the algorithms’

objectives, we limited our analysis to one word embedding technique [30]. We chose to use

GloVe because this approach outperformed other word-embedding methods, and has been

shown to do so with smaller training sets, which is important when considering how our con-

tributions may be applied to other investigators for research and/or clinical use [4].

This investigation is part of a wider literature that employs deep learning in clinical NLP

[31]. In this study, we employ a specific RNN structure that had been previously and success-

fully used in combination with GloVe embeddings [16]. An increasing number of deep learn-

ing structures are being employed in similar applications such as autoencoders [32, 33], deep

belief networks [34], memory residual NN [35], and attention mechanisms like BERT [36].

Future research directions could focus on leveraging these other NLP structures with neurol-

ogy-specific embeddings and comparing their performance.

Our work is consistent with other studies reporting simple methods like BOW are suitable

for extracting unstructured text information. One group found that BOW paired with lasso

logistic regression had high performance (AUCs of>0.95) for critical head CT findings [1].

Kim and colleagues’ found that a single decision tree outperformed more complicated support

vector machines in identifying acute ischemic stroke on MRIs [37]. Garg and colleagues used

various machine learning methods to classify stroke subtype from radiology reports and other

unstructured data [38]. They achieved a kappa of 0.25 using radiology reports alone, which

improved to 0.57 when they used combined data. In our study, our GloVe embedded vector

approach was specifically tailored for the detection of vascular neurologic disorders, and out-

performed other methods in correctly classifying stroke acuity, particularly when paired with a

neural network structure. Additional analysis also demonstrated that general purpose embed-

dings such as the ones trained only on Wikipedia provide significantly lower performance (S6

Table in S1 File). Namely, an RNN classifier achieved 0.74 (0.70:0.75) AUC for presence, 0.75

(0.72:0.79) AUC for location, and 0.693 (0.61:0.73) AUC for acuity of stroke—a decrease of at

Table 3. Performance metrics for natural language processing and classification on the validation cohort across

all outcomes for BOW with logistic regression and RNN with GloVe. a) Average AUC metric across all five splits of

the data. b) Sensitivity, Specificity, Accuracy and Precision for GloVe Models combined with RNN on the BMC Valida-

tion Cohort.

a)

Stroke Location Acuity

BOW+Log.Reg 0.892 (0.875:0.91) 0.857 (0.845:0.869) 0.797 (0.768:0.828)

GloVe+RNN 0.920.908:0.932) 0.893.88:0.905) 0.925.906:0.946)

b)

Sensitivity Specificity Accuracy Precision

Stroke 0.915 0.752 0.828 0.764

MCA Location 0.898 0.7 0.862 0.932

Acuity 0.914 0.689 0.866 0.916

https://doi.org/10.1371/journal.pone.0234908.t003
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least 0.2 in discriminatory performance compared to our proposed embeddings. These results

emphasize the need for radiographic-specific word representations that capture the semantic

relations of medical vocabulary. Because RNNs account for word order, we expect these meth-

ods will be increasingly used for accurate natural language processing of medical text data.

Limitations

There are several important limitations to our work. Similar to other studies, our radiology

corpus consisted of reports from only two hospitals, which may reduce our generalizability in

other systems. Also, the use of both computed tomography and magnetic resonance imaging

reports increases heterogeneity for model development; however, given the finite number of

ways in which reports describes stroke characteristics regardless of imaging modality, we

sought to test a method that could be widely applied to radiographic text.

Strengths and future directions

Strengths of our study include the development of a tailored word-embedding approach to

vascular neurologic disorders, the development of multiple models testing the optimal combi-

nation of NLP and classification algorithms, generalizability to both CT scans and MRIs, its

external validation in a racial-ethnic and socio-economically diverse cohort, and the ability to

expand this framework to additional stroke characteristics (increased locations, hemorrhagic

conversion). While our word-embedding approach was specifically tailored to neurovascular

disorders, similar approaches could be used to generate word vectors for other disease states,

including oncology and cardiology. Moreover, while our data extraction of unstructured text

focused on radiology reports, further work in this area could assist in the retrieval of essential

information in progress notes, and interrogation of discrepancies in the medical record that

result from “copy/paste.” As we gather more electronic data on patients, easy information

retrieval will become increasingly important as a strategy to scale research and improve

quality.

4. Conclusion

Automated machine learning methods can extract diagnosis, location and acuity of stroke

with high accuracy. Word-embedding approaches and RNNs achieved the best performance

in correct classification of stroke and stroke characteristics. Our results provide a framework

for expeditiously identifying salient stroke features from radiology text that can triage high-

risk imaging findings and identify patient populations of interest for research. Future direc-

tions include improving performance through the study of hybrid rule-based and machine

learning methods. Work in this area is particularly important as accurate, accessible methods

to automate data extraction will become increasingly relevant for academic, tertiary, and non-

tertiary centers who aim to improve clinical, administrative, and quality care.
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