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Abstract: Enzymes belonging to the shikimate pathway have long been considered promising targets
for antibacterial drugs because they have no counterpart in mammals and are essential for bacterial
growth and virulence. However, despite decades of research, there are currently no clinically relevant
antibacterial drugs targeting any of these enzymes, and there are legitimate concerns about whether
they are sufficiently druggable, i.e., whether they can be adequately modulated by small and potent
drug-like molecules. In the present work, in silico analyses combining evolutionary conservation and
druggability are performed to determine whether these enzymes are candidates for broad-spectrum
antibacterial therapy. The results presented here indicate that the substrate-binding sites of most
enzymes in this pathway are suitable drug targets because of their reasonable conservation and
druggability scores. An exception was the substrate-binding site of 3-deoxy-D-arabino-heptulosonate-
7-phosphate synthase, which was found to be undruggable because of its high content of charged
residues and extremely high overall polarity. Although the presented study was designed from the
perspective of broad-spectrum antibacterial drug development, this workflow can be readily applied
to any antimicrobial target analysis, whether narrow- or broad-spectrum. Moreover, this research
also contributes to a deeper understanding of these enzymes and provides valuable insights into
their properties.
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1. Introduction

Although antibiotics have saved many lives in the past, their overuse and misuse
have led to an increased economic burden as well as increases in morbidity and mortality
in patients infected with formerly common infections that are not treatable with existing
treatment options [1]. There are many promising strategies in the fight against bacterial
pathogens that have evolved over the past decades, but the one that is most frequently
mentioned in the scientific literature is targeting an essential metabolic pathway that is
not exploited by existing drugs [2]. In this context, the enzymes of the shikimate pathway
may be a possible solution because they have no counterpart in mammals and are essential
for growth and virulence, as shown by several knock-out studies [3–9]. Importantly, this
pathway was discovered more than 70 years ago and has been studied in detail since
then [10–14].

An overview of literature data suggests that the interest in these enzymes as antibacte-
rial targets has increased over the years (Supplementary Materials, Figure S1). However,
these enzymes have been largely ignored by the pharmaceutical industry, which to date
has been unable to produce a clinically relevant drug against any of them [15]. Although
many inhibitors have been published in the scientific literature, most of which are sub-
strate analogs (Supplementary Materials, Figure S2), the only widely used inhibitor is the
herbicide glyphosate, which was discovered nearly 50 years ago and acts via the specific
inhibition of plant and malarian EPSP synthase (EPSPS) [16–19].
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The shikimate metabolic pathway (Supplementary Materials, Figure S3) is found in
plants, algae, bacteria, fungi, and apicomplexan parasites. It involves seven enzymes that
catalyze a series of reactions to form chorismate, a precursor of aromatic amino acids,
iron-scavenging siderophores, folic acid, vitamin K, and ubiquinone [10–14]. The extreme
importance of the synthesis of aromatic amino acids in the bacterial life cycle and their
structural as well as kinetic properties have been reviewed in detail by many authors to
whom we refer the reader [20–29].

In the absence of clinically relevant antibacterial drugs against any of these enzymes,
there is a legitimate concern that these targets are not sufficiently ligandable and/or
druggable. Druggability is defined as the ability of a target to be modulated by potent,
small “drug-like” molecules. Drugs that bind to a target that is more druggable are likely
to have higher ligand efficiencies, require lower doses and exposures, and have a lower
risk of failure during the developmental stages of the drug. To bind drug-like molecules, a
binding site must also be ligandable, i.e., it must be able to bind inhibitors with sufficient
affinity and be complementary or compatible with their physicochemical properties [30].

There are many strategies we can use to assess the ligandability and druggability of
targets [31]. One of the most rigorous is the evaluation of existing inhibitors or hit rates of
HTS campaigns. It was first introduced in 2006 by Macarron, who published a retrospective
analysis of HTS results at GlaxoSmithKline (GSK) [32]. Although many other metrics have
subsequently been reported, their precision depends heavily on the number of compounds
present [33–35]. For example, Vukovic and Huggins [36] described a reward-based metric
for quantifying target ligandability for which BindingDB [37,38] reports > 100 Ki values.
Since the number of submicromolar inhibitors is insufficient to make a reliable prediction,
such an analysis could not be performed with sufficient reliability for most enzymes of the
shikimate pathway (Supplementary Materials, Figure S1).

For proteins with 3D structures that are known or predicted using AI systems such as
AlphaFold, several computational methods can be used that provide medicinal chemists
with important guidelines for prioritizing targets before they perform costly high-throughput
screening [30,36]. Over the years, many crystal structures of all seven enzymes of the
shikimate pathway have become available in both apo and liganded forms, making such
in silico studies feasible. Although numerous software and online platforms have been
developed for this purpose, including FTMap [39], DOGSiteScorer [40], SiteMap [41],
Fpocket [42], Sitehound [43], etc., few of these have been used for the analysis of shikimate
pathway enzymes. To the best of our knowledge, there are only two studies in which the
FTMap server was used to identify hotspots of DHQS from S. aureus [44] and SDH from
H. pylori [45].

However, even if a particular binding site proves to be druggable, it may not be a
suitable target for antibacterial drug development because its evolutionary conservation is
not high enough. The extent to which the amino acids that constitute a particular target are
evolutionarily conserved correlates strongly with its structural and functional importance;
it is also a predictor of the likelihood that a potential target will be susceptible to mutation
and the development of resistance [46]. Evaluations of evolutionary conservation have
already been performed, to some extent, for the enzymes of the shikimate pathway, mostly
using multiple sequence alignments (MSA) of sequences from different kingdoms for each
enzyme of the pathway [20,47–64].

Evolutionary conservation and druggability analyses are therefore crucial for the
validation of antibacterial targets, and it is surprising that the combination of these two
methods has not yet become a standard target validation procedure in the literature. Such
procedures are also rare in other antimicrobial fields, for example, in the antiviral field. To
our knowledge, there is only one study by Kukol and Hughes in which both features were
considered simultaneously in a large-scale analysis of the influenza A virus nucleoprotein
sequence [65]. There are also a few reports in which the identification of hotspots or binding
sites was performed in parallel with the calculation of their evolutionary conservation [66–68].
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The aim of this study is to perform a combined comprehensive in silico analysis of
evolutionary conservation and druggability for the enzymes of the shikimate pathway
in pathogenic bacteria. In this context, we intend to identify hotspots with FTMap and
binding pockets with SiteMap and FTSite in a representative set of crystal structures of
each enzyme of the pathway. Since binding regions are not strictly limited to catalytic
sites, the presence of other regions, such as allosteric sites, that may be of equal interest,
was also investigated. The available crystal structures were analyzed for this purpose
only because the identification of hidden allosteric sites not apparent from the available
crystal structures alone would require a large amount of conformational sampling. Such an
analysis is, therefore, beyond the scope of this manuscript. The evolutionary conservation
of each enzyme and binding site was calculated using ConSurf [69], and the results of each
binding pocket were combined with the druggability results calculated using SiteMap.
Subsequently, the physicochemical properties calculated by SiteMap were analyzed and
compared with the physicochemical properties of available small-molecule inhibitors. To
our knowledge, this is the first study of the shikimate pathway that considers evolutionary
conservation, the identification of binding pockets, and an evaluation of druggability.
We believe that this systematic study provides structural and molecular insights into the
druggability and evolutionary conservation of the enzymes of this pathway and predicts
whether they are suitable targets for the development of new broad-spectrum antibacterial
drugs. This would open new opportunities for the development of novel inhibitors against
these enzymes.

2. Results and Discussion
2.1. Study Design

In the present study, evolutionary conservation and druggability were investigated
for seven enzymes of the shikimate metabolic pathway. For each protein of the pathway,
we also analyzed its relevant functional role and the existence of different isozymes in the
literature. The results of our analysis can be summarized in several steps that are illustrated
in the workflow shown in Figure 1.
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Figure 1. Summary of the workflow to determine the druggability, evolutionary conservation, and
physicochemical properties of binding pockets of enzymes in the shikimate pathway.

To assess evolutionary conservation, the first step was to extract all sequences from
the UniProt database and perform a multiple sequence alignment (MSA). This information
was then used in the next steps to interpret the identified binding sites and druggabil-
ity results. In parallel, the FTMap and FTSite servers were applied to selected enzyme
structures to identify heatmaps and binding sites (including allosteric sites). This analysis
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was complemented by the use of SiteMap, which identified binding pockets, calculated
key physicochemical properties, and estimated druggability parameters for each binding
pocket, such as DScore and SiteScore [41]. The analysis was completed by comparing these
properties between representative enzymes of each class and by comparing the physico-
chemical properties of currently available nanomolar inhibitors of each enzyme. Complete
data for all enzymes analyzed, including their physicochemical properties and druggability
data for each identified site, can be found in Table S30 of the Supplementary Materials. A
detailed description of the workflow procedure can be found in Materials and Methods,
Section 3.1.

Four enzymes in this pathway, namely DHQS, SDH, EPSPS, and CS, each exist in only
one enzyme form. In contrast, the other three enzymes, namely DAHPS, DHQase, and
SK, each exist in at least two isozymes. Given that they differ in their physicochemical
properties, amino acid sequences, quaternary structures, molecular mass, and occurrence in
different bacteria, they were each analyzed differently. Both sequences of DAHPS isozymes
were used in the MSA because they share a common 3D structure and were present in
14% of genomes analyzed [70–75]. In contrast, the two DHQase families were analyzed
separately (DHQase I and II) because there is neither a unique amino acid sequence nor
3D similarity between the two [50,76]. Only the dominant form of SK, namely SK II, was
used in the MSA [77]. A more detailed explanation of the properties of each isozyme, with
additional details on their exact lengths, can be found in the Supplementary Materials
(Table S2, Figures S4 and S5).

2.2. The Identification of Binding Sites

The binding potential of all seven enzymes in the pathway was predicted using
FTMap, FTSite, and SiteMap for a set of 42 proteins from the RCS PDB. In general, for each
enzyme, the number of heatmaps identified with FTMap was higher than the number of
ligand-binding sites identified with SiteMap, as shown in Figure 2. This is a direct result of
differences in the methodology used by both programs to calculate these sites, as well as
differences in the basic definitions of heatmaps and ligand-binding sites. Heatmaps, also
known as hot spots, are relatively small regions of the binding surface that contribute to
a large fraction of the binding energy [78,79]. Fesik and colleagues [35] found that small
organic compounds bind almost exclusively to well-defined, localized regions of proteins,
regardless of their affinity. The identification of hotspots is therefore important for the study
of macromolecule–ligand interactions, the identification of binding sites, the determination
of druggability, and the determination of the input for fragment-based ligand discovery
(FBLD) [39]. On the other hand, ligand-binding sites are regions that are larger and may
contain multiple hotspots [80]. A tight-binding inhibitor may therefore bind to multiple
hotspots simultaneously. It is not guaranteed that a high hit rate means that it is easy to
identify a small-molecule inhibitor with sufficient binding affinity. Many proteins have
binding hotspots that bind fragments with high affinity but are considered difficult drug
targets [35,79].

On average, FTMap and SiteMap identified 6.1 ± 1.9 and 10.5 ± 1.5 binding sites and
heatmaps, respectively, that were located at the substrate- (orthosteric sites), the cofactor-
binding site, or at other parts of the surface (potential allosteric sites) (Figure 2). In contrast
to SiteMap and FTMap, where multiple spots were detected, FTSite identified only three
binding sites per enzyme. The number of potential heatmaps and binding sites is highly
dependent on the shape and physicochemical properties of the cavities on the protein
surface. These factors are also incorporated into the equation used by SiteMap to calculate
the two druggability scores, SiteScore and DScore (see the experimental section) [39,41]. For
most enzymes, the number of binding sites identified by SiteMap depends on the molecular
weight of the enzymes and also correlates positively with the number of heatmaps identified
by FTMap. An exception is CS, for which SiteMap identified additional binding sites in the
C-terminal part of the enzyme that were not identified by FTSite.
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2.3. Evolutionary Conservation

Figure 3 shows the projections of conservation scores obtained after MSA of sequences
from different pathogenic bacteria. The scores were projected onto the protein structure of
each of the seven enzymes and classified by the ConSurf server into classes ranging from 9
(highest conservation) to 1 (highest variability). The most variable positions (grade 1) are
colored turquoise, the moderately conserved positions (grade 5) are colored white, and the
most conserved positions (grade 9) are colored maroon. We must clarify that a conservation
score calculated by ConSurf is a relative measure of evolutionary conservation at each
sequence position and does not necessarily mean that the highest score indicates 100%
conservation. These figures provide an overview of the structure and surface area of these
enzymes and also illustrate the regions with highly conserved residues. In general, most of
the conserved residues are located inside the enzyme at the substrate-binding site. This is
no surprise, as the degree of evolutionary conservation is often indicative of the importance
of the position in maintaining the structure and/or function of the protein. Moreover, it has
already been reported that selective pressure acting on the substrate-binding site generally
spreads to the rest of the protein via residue–residue contacts [81]. Thus, a gradient of
conservation can be observed, such that the closer a residue is to the binding site, the more
conserved it is, which is particularly observed in surface representations of enzymes (B and
C). Small areas of conserved residues can be observed in the other parts of each protein, but
they are small and therefore not important from a drug design perspective. An exception is
CS, where a larger conserved region is found at the C-terminal end of the enzyme.

Next, we analyzed the percentage of conserved and highly conserved residues (scores 8
and 9) in each enzyme, structural motif, and binding pocket. The results are shown in
Figure 4. The first histogram (A) shows that most of the conserved residues are located on
the α-helices, which are inside the enzyme. Exceptions are DAHPS, where most conserved
residues are found on the loops, and CS, where these residues are evenly distributed
between helices and loops.
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Figure 3. Spacefill (A) and surface (B,C) representation of the representative X-ray monomer struc-
tures of the individual enzymes in the shikimate pathway with the degrees of conservation mapped
onto the monomer structure. Amino acids are colored according to their degree of conservation
using the color-coding bar, with turquoise-through-maroon indicating variable-through-conserved
residues. Enzymes: 1. DAHPS from E. coli (PDB: 1GG1, ligand: 2-phosphoglycolic acid), 2. DHQS
from A. baumannii (PDB: 5EKS, ligand: NAD), 3. DHQase I from S. enterica (PDB: 4CNN), 4. DHQase
II from M. tuberculosis (PDB: 4KIW, ligand: 5-[(3-nitrobenzyl)amino]benzene-1,3-dicarboxylic acid),
5. SDH from M. tuberculosis (PDB: 4P4G, ligand: shikimic acid), 6. SK II from M. tuberculosis (PDB:
2IYQ, ligand: shikimic acid, NAD), 7. EPSP synthase from E. coli (PDB: 2AA9, ligand: shikimic acid),
8. CS synthase from M. tuberculosis (PDB: 2QHF, ligand: nicotinamide).
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A second, stacked histogram (B) shows that all enzymes in the shikimate pathway
are evolutionarily well conserved, with conservation scores of 8 and 9 ranging from 20%
to 45%, consistent with their functional importance to the bacteria. The evolutionarily
least conserved are DAHPS and DHQase I, which have 23% and 21% conserved residues,
respectively. The lower conservation of DAHPS is not surprising because the sequences
taken for MSA were distributed between both enzyme classes and have only 10% sequence
identity [70–72]. On the other hand, CS is the most evolutionarily conserved of all enzymes
in the shikimate pathway and contains 44% of residues with high conservation scores.

This is also partially evident from the third histogram (C), which shows the evolution-
ary conservation of binding sites. These results indicate that substrate- and cofactor-binding
sites have significantly higher conservation scores compared to other binding sites. It is
also clear that substrate-binding sites in the pathway have a similar proportion of residues,
with the highest conservation scores of 8 and 9 per binding site, ranging from 60% to 90%.
In contrast, for the binding sites that do not bind substrates, this proportion is only 20
to 40%. The observation that substrate-binding sites are more conserved compared with
the rest of the protein is consistent with previous literature reports [82,83]. These results
also suggest a possible explanation for the high evolutionary conservation of CS. Based
on the last histogram, the substrate-binding site of CS is not significantly different from
other enzymes in this pathway in terms of the percentage of highly conserved residues.
Its overall higher evolutionary conservation is a consequence of the fact that other parts
of the enzyme that do not bind the native ligand, particularly at the C-terminal end of
the enzyme, are somewhat more conserved in CS than in other enzymes of the pathway,
resulting in the higher evolutionary conservation of the entire CS enzyme.

Because three enzymes in this metabolic pathway, namely DHQS, SDH, and SK,
require cofactors for their normal function, we further analyzed whether there is a difference
in evolutionary conservation between cofactor- and substrate-binding sites. Unfortunately,
we could not use the pre-existing residues from the SiteMap results because, in most
cases, the cofactor- and substrate-binding sites collided and formed one large binding
site. Therefore, residues within 4 Å of the cofactor or substrate were selected for the
analysis. A list of the residues of the selected representatives for each enzyme can be found
in the Supplementary Materials (Tables S3–S29), along with the ConSurf score and the
maximum identity of each amino acid. It was found that although both the cofactor- and
substrate-binding sites have high conservation scores and are therefore viable targets for
antibacterial drugs, there is a significant difference in evolutionary conservation between
the two sites. The cofactor-binding sites are, on average, 20–30% less conserved than the
substrate-binding sites, which all contain 100% residues with scores of 8 and 9. These results,
along with the potential selectivity issues arising from the fact that these cofactors are used
by several other enzymes in the human body, suggest that the substrate-binding sites of
DHQS, SDH, and SK are the preferred primary targets from a drug design perspective.
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The only enzyme in the entire pathway reported to be controlled by allosteric feedback
inhibition is DAHPS. However, in most organisms, this enzyme exists in three isozymes:
aroF, aroG, and aroH, each regulated by different aromatic amino acids, namely Tyr, Phe,
and Trp [84–88]. Because all three isozymes may be present simultaneously in the bacterial
cell, a potential antibacterial drug would need to act simultaneously on all three isozymes
with similar binding affinities. Our results show that while the orthosteric site of this
enzyme is highly conserved, the allosteric site is highly variable. For example, in E. coli,
the only conserved amino acid was S211, with a conservation value of 8, and all other
residues were significantly less conserved (Supplementary Materials, Table S4). Although
it is known that allosteric sites are evolutionarily less conserved because they have not been
subject to direct evolutionary pressure to conserve important functional residues [89], this
can be an advantage in some cases because it leads to improved selectivity and is desirable
when only one species is targeted [90,91]. For example, allosteric sites of functional proteins
of M. tuberculosis (Mtb) have been used in the study of the Mtb enzymes ornithine acetyl-
transferase [92] and tryptophan synthase [93]. Thus, this lower evolutionary conservation
of all sites is an advantage when only one species is targeted. On the other hand, targeting
allosteric sites can also lead to species differences that may hinder the broad-spectrum
efficacy of a drug in different pathogenic bacterial species [90,91].

2.4. Druggability Assessment

Both ligandability and druggability mappings were examined in detail for each of the
42 proteins from the RCS PDB database using all three programs. Both FTSite and FTMap
ranked the consensus clusters by the number of unbound contacts between the protein and
all probes in the cluster. Representative structures of each enzyme were then superimposed,
and the three highest-scoring clusters from the FTMap and FTSite analyses were selected
and are shown in Figures S6 and S7 of the Supplementary Materials. Although both FTMap
and FTSite are of great help in prioritizing binding sites and are also widely used for
druggability assessment [33,36,94–96], we decided to use SiteMap for this purpose because
it has demonstrated its effectiveness in several publications and has also been extensively
validated on a set of 538 crystal structures [33,66,97–107]. The results of FTMap and FTSite
were therefore complemented by the SiteMap analysis of the same PDB structures.

In general, the highest-ranked ligandable regions selected by all three programs were
the orthosteric and the cofactor regions. The exception was DAHPS, where the heatmaps
were distributed around the enzyme, but most of the highest-ranking clusters were in the
orthosteric region regardless of the X-ray structure used. These results were also confirmed
by DScore and SiteScore calculations.

Figure 5 shows that the substrate-binding sites are generally much more ligandable
than the allosteric binding sites. Two black dotted lines divide the scatter plot into four
regions, with DScore and SiteScore values above and below 0.8, respectively; this is a
threshold proposed by SiteMap developers to identify sites that are ligandable (SiteScore)
and/or druggable (DScore) [80]. Based on these results, the majority of allosteric sites
have both scores below 0.8 and are located in the lower-left quadrant, indicating the least
promising sites. The majority of orthosteric sites and the minority of allosteric sites have
scores above 0.8, indicating their druggability. There is also a smaller number of sites in the
lower right quadrant that are undruggable but have the potential to bind small molecules
with high affinity.

The observed ability of all three programs to predict substrate- and cofactor-binding
sites as equally favorable for noncovalent binding also suggests a possible targeting strategy
in which an inhibitor targeting the substrate-binding region could readily extend to the
cofactor-binding region and interact more strongly with surrounding amino acids.
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Because one of the goals of our study was to identify binding sites other than substrate-
or cofactor-binding sites, the results from FTSite and SiteMap were compared. To reduce
the number of sites that could not be targeted, a threshold of 0.8 was set for SiteScore and
DScore, as suggested by the SiteMap developers. This proved to be very useful because
most of the undruggable binding sites were filtered out, leaving only 33% of the original
sites [80]. We also found that most of the highly conserved cavities on the surface of the
C-end of CS, which we mentioned earlier, were not druggable enough. Although the
evolutionary conservation of protein cavities is often related to their druggability [108],
most of these sites were either too small or not sufficiently enclosed. These sites were
therefore filtered out and not analyzed further.

As expected, both methods largely agreed on the highest scoring sites (Supplementary
Materials, Tables S5, S8, S11, S14, S17, S20, S23, S26 and S29). The binding sites that scored
higher with the FTSite method largely overlapped with the binding sites that scored higher
with SiteMap. However, each method also found binding sites in regions that did not bind
a substrate or cofactor and that were not predicted by the other method. For example, for
SDH, we identified a potential binding site in 3 of 6 crystal structures that were predicted
to be druggable by SiteMap but were not identified by FTSite (Supplementary Materials,
Table S17). In many cases, binding sites observed in one crystal structure and ranked
highly by one of the methods were not observed in another structure of the same enzyme
belonging to a different bacterial species. This observation could be a consequence of
different protein conformations or differences in protein sequences leading to the lower
evolutionary conservation of a single protein. Therefore, it was very difficult to decide
which of these mismatched binding sites was a prospective drug binding site when only
druggability results were considered.

In the context of this work, it was therefore of great importance that the druggability
results were examined in conjunction with the evolutionary conservation calculations,
which were very helpful in assessing whether a region of a protein was a prospective
binding site or not. After using 50% of the conserved residues in a pocket as a threshold,
we found that 20% of the original sites were both druggable and evolutionarily conserved,
of which only two sites (SDH and CS) did not bind a substrate or cofactor. Further visual
inspection revealed that the reason for the higher evolutionary conservation of these two
binding regions was partial overlap with the evolutionarily well-conserved substrate-
binding region and that both regions were identified as part of a larger pocket in other
crystal structures of the same enzyme. The drawback of this approach, however, is that
cavities that could serve as potential allosteric sites were likely filtered out because of the
well-documented lower conservation of such sites [109,110].
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From this, we can conclude that for all seven enzymes studied, only the substrate-
or cofactor-binding regions are suitable broad-spectrum antibacterial targets and that no
allosteric site can be used for this purpose.

2.5. Evaluation of Physicochemical Properties of Binding Sites

The ligandability and druggability of binding sites depend on many physicochem-
ical parameters, such as volume, enclosure, hydrophobicity, and percentage of charged
residues [80]. Drug binding pockets tend to be deeper, larger, and more complex in shape;
they also tend to have high hydrophobicity, lower hydrophilicity, and high enclosure;
the latter maximizes the surface area to volume ratio. The opposite is true for “hard to
drug” and undruggable pockets [31,34,40,111]. Since DScore is calculated directly from the
number of site points, the enclosure, and the polarity, we can further explain the differences
between the druggability of orthosteric and cofactor-binding sites and the nonbinding sites
by comparing their basic physicochemical properties.

These properties, which were used for evaluation, are listed in Table S30 of the Supple-
mentary Materials. The substrate-binding sites of these enzymes are significantly larger
and more enclosed compared to the allosteric sites (p < 0.05), which increases their DScores
and SiteScores. The size of the pocket is an important descriptor because small cavities,
usually consisting of <14 residues, do not promote adequate interaction between the target
and the ligand [111–113]. On the other hand, substrate-binding sites were found to be more
polar compared to allosteric sites (p < 0.05), which negatively affects their druggability. This
result was not surprising since the substrates and products of each step of the pathway are
also highly polar. Our results on the differences in druggability between the orthosteric
and allosteric binding sites are consistent with data found in the literature [114,115].

Druggability can also be estimated from other parameters calculated indirectly from
SiteMap, such as the proportion of charged residues in a binding site. It is clear from
the literature that highly charged pockets are much less druggable than uncharged pock-
ets [31,34,40,111]. Perola, therefore, proposed a threshold of 26.3% to distinguish between
druggable and non-druggable pockets [111]. However, although substrate-binding sites
were found to be more polar than allosteric sites, we did not detect a significant difference
in the proportion of charged residues between the average orthosteric and allosteric sites
(p < 0.5).

Most of the metrics used to evaluate the potential allosteric sites, such as DScore,
the number of site points, the enclosure, and the volume, were below the thresholds that
distinguish druggable from the undruggable sites defined in the literature [33,66,97–107].
We can, therefore, additionally confirm that we were unable to identify any of the allosteric
pockets as candidates for drug targeting in any of the seven enzymes analyzed.

2.6. Druggability of the Substrate-Binding Sites

Next, we turned to a detailed evaluation of the orthosteric and cofactor-binding sites
and an analysis of their physicochemical properties. We found that the binding sites of all
seven enzymes are ligandable, as indicated by their high SiteScore values around 1; there-
fore, all are considered particularly promising targets for small molecules (Figure 5). The
highest-scoring enzyme in terms of its mean SiteScore value was EPSPS (SiteScore = 1.13),
mainly due to its high enclosure, and the lowest-scoring enzyme was DHQase I (p < 0.05).
Although DAHPS is particularly promising for small molecule development, SiteMap
classified it as difficult to drug because its DScore was not significantly different from 0.8
(p < 0.05). This does not mean that the site cannot bind ligands, but that it would be difficult
to find high-affinity drug-like ligands for it. Other enzymes in the pathway were found
to be druggable, with a DScore around the value of 1, and they are, therefore, particularly
promising targets for the development of drug-like molecules.
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2.7. Physicochemical Properties of Substrate-Binding Sites

To explain the lower druggability of DAHPS and to further investigate the binding sites
of all other enzymes in the pathway, the physicochemical properties of each enzyme were
next evaluated. Such an analysis provides medicinal chemists with important guidelines
for predicting the physicochemical properties of potential drugs for the specific binding
pocket. The main properties of the individual enzymes are shown in Figure 6.
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In general, the greatest differences between the enzymes were found when the volumes
of the binding sites were compared. For DHQS, SDH, and CS, the volume is significantly
higher than the lower limit of the average submicromolar binding sites, which is a conse-
quence of the additional space occupied by a cofactor rather than by a substrate alone. In
contrast, the binding site of SK, which uses ATP as a cofactor, was found to be similar in
size to other enzymes that do not require a cofactor.

We also found that most binding sites have enclosures and strengths of van der Waals
interactions with the site points (contact) comparable to the characteristics of the average
tight-binding site. One enzyme that stands out when considering both properties is EPSPS,
which has a very high enclosure and forms strong contacts with its binding site. These two
properties increase the likelihood that an inhibitor interacts strongly with the binding site,
increasing its ligandability and druggability.

Substrate- and cofactor-binding sites were found to have a higher hydrophilic character
than the average druggable tight-binding site. This property is of great importance because
it negatively affects the druggability of a binding pocket and also indirectly predicts the
polarity of a potential ligand [30]. The higher polarity of the binding site is related to the
relatively higher polarity of the substrates of these enzymes. In addition, two enzymes,
DAHPS and EPSPS, tend to have an extremely hydrophilic character as a result of their
highly charged substrates with two acidic groups. However, unlike EPSPS, which has a
very high enclosure that increases its DScore, the enclosure of DAHPS is slightly below the
average of tight-binding sites. Consequently, its DScore is at the threshold of 0.8 and it has a
very high percentage of charged residues, well above the proposed threshold of 26.3%. This
site should therefore be considered an undruggable drug target. Interestingly, although the
binding site of EPSPS is also very polar, the percentage of charged residues is below the
proposed threshold. The high SiteScore suggests that this binding site is more ligandable
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compared to other sites in the pathway. On the other hand, a hypothetical submicromolar
inhibitor targeting such a highly polar binding pocket should also have higher polarity,
which could lead to problems in pharmacokinetic properties, such as a shorter elimination
half-life [116].

From a drug-design perspective, a binding site should also have a significant number
of hydrophobic regions in a pocket that can bury the drug in the pocket. Since electrostatic
interactions and desolvation energies act in opposite directions, their contribution to
binding potency is negligible. Therefore, hydrophobic interactions are a driving force in
the interactions between a ligand and the binding site and, consequently, have the greatest
influence on the strength of drug binding [80,117]. Despite their higher proportion of
hydrophilic surface area compared with the average tight-binding site, we found that
DHQase I, II, and CS have larger regions of hydrophobic amino acids than other enzymes,
and their calculated hydrophobic character is comparable to that of the average drug
binding site. For these enzymes, it should be easier to design a drug-like inhibitor that
interacts with both hydrophobic and hydrophilic regions of the enzyme.

Because the physicochemical properties of each binding site predict the optimal prop-
erties of a potential tight-binding inhibitor, a comparison was made between SiteMap
results and the values calculated for published inhibitors. Although the number of drug-
like nanomolar inhibitors is too small to predict the druggability of each enzyme in the
pathway, a comparison between the predicted properties and the existing inhibitors may
provide some clues on how to modify the properties of the inhibitors to further improve
their binding efficacy. Therefore, two physicochemical properties, topological polar surface
area (TPSA) and hydrogen bond donor/acceptor ratio (don/acc), were calculated for the
published inhibitors. These results are shown in Figure 7. Since most of the published
inhibitors are derivatives or analogs of native ligands, a slight correlation between their
TPSA and the hydrophilic character of the binding sites was expected and, for the most part,
found. The inhibitors of highly polar binding sites of EPSPS and DAHPS, therefore, have
high TPSA values, whereas the inhibitors of other enzymes have similar TPSA values. As
expected, EPSPS and DAHPS inhibitors are not drug-like due to their high polarity, which
is a consequence of the presence of phosphonic and carboxylic groups in these compounds.
Therefore, the binding strength and the drug-likeness of the inhibitors could be further
improved by changing the ratio of don/acc groups and eliminating at least one of the
highly acidic groups or by preparing prodrugs. In the boxplot in Figure 7, we see that the
predicted don/acc ratio of an ideal inhibitor is higher than the actual ratio for the DAHPS,
DHQS, and CS enzymes. Thus, an inhibitor with a higher don/acc ratio would be a better
match for these binding sites.
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3. Materials and Methods
3.1. Study Design

To assess evolutionary conservation, the first step was to extract all sequences and
other data for each sequence from the UniProt database. All filtering and analyses of
the data were performed using KNIME [118], and only representative sequences from
pathogenic bacteria were selected. Subsequently, MSA of the selected sequences was
performed, and a phylogenetic tree (PT) was constructed. MSA and PT are prerequisites
for the calculation of evolutionary conservation, which was performed using the free
online bioinformatics tool ConSurf server [69,119–121]. This information was then used
in the next steps to interpret the identified binding sites and druggability results. Because
many X-ray structures are publicly available, the 3D structures of each bacterial protein
were next extracted from RCS PDB. The structures of each enzyme were then aligned,
and root-mean-square deviation (RMSD) was calculated, followed by k-means clustering.
Representative structures from each of the six clusters were selected based on resolution,
average B-factor, and the number of missing residues in each PDB structure. Structures
were then prepared using the Protein Preparation Wizard implemented in the Schrödinger
Suite, which is described in more detail in Section 3.4. To identify all heatmaps and
binding sites (including allosteric sites) in each protein, the FTMap and FTSite servers
were applied to selected representatives. This analysis was complemented by the use
of SiteMap, which uses the interaction energies between the protein and grid probes to
locate energetically favorable sites, identify binding pockets, calculate key physicochemical
properties, and estimate druggability parameters, such as DScore and SiteScore, of each
binding pocket [41]. The analysis was completed by comparing these properties between
representative enzymes of each class and by comparing the physicochemical properties
of the currently available nanomolar inhibitors of each enzyme. Complete data for all
enzymes analyzed, including their physicochemical properties and druggability data for
each identified site, are provided in Table S30 of the Supplementary Materials.

3.2. Identification of Hotspots and Binding Sites with FTMap and FTSite

FTMap [39] is a computational mapping server that identifies binding hotspots of
macromolecules using 16 small organic probe molecules of different sizes, shapes, and
polarities distributed on the molecular surface. Hotspots are smaller regions of proteins
that contribute significantly to the binding of a drug to the binding site, and their strength
determines the druggability of a site. They are very important for fragment-based ligand
discovery (FBLD), as the ligand moieties that interact with them are essential for binding.
FTSite is a second server that identifies ligand binding sites by using consensus sites
determined via the FTMap server to identify and rank binding sites. Similar to FTMap, it
uses molecular probes to map the macromolecular surface and finds the most favorable
positions for each probe type. Probes are then clustered and ranked by the number of
nonbonded contacts between the protein and all probes in the consensus cluster rather
than by the number of probe clusters. The following probes are used by each server:
Acetamide, acetonitrile, acetone, acetaldehyde, methylamine, benzaldehyde, benzene,
isobutanol, cyclohexane, N,N-dimethylformamide, dimethyl ether, ethanol, ethane, phenol,
isopropanol, and urea [39].

All prepared PDB files were uploaded to the FTMap and FTSite servers for mapping.
Upon completion, the results were downloaded as a Pymol [122] session file (.pse) for
further analysis. Amino acids within 4 Å of each cluster were selected and exported in
.pdb format. PDBest [123], a freely available platform for the manipulation, filtering, and
normalization of biomolecules, was used to extract residue numbers that were further
processed using KNIME [124].

3.3. Druggability Assessment with SiteMap

SiteMap [41] is software used for binding site identification and evaluation; it is im-
plemented in Schrödinger’s Maestro [85]. We chose SiteMap because it has been shown to



Antibiotics 2022, 11, 675 14 of 24

be effective in a number of publications on various proteins [33,66,97–107]. A comprehen-
sive validation of SiteMap was published using 538 crystal structures from the PDBbind
database [80]. In this study, SiteMap accurately identified 86% of the highest-scoring
binding sites. In addition, it was found that the size of the binding site, as measured by
the number of site points found, and the relative openness of the site, as measured by
the exposure and enclosure properties, were the most important terms for distinguishing
binding sites from nonbinding sites.

SiteMap uses the interaction energies between the protein and the grid probes to find
energetically favorable sites. In a three-step process, a program generates a grid of points
(site points) and then uses their energetic properties to score the sites. During this process,
various physicochemical properties are calculated: size, volume, degree of enclosure or
exposure, degree of contact, hydrophobic or hydrophilic character, and their balance and
hydrogen bonding properties (acceptors/donors), all of which are listed in Table 1 along
with their reference values for average submicromolar inhibitors. Exposure and enclosure
provide different estimates of how open a binding site is to the solvent. The lower the
exposure value and the higher the enclosure, the better. The hydrophobic/hydrophilic
balance measures the relative hydrophobic and hydrophilic character of the site. The
donor/acceptor character indicates the extent to which a potential ligand can donate rather
than accept hydrogen bonds [80].

Table 1. Properties calculated by SiteMap [41] along with the average property score for a submicro-
molar site. Data from [80].

Property Lower Limit 1

Number of site points 132
Site score 1 (0.8)
DScore 1 (0.8)

Exposure 0.49
Enclosure 0.78
Contact 1.0

Phobic, Philic 2 1.0
HL balance 3 1.6

Donor/acceptor 0.76
1 Numbers are calculated for an average submicromolar site; 2 Phobic, Philic = Hydrophobic property, Hydrophilic
property; 3 HL balance = Hydrophilic/lipophilic balance.

In addition, SiteScore and DScore were also calculated to evaluate overall ligandability
and druggability properties.

SiteScore predicts whether a binding site could be a drug binding site. The developers
suggest a value of 0.80 to distinguish sites that bind ligands from those that are not known
to do so. Thus, a value greater than 1 indicates a particularly promising site, as seen in
Equation (1) [80].

SiteScore = 0.0733
√

n+0.6688e− 0.20p (1)

where
n = the number of site points found for the site, capped at 100;
e = the degree of enclosure score;
p = the hydrophilic score computed for the site, capped at 1.0 to limit the impact of

hydrophilicity in charged and highly polar sites.
DScore is a druggability score that includes terms that promote ligand binding but

offsets them with a term that penalizes increasing hydrophilicity. Again, the number of site
points is limited to 100, but the score for hydrophilicity is not capped. See Equation (2).

DScore = 0.094
√

n+0.60e− 0.324p (2)

where
n = the number of site points found for the site, capped at 100;
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e = the degree of enclosure of the site;
p = the hydrophilic score computed for the site.
To facilitate the comparison of the three-dimensional structures of all seven enzymes

in the shikimate pathway, the prepared proteins were first aligned using the Schrödinger’s
Protein Structure Alignment utility in Maestro [125]. Proteins were then prepared according
to the procedure described below. SiteMap was applied to all selected enzymes to identify
up to 10 potential binding sites with the highest score. Sites were retained if they comprised
at least 15 site points per reported site. The narrower definition of hydrophobicity was used,
along with a fine grid (0.35 Å). Site maps that were 4 Å or more from the nearest site points
were truncated. The analysis of SiteMap calculations was performed using KNIME [124],
extracting physicochemical property data and residue numbers for further processing.

3.4. Protein Acquisition and Preparation

Selected 3D structures were imported from the Protein Data Bank into Maestro [125].
To prevent regions between protein monomers from forming unphysical sites that give
good results but exist only in the crystal lattice and not in solution, only one monomer chain
was retained, usually chain A. Structures were then prepared using the Protein Preparation
Wizard implemented in the Schrödinger Suite [125]. In each PDB structure, ligands, waters,
and other co-crystallized molecules were removed except for the Mg cofactor, if present.
Bond orders were automatically assigned, hydrogens were added, selenomethionines
were converted to methionines, missing side chains were added, ligands were removed,
disulfide bridges were created when possible, waters beyond 5 Å radius of heteroatoms
were added, and heteroatoms were protonated at pH 7.0. The impref utility was used
to perform constrained minimization of the protein with a maximum root-mean-square
deviation (RMDS) of 0.30 Å.

3.5. Superposition of 3D Structures and Selection of Representative Crystal Structures

All 3D structures available for each enzyme were taken from the Protein Data Bank
(PDB) and prepared using the procedures described in Section 2.3. Water was removed,
and only one chain, mostly chain A, was retained for analysis. All structures were then
aligned, and the RMSD was calculated for each pair. The values were exported to KNIME
in the form of a 2D matrix for further processing. Only bacterial enzymes without induced
residue mutations were selected, and then the k-means algorithm was used to generate six
representative clusters. The selection of the representative structure from each cluster was
then based on resolution and the extent to which some protein chains were incomplete.

3.6. Multiple Sequence Alignment

The protein sequences of the individual enzymes of all species were obtained from
UniProt [126]. Data on the total number of sequences extracted per enzyme and the distri-
bution among kingdoms are given in Table S1 of the Supplementary Materials. Outliers
that had only 60% residues compared with the average length of the protein family were
filtered out, and then a unique representative was selected for each human pathogenic
bacterium. A list of the number of human pathogenic microorganisms was obtained from
the Kyoto Encyclopedia of Genes and Genomes [127].

The protein sequences of the human pathogens were then subjected to multiple
sequence alignment with MuscleWS in Jalview software [128,129] using the default settings.
After converting the alignment to Fasta file format, a phylogenetic tree was calculated based
on the neighbor-joining method using similarity scores calculated by the blocks substitution
matrix 62 (BLOSUM 62), which measures the evolutionary relationship between each pair
of sequences in the alignment [130]. After converting the MSA and phylogenetic tree to the
Clustal Alignment (.aln) and Newick (.txt) format files, respectively, the multiple alignment
file and phylogenetic tree were subsequently used by the ConSurf server [69,119–121].
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3.7. Calculation of Evolutionary Conservation

The ConSurf server [69,119–121] is a bioinformatics tool for estimating the evolutionary
conservation of amino/nucleic acid positions in a protein/DNA/RNA molecule based on
the phylogenetic relationships between homologous sequences. The program uses either
an empirical Bayesian method or a maximum likelihood method [131,132] to estimate the
evolutionary rate of the protein sequence, which is then projected onto the 3D structure of
a selected enzyme.

Both of the .aln files from the MSA and the phylogenetic tree were used by the
ConSurf server to calculate the conservation scores, which were then projected onto the
X-ray structure of the selected enzyme. The evolutionary conservation of the selected en-
zymes in pathogenic bacteria was then calculated using the empirical Bayesian calculation
method [131,132] with a default substitution model. The conservation scores calculated by
ConSurf are a relative measure of evolutionary conservation at each sequence site in the
target chain. The obtained continuous conservation scores were mapped onto the X-ray
structure of a protein and divided into a discrete scale of nine grades for visualization, from
the most-variable positions (grade 1), which are colored turquoise, through intermediately
conserved positions (grade 5), which are colored white, to the most-conserved positions
(grade 9), which are colored maroon. Results were downloaded from the ConSurf website
as a .pdb file containing data for 3D coordinates and conservation scores. Figures map-
ping the conservation scores to the protein structures were subsequently generated using
Pymol [122] for one representative of each enzyme and are shown in Figure 6. A list of
ConSurf grades was also obtained and imported into KNIME to extract the names of all
residues, along with their conservation scores and identity thresholds.

3.8. Calculation of TPSA

Information on inhibitors for each enzyme was obtained from the literature and the
ChEMBL database [133]. Inhibitors were first prepared using LigPrep, which is imple-
mented in the Schrödinger Suite [125]. Conformations of the molecules were generated
using the OPLS4 force field and ionized using Epik [134,135] at a target pH of 7 ± 2. The
molecules were desalted, and the tautomers were generated. The TPSA was then calculated
using QikProp, which is also implemented in the Schrödinger Suite [125].

3.9. Statistical Analysis

To compare the means of DScore and SiteScore between samples, the Kolmogorov–
Smirnov test was used to test whether the data were normally distributed, followed by the
Mann–Whitney U test. The difference between the two groups was statistically significant
when the p-value was less than 0.05.

3.10. Generation of Figures

The graphical representation of the three-dimensional structures of proteins was per-
formed using Pymol [123]. Boxplots and stackplots were generated using the Seaborn [136]
and Matplotlib [137] libraries in Jupyter notebook [138].

4. Conclusions

The exploitation of important but underexplored antibacterial targets is one of the
ways to address the urgent need for new antibacterial agents. In the absence of clinically
relevant antibacterial drugs against any of the enzymes of the shikimate pathway, we
hypothesized that these targets are simply not ligandable or druggable enough to produce
a drug-like inhibitor against any of them, given the 70 years of research in this field.

In the present study, we report an in silico assessment of the evolutionary conservation,
ligandability, and, most importantly, druggability of the enzymes belonging to the shikimate
pathway. To our knowledge, this is the first and most comprehensive study using a
combination of all three features for all of these enzymes.
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Because mutations and resulting drug resistances play an important role in antibacte-
rial drug development, a validation of antibacterial targets should involve a combination
of estimations of druggability, evolutionary conservation, and physicochemical properties
of individual binding sites. Using this approach, we mapped the conserved residues in
the 3D structures of individual enzymes using ConSurf and applied these results to the
assessment of discovered binding pockets; this was performed using FTMap, FTSite, and
SiteMap. We have shown that only substrate-binding sites in various pathogenic bacteria
are both evolutionarily conserved and ligandable. With the exception of DAHPS, these sites
can be targeted by drug-like molecules and are all attractive targets for pharmacological
modulation. All of these sites have higher polarity than the average tight-binding site,
with DAHPS and EPSPS having particularly high polarity. Because the physicochemical
properties of a binding site influence the properties of inhibitors targeting the site, we
predict that any drug targeting EPSPS would also be highly polar, which was also observed
in the analysis of existing inhibitors targeting EPSPS.

Although the focus of our workflow presented here was exclusively on the develop-
ment of broad-spectrum antibacterial agents, the same approach could easily be applied to
the analysis of the same enzymes as narrow-spectrum antibacterial targets. For example,
42% of all identified sites that are not orthosteric were found to be druggable. Because the
evolutionary conservation of protein cavities is often related to their druggability, at least
some of these cavities may be conserved in one bacterial species and not in the others.

We believe that this systematic study provides a sufficient structure-based rationale
to accelerate the exploration of these underexplored targets. In addition, our workflow
presented here may open new opportunities for the development of new antibacterial
drugs targeting antibacterial agents that are not strictly related to the shikimate pathway.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11050675/s1, Table S1: Sequences that were extracted
from UniProt; Table S2: Average length and mass of DAHPS isoforms together with the number
of sequences from different pathogenic bacteria found in the UniProt database; Table S3: Highly
conserved residues (conservation score 9), conserved residues (conservation score 8), and variable
residues (conservation scores 1–3) of DAHPS from E. coli (PDB: 1GG1), identified by ConSurf server;
Table S4: Amino acids of PEP, E4P, and allosteric binding sites of DAHPS from E. coli (PDB:
1GG1), with their ConSurf scores and maximum identity; Table S5: Amino acid residues and the
corresponding clusters of DAHPS from E. coli (PDB: 1GG1) identified by FTMap and SiteMap;
Table S6: Highly conserved residues (conservation score 9), conserved residues (conservation score 8),
and variable residues (conservation scores 1–3) of DHQS from A. baumannii (PDB: 5EKS) identified by
ConSurf server; Table S7: Amino acids of DHQ and NAD binding sites of DHQS from A. baumannii
(PDB: 5EKS), with their ConSurf scores and maximum identity; Table S8: Amino acid residues and
the corresponding clusters of the DHQS from A. baumannii (PDB: 5EKS) identified by FTMap and
SiteMap; Table S9: Highly conserved residues (conservation score 9), conserved residues (conser-
vation score 8), and variable residues (conservation scores 1–3) of the DHQase I from S. enterica
(PDB: 4CNN) identified by the ConSurf server; Table S10: Amino acids of the DHQase I binding
sites from S. enterica (PDB: 4CNN) identified by the ConSurf server, with their ConSurf scores and
maximum identity; Table S11: Amino acid residues and the corresponding clusters of DHQase I from
S. enterica (PDB: 4CNN) identified by FTMap and SiteMap; Table S12: Highly conserved residues
(conservation score 9), conserved residues (conservation score 8), and variable residues (conservation
scores 1–3) of the DHQase II from M. tuberculosis (PDB: 4KIW), identified by the ConSurf server;
Table S13: Amino acids of 3-dehydroquinate binding site of DHQase II from M. tuberculosis (PDB:
4KIW), with their ConSurf scores and maximum identity; Table S14: Amino acid residues and the
corresponding clusters of DHQase II from M. tuberculosis (PDB: 4KIW), identified by FTMap and
SiteMap; Table S15: Highly conserved residues (conservation score 9), conserved residues (con-
servation score 8), and variable residues (conservation scores 1–3) of the SDH from M. tuberculosis
(PDB: 4P4G), identified by the ConSurf server; Table S16: Amino acids of the shikimate and NADPH
binding sites of SDH from M. tuberculosis (PDB: 4P4G), with their ConSurf scores and maximum
identity; Table S17: Amino acid residues and the corresponding clusters of SDH from M. tuberculosis
(PDB: 4P4G), identified by FTMap and SiteMap; Table S18: Highly conserved residues (conservation
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score 9), conserved residues (conservation score 8), and variable residues (conservation scores 1–3)
of SK II from M. tuberculosis (PDB: 2IYQ), identified by ConSurf server; Table S19: Amino acids of
the shikimate and ATP binding site of the SK II from M. tuberculosis (PDB: 2IYQ) with their ConSurf
scores and maximum identity; Table S20: Amino acid residues and the corresponding clusters of SK
from M. tuberculosis (PDB: 2IYQ) identified by FTMap and SiteMap; Table S21: Highly conserved
residues (conservation score 9), conserved residues (conservation score 8), and variable residues
(conservation scores 1–3) of SK II from M. tuberculosis (PDB: 2IYQ), identified by ConSurf server;
Table S22: Amino acids of the shikimate and ATP binding site of the SK II from M. tuberculosis (PDB:
2IYQ) with their ConSurf scores and maximum identity; Table S23: Amino acid residues and the
corresponding clusters of SK from M. tuberculosis (PDB: 2IYQ) identified by FTMap and SiteMap;
Table S24: Highly conserved residues (conservation score 9), conserved residues (conservation score 8),
and variable residues (conservation scores 1–3) of the EPSPS from E. coli (PDB: 2AA9) identified by
the ConSurf server; Table S25: Amino acids of shikimate and PEP binding sites of EPSPS from E. coli
(PDB: 2AA9) with their ConSurf scores and maximum identity; Table S26: Amino acid residues and
the corresponding clusters of EPSPS from E. coli (PDB: 2AA9) identified by FTMap and SiteMap;
Table S27: Highly conserved residues (conservation score 9), conserved residues (conservation score 8),
and variable residues (conservation scores 1–3) of CS from M. tuberculosis (PDB: 2QHF) identified
by the ConSurf server; Table S28: Amino acids of EPSP binding site of CS from M. tuberculosis (PDB:
2QHF) active and binding sites with their ConSurf scores and maximum identity; Table S29: Amino
acid residues and the corresponding clusters of the CS from M. tuberculosis (PDB: 2QHF) identified
by FTMap and SiteMap; Table S30: Druggabilities and important physicochemical characteristics of
the detected binding sites; Figure S1: The number of inhibitors of the shikimate pathway enzymes;
Figure S2: Inhibitors 1–10 of bacterial enzymes belonging to the shikimate pathway; Figure S3: Biosyn-
thetic steps of the shikimate metabolic pathway; Figure S4: Comparison of protein lengths be-
tween type I and II DHQase counted in the number of amino acids that constitute each protein;
Figure S5: Comparison of protein lengths between type I and II SK counted in the number of amino
acids that constitute each protein; Figure S6: Surface representation of heatmaps and binding sites
from 1. DAHPS, 2. DHQS, 3. DHQase I, and 4. DHQase II, identified by (a) FTMap, (b) FTSite,
and (c) SiteMap, mapped onto each X-ray structure; Figure S7: Surface representation of heatmaps
and binding sites of 1. SDH, 2. SK II, 3. EPSP, and 4. CS identified by (a) FTMap, (b) FTSite, and
(c) SiteMap, mapped onto each X-ray structure; Figure S8: Surface representation of heatmaps and
binding sites of 1. SDH, 2. SK II, 3. EPSP, and 4. CS identified by (a) FTMap, (b) FTSite, and
(c) SiteMap, mapped onto X-ray structure of each; Figure S9: Differences in important physicochemi-
cal properties between the substrate and the allosteric binding sites. References [139–149] are cited in
the Supplementary Materials.
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