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Effects of chloride ions on corrosion 
of ductile iron and carbon steel in 
soil environments
Yarong Song1,2, Guangming Jiang2, Ying Chen1, Peng Zhao1 & Yimei Tian1,3

Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous 
metals. To enhance the understanding of the effects of soil environments, especially the saline soils with 
high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was 
carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, 
rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning 
electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear 
polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride 
ions influenced the characteristics and compositions of rust layers by diverting and participating 
in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while 
β-Fe8O8(OH)8Cl1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. 
Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the 
diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is 
more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon 
steel corresponded with the probabilistic and bilinear model respectively.

Corrosion of ferrous metals in soil is one of the major causes of durability problems of water, sewage, oil and 
gas distribution systems. For example, Norin1 in 1998 reported that soil corrosion was the fundamental cause 
of deterioration of underground pipelines. Kirmeyer et al.2 in 1992 noted that 48% of water pipes were ferrous 
metals (19% ductile iron) which were regarded as the most susceptible to soil corrosion. The recent investigation 
revealed that 70% of water pipelines in Australia are ferrous metals buried in soil environments3. It is thus impor-
tant to understand the corrosive environment in soils for ferrous metals. However, the corrosion mechanisms for 
different soil types still require further analysis due to complex soil natures. Saline soil, in particular, is extremely 
corrosive to ferrous metal pipelines mainly due to the abundant chloride contents, one of the most substantial 
natural pollutants in saline-alkaline soils4.

Corrosion of ferrous metals in soil is a multiscale process initially induced by the localized electrochemical 
reactions outlined by Dension et al.5 in 1932, and further developed by Rossum6 in 1969. The electrochemical 
process is highly influenced by the development of rust oxide layers as well as the film/droplet formation on the 
metal surface, which are in turn controlled by local environments, i.e. moisture, oxygen, temperature, soluble 
salts and so forth7. The study of those factors influencing the corrosion of ferrous metals in soils has a long and 
substantial history. However, few of them led to a detailed understanding of the effects of chloride ions on the cor-
rosion of ferrous metals in soil environments. Chloride ions, minor in radius, may be adsorbed or penetrate easily 
through the passive film even the oxide layer thus damaging their integrity and accelerating the electrochemical 
reactions afterwards8. Besides, the abundant chloride concentrations, conducive to reducing soil resistivity, also 
indirectly facilitate the electrochemical reactions.

A great number of investigations have demonstrated that chloride ions remarkably influence the composition 
and protective efficiency of rust layers on ferrous metal surfaces. High concentrations of chloride were reported to 
induce the production of akaganite (β-FeOOH)9–12, which was able to exhibit high reduction reactivity. Asami et al.13  
verified the major accumulation of β-FeOOH in the thick parts of rust layers that served as a Cl− container; 
β-FeOOH made the layer more porous and accelerated the corrosion process as well. Further, as chloride 
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concentrations increased, the β-FeOOH increased simultaneously14. Ma et al.15 not only speculated that high 
chloride deposition led to the formation of β-FeOOH, but also reported that low chloride facilitated the accu-
mulation of lepidocrocite (γ-FeOOH). The following transformation from γ-FeOOH to α-FeOOH was more 
stabilized thus protecting the metal against further corrosion. Most of these conclusions were drawn in the con-
text of atmospheric or water based (marine) environments. For soils, however, the nature and transformation of 
corrosion products might be quite different due to the heterogeneous and complex soil characteristics. According 
to Cole and Marney7, a detailed investigation of the composition and interaction within iron oxides that develop 
on ferrous metals in soil has not been undertaken.

On the other hand, the effects of chloride ions on the corrosion kinetics are also controversial. Allam et al.16, 
focusing on atmospheric situations, revealed that chloride ion only functioned during the corrosion initiation and 
failed to penetrate through the thick rust layer at later stages. This phenomenon is in accord with the results pre-
sented by Ma et al.15 that corrosion rates increased initially and then declined with the exposure time in marine 
atmosphere. Interestingly, Morales et al.17 further argued that chloride ions might impair the corrosion rate when 
reaching a certain degree and be considered non-corrosive afterwards, postulating the existence of critical chlo-
ride concentrations. Collectively speaking, previous studies failed to support a clear correlation between the chlo-
ride concentration and corrosion rates, especially for the corrosion process in soil environments.

Although considerable investigations have studied the effects of chloride on ferrous metals corrosion in 
atmospheric or aqueous environments, whether chloride ions play an analogous role in soil environments is still 
ambiguous in literature. Liu et.al.18 used solutions to simulate soil conditions and carried out electrochemical 
tests on carbon steel. Although the aggressiveness of the added cations and anions were evaluated, the effects of 
chloride ions were still not delineated in details. Nie et al.19 examined the carbon steel corrosion in salty test soils 
with the chloride concentration as high as 1.41 wt.%. However, it only emphasized the essential role of dissolved 
oxygen transfer, but neglected the potential influence of abundant chloride ions. Similar situations prevail in 
traditional soil studies that mainly focus on other common parameters, i.e. soil resistivity, moisture, pH, oxygen 
diffusion, redox potential and so forth7, 20, 21. It is thus essential to clarify the specific effects of chloride ions on the 
corrosion of ferrous metals in saline soils usually containing more than 0.6 wt.% of chloride ions.

The main objective of this study is to enhance the understanding of correlations between chloride ions and the 
corrosion processes of ferrous metals i.e. ductile iron and carbon steel in soil environments. Particularly, we aim 
to determine how the corrosion processes, products and kinetics are affected by chloride ions during the initial 
stage of corrosion. According to Singh et al.22, the long-term corrosion rates are largely controlled by the types of 
rusts formed during the initial stages of exposure of their virgin surfaces. Thus the initial exposure data are very 
important to predict the corrosion performance. To accelerate the corrosion process during a reasonable time, 
experiments were carried out by exposing ductile iron and carbon steel to soils of six different chloride concen-
trations at the temperature 40 °C for 3 months. The effects of chloride ions on the corrosion of ferrous metals were 
quantified and analyzed by surface characterization, weight loss, pit depth and electrochemical measurements. 
The results are of great importance for protecting underground pipelines and predicting the potential pipe ser-
viceability especially in chloride enriched soil environments.

Materials and Methods
Materials.  The ductile iron (QT400-17) and carbon steel (Q235) commonly used for underground pipe-
lines were considered for this study. The standard coupons as described by the Technical Conditions23 were uti-
lized in dimensions of (50.0 ± 0.1) × (25.0 ± 0.1) × (2.0 ± 0.1) mm and chemical compositions were shown in 
Table 1. Each coupon was polished (using a series of waterproof abrasive papers of 500, 800, 1000, and 1200 grit), 
degreased in acetone, dehydrated in absolute ethanol, dried, weighed and stored in the desiccators. For the elec-
trochemical study, the same types of metals were further fabricated to the working electrodes with a working area 
of 1 cm2. The area experienced the similar treatments to the coupons except for being weighed.

The soil samples were extracted from 1 m depth underground (where pipes are usually buried) in a field in 
Tianjin (China). The soil samples were characterized as received according to the National Standards24, and the 
average values were summarized in Table 2. After natural drying and sieving (10 meshes), the soils were stored 

Metal Types C Si Mn S P

Ductile Iron 
(QT400-17) 3.7 1.55 0.50 0.025 0.06

Carbon Steel 
(Q235) 0.116 0.30 0.40 0.045 0.045

Table 1.  Chemical compositions of the ductile iron and carbon steel (wt.%).

Parameters Value Parameters Value

Chloride (wt.%) 0.0148 Redox potential (mV) 561

Sulfate (wt.%) 0.0684 Sulfide (wt.%) 0.0192

Resistivity (Ωcm) 2871 Moisture content 
(wt.%) 20

pH 8.8

Table 2.  Main parameters of the soil as received from the field in Tianjin (northeastern China).
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in the oven at 105 °C to maintain stable and dry. Before exposure experiments, the soil samples were prepared at 
a controlled moisture content of 20 wt.% identical to its original status. We achieved this preparation by incorpo-
rating quantitative amounts of distilled water (Supplementary Table S1) to the soil samples which were pre-dried 
and pre-weighted. In order to clarify the effects of chloride ions and accelerate the corrosion process, different 
amounts of sodium chloride were mixed into the distilled water and then evenly dispersed into the soil samples, 
thus resulting as six soil samples of separate chloride contents, i.e. 0.015%, 0.065%, 0.115%, 0.315%, 0.515%, 
1.015% (wt.%). The soil containing 0.015 wt.% of chloride ions was the original soil without extra chloride addi-
tions that acted as the control.

To simulate the soil environment, the plastic soil reactors (Fig. 1a) and the specially designed electrochemical 
cells (Fig. 1b) were prepared for the exposure. Prior to be filled with soils, each reactor composed of 5 parallel 
boxes (5 × 80 × 80 × 200 mm) was cleaned, dried and re-sealed on every seam inside the boxes using silica gel 
704. As for the electrochemical system, the cell was roughly 8 cm in diameter, 10 cm in height and 6 cm in diam-
eter of the bottle neck. The counter electrode was a platinum column. The self-designed reference electrode25 
(Supplementary Fig. S1) used the silver-silver chloride. Also, the traditional electrolyte of saturated KCl in the 
salt bridge was innovatively replaced by saturated KNO3 added with the curing agent; consequently the semisolid 
state was more stable and exempt from the leakage of electrolyte as well as the interference of extra chloride ions. 
The self-designed soil reactors and electrochemical cells were demonstrated to be efficient in reducing the water 
evaporation from soils.

Exposure tests.  The exposure experiments were carried out concurrently both in the soil reactors and the 
electrochemical cells described above. For six different chloride levels and two types of ferrous metals, i.e. ductile 
iron and carbon steel, twelve soil reactors were prepared and labeled. In each reactor, five sets of metal coupons, 
with three coupons in each set, were vertically buried in line in each box of the reactor, in the manner that the 
space between two adjacent coupons was 50 mm and the coupon bottom was 15 mm away from the bottom of the 
box. All soil samples in the reactors were filled and compacted in the same method to achieve an identical poros-
ity. After burying the coupons into soils, each reactor was sealed using the plastic cover and the silica gel 704; then 
they were stored in the constant temperature incubator at 40 °C, which was intended for accelerating the corrosion 
process according to the Environmental Acceleration Method26. Relatively high temperature mainly facilitates the 
diffusion process instead of changing the corrosion mechanism dramatically27, 28. Benmoussa et al.29 reported that 
the steel corrosion in soil simulation solution increased with temperature in the range from 20 to 60 °C.

One set of coupons (3coupons) were retrieved from each box for analysis after 1, 3, 5, 7, 12 weeks of exposure. 
For each sampling event, all coupons were used to characterize the morphology and compositions of the rust 
layer as well as weight loss measurements. Weight loss measurements were performed by eliminating the corro-
sion products covering the steel coupons using successive cleanings in hydrochloric acid aqueous solution (3.5 g 
hexamethylenetetramine + 500 ml distilled water + 500 ml HCl)15, 30, 31, until no significant weight change was 
observed. Also, the coupons retrieved after 12 weeks were conducted with the pit depth measurement by DDC- II 
Pitting corrosion tester (Xiangwei, China), of which the measurement range is 0–5 mm. For each coupon, 15 pits 
were randomly selected and measured32.

In addition, the exposure of the produced working electrodes to soils in the electrochemical cells was carried 
out simultaneously. Twelve cells were prepared for two types of working electrodes using ductile iron and carbon 
steel respectively; each cell was intended for one working electrode exposed to a certain soil condition. Likewise, 
the electrochemical cells were retrieved from the constant temperature incubator for the electrochemical meas-
urements after 1, 3, 5, 7, 12 weeks of exposure.

Characterization of rust layers.  At the end of each exposure period, the macro-level corrosion morphol-
ogy of each coupon retrieved from the soil boxes was photographed for visual analysis. Then, the corrosion prod-
ucts covering the coupons were scraped from the coupon surface to characterize the micro morphologies using 
SEM (Nanosem 430, America). The rust phase was also ground to fine powder samples in a mortar using a pestle 

Figure 1.  (a) The labeled soil reactors filled with soil samples burying coupons; (b) the electrochemical cell 
filled with soil samples.
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for XRD analysis (D/MAX-2500X), which was 18 kw intensity, 2.0◦/min−1 scanning speed, and 2 Θ = 10–90° of 
range using a Cu target.

Electrochemical measurements.  All electrochemical measurements were performed in the cell described 
above (Fig. 1b) by being connected to an electrochemical workstation (CS350, KeSiTe, China). Prior to each 
measurement, it generally took 50 min to obtain a steady open circuit potential (Eoc). The scan of the linear polar-
ization measurements were carried out over a range of −15 to 15 mV versus the Eoc at the scan rate of 0.5 mV/s. 
The electrochemical impedance spectroscopy (EIS) was performed in the frequency range between 0.01 Hz and 
100 kHz with a 10 mV amplitude signal at open circuit. Zview2.0 was used to collect the EIS data, and Cview2.0 
was utilized to analyze the polarization curve data. All the electrochemical measurements were conducted at 
around 25 °C (after the cells cooled down).

Results and Discussion
Morphology observation.  The surface of ductile iron exposed to soils with different chloride contents 
gradually transferred from an initial grey-brown appearance to red-brown or yellow-brown after longer exposure 
(Fig. 2a; Supplementary Fig. S2a). During the exposure to soils of 0.015 wt.% chloride, the propagation of corro-
sion was observed with the increasing thickness of rust layers and expanding corrosion area dominated by general 
corrosion. By increasing the chloride to 0.065 wt.%, although general corrosion still occupied the major area for 
the first 5 weeks, pitting corrosion was obviously detected after 7 weeks of exposure. Similar transformations from 
general to pitting corrosion continued as the chloride increased. At high chloride contents such as 1.015 wt.%, the 
ductile iron even suffered from pitting corrosion as soon as the exposure initiated.

Under paralleled exposure conditions, the carbon steel performed relatively different from ductile iron in both 
of the surface color and corrosion shape (Fig. 2b; Supplementary Fig. S2b). The surface appearance gradually 
changed from light brown to dark green-grey, followed by uneven dark brown after longer exposure. Unlike the 
general corrosion of ductile iron, small but substantial pitting corrosion was observed at the initiation even when 
coupons were exposed to soils of low chloride concentrations. This phenomenon might indicate that carbon 
steel was more susceptible to chloride attack which was the major cause of localized corrosion of ferrous metals7. 

Figure 2.  Ductile iron (a) and carbon steel (b) coupons exposed to soils of different chloride concentrations, i.e. 
0.015%, 0.065%, 0.315%, 1.015% (wt.%) after 1, 3, 5, 7, 12 weeks.
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Interestingly, the localized corrosion area was more easily covered by cohesive soil particles, which might in turn 
aggravate the pitting corrosion.

Collectively speaking, the results suggested that general corrosion usually appeared in low chloride soil envi-
ronments, while higher chloride concentrations tend to cause pitting corrosion. However, the propagation of 
localized corrosion, by expanding the discrete spots to continuous area, led to a corroded surface similar to gen-
eral corrosion indicating that no strict boundaries of corrosion form existed under the complicated soil environ-
ment. Comparing the corrosion behavior of ductile iron and carbon steel, it showed that they presented different 
corrosion development in terms of general or localized corrosion. Ductile iron developed general corrosion at 
low chloride concentrations, which was absent from carbon steel, at early stage of exposure. Similar results in lit-
erature showed that chloride exerted more remarkable influence on corrosion of carbon steel than ductile iron33. 
Melchers34 also reported that the long-term corrosion rate of cast iron is only 10% of that for steel materials when 
exposed to marine and atmospheric environments. However, for both ferrous metals, corrosion continuously 
propagated to more serious levels with higher chloride concentrations and prolonged exposure time.

Microstructure analysis.  To reveal the effects of chloride ions on corrosion products of ferrous metals, 
SEM measurements were conducted after 12 weeks of exposure for ductile iron and carbon steel as shown in 
Figs 3 and 4, respectively. For ductile iron exposed to relatively low chloride soils, porous and honeycomb-like 
structures were observed in Fig. 3a,b. Different from the typical appearance of oxyhydroxides which are one the 
most common corrosion products35, the rust layer might consist of other products such as ferric oxides. Besides, 
some disperse and fine globular crystals, probably identified as goethite (α-FeOOH)15, 36, 37 were observed in the 
cavities of the honeycomb-like structures. As the chloride concentrations increased, the scale-like and micaceous 
corrosion products gradually appeared (Fig. 3c). As Smith and McEnaney38 reported before, the plat-like mor-
phology was possibly correlated to the formation of lepidocrocite (γ-FeOOH). A similar phenomenon was also 
documented by Ma et al.15 by investigating the surfaces of carbon steel exposed to marine and industrial envi-
ronments. However, the crystalline examples of lepidocrocite (γ-FeOOH) could also form in other ways such as 
flowery and sandy structures36, indicating that the characterizations of corrosion products were always diverse 
and non-defined, largely depending on the surrounding exposure conditions. With the continuous enhancement 
of chloride contents, the micaceous particles partially grew to fine cotton ball structures in the cavity regions, 
possibly implying the transformation from lepidocrocite (γ-FeOOH) to goethite (α-FeOOH) (Fig. 3d). This phe-
nomenon was in line with the previous report that out of all oxyhydroxides, α-FeOOH is the most stable forma-
tion; lepidocrocite (γ-FeOOH) could be further oxidized to goethite (α-FeOOH) provided that suitable exposure 
conditions are offered39. Accordingly, more compact crystals composed of α-FeOOH nucleated on the aggre-
gating γ-FeOOH structures, and even became interconnected in Fig. 3e. However, different micro-morphology 
from the aforementioned images was also observed in Fig. 3f, somehow verifying that crystal structures of iron 
corrosion products often exhibited various characteristics even in unknown shapes.

For carbon steel coupons at low chloride levels, the micro-morphology of the corrosion products presented 
different characteristics (Fig. 4). When chloride concentrations were 0.015 wt.% and 0.065 wt.% (Fig. 4a,b), the 
micaceous and plat-like crystalline structures were already observed, as an indicator of the formation of γ-FeOOH 
in rust layers. Also, it showed that the scale-like layer was very porous interweaved with some small crystalline 

Figure 3.  Rust surface of ductile iron coupons exposed to soils of different chloride concentrations i.e. (a) 
0.015%, (b) 0.065%, (c) 0.115%, (d) 0.315%, (e) 0.515%, (f) 1.015% (wt.%) after 12 weeks.
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globules composed of α-FeOOH. The coexistence of γ-FeOOH and α-FeOOH in rust layers, presented in both 
of Figs 3d,e and 4a,b, altogether revealed the interaction between different oxyhydroxides and their transforma-
tion to one another as chloride contents increased. Further, as shown in Fig. 4c,d, the scale-like rust evidently 
became interconnected and compact with clubbed or spherical particles probably made of α-FeOOH. Therefore, 
it suggested that higher chloride concentrations remarkably facilitated the transformation from γ-FeOOH to 
α-FeOOH. Additionally, the discrete distribution of the spherical particles also implied that the structure evolu-
tion was incomplete and not uniform as well. As the chloride contents continued to rise, no obvious micaceous 
structures were observed anymore (Fig. 4e,f). Instead, the porous and honeycomb-like structures re-emerged and 
a sandy structure with dispersed cavities appeared uniquely.

From the aforementioned analysis, it is likely that γ-FeOOH and α-FeOOH were dominant in most of the 
rust species, usually in the form of porous micaceous and fine globular crystals structures, respectively. The coex-
istence of these two oxyhydroxides and their transformation to one another were somehow influenced by the 
variations in chloride concentrations.

Composition analysis.  To evaluate the crystalline characteristics of corrosion products, XRD measure-
ments were carried out after 12 weeks of exposure (Tables 3–4, Supplementary Fig. S3-4). The results showed that 
quartz (SiO2) existed in all rust layers, probably attributable to the cohesive soil particles that tightly adhered to 
the corrosion sites (Fig. 2). The major existence of α-FeOOH and γ-FeOOH was also confirmed, which verified 
the SEM analysis and the surface color of rusts, knowing that α-FeOOH is yellow to brownish and γ-FeOOH 
is orange35. Further, the variations in rust compositions were observed as the chloride increased gradually. For 
ductile iron at 0.015 wt.% of chloride, the rusts were mainly composed of α-FeOOH and iron oxides (mainly mag-
netite (Fe3O4)). At higher chloride situations, γ-FeOOH and β-Fe8O8(OH)8Cl1.35 gradually appeared along with 
the re-emergence of α-FeOOH. Interestingly, different but still analogous patterns were found in the rust layers 

Figure 4.  Rust surface of carbon steel coupons exposed to soils of different chloride concentrations i.e. (a) 
0.015%, (b) 0.065%, (c) 0.115%, (d) 0.315%, (e) 0.515%, (f) 1.015% (wt.%) after 12 weeks.

Corrosion products

Chloride concentrations (wt.%)

0.015 0.065 0.115 0.315 0.515 1.015

Quartz SiO2 √ √ √ √ √ √

Wustite FeO √ √

Lepidocrocite γ-FeOOH √ √ √ √

β-Fe8O8(OH)8Cl1.35 √ √ √

Goethite α-FeOOH √ √ √

Magnetite Fe3O4 √ √ √ √ √

Hematite α-Fe2O3 √ √ √

Table 3.  Main compositions of corrosion products of ductile iron coupons exposed to soils of different chloride 
concentrations after 12 weeks.
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of carbon steel coupons. At the low chloride content of 0.015 wt.%, the rust was primarily composed magnetite 
(Fe3O4); as chloride increased, γ-FeOOH and β-Fe8O8(OH)8Cl1.35 started to appear, but the former proceeded to 
disappear since the chloride reached as high as 0.515 wt.%. Presumably, the corrosion products of both ductile 
iron and carbon steel were influenced by the level of chloride concentrations, which in turn reflected the varia-
tions in corrosion reactions under different chloride situations. Accordingly, potential transformations of corro-
sion products under low and high chloride concentrations were classified as follows.

When exposed to low chloride soils, iron oxides and goethite (α-FeOOH) were mainly observed. Of all 
the oxyhydroxide types, goethite (α-FeOOH) is identified as the most stable phase39, which is more likely pro-
duced by subsequent oxidization of other unstable products such as lepidocrocite (γ-FeOOH) and akaganite 
(β-FeOOH)15, 21. In this case, however, no other oxyhydroxides except for goethite was detected in the rust layers 
of ductile iron at chloride of 0.015 wt.%. It implies that the stable phase of goethite (α-FeOOH) developed directly 
when ferrous metals were exposed to low chloride soils. This hypothesis correlated well with the previous study 
which was in a situation completely free of salinity (such as rural environments)40. In addition, further dehy-
dration and crystallization of goethite (α-FeOOH) might change to non-hydrated iron oxides, such as hematite 
(α-Fe2O3) shown in Tables 3–4. For the formation of magnetite (Fe3O4), the insufficient oxygen supply was prob-
ably the reason. Similarly, previous studies also found substantial magnetite in iron exposed for long periods in 
soils, the existence of which, in contrast, is not yet clear in atmospheric corrosion process7.

With the increasing chloride concentrations, lepidocrocite (γ-FeOOH) gradually evolved but only maintained 
at the intermediate regions between low and high levels of chloride. This phenomenon was followed by the lag-
ging appearance of β-Fe8O8(OH)8Cl1.35, which was similar in molecular formula to the intermediate products 
mentioned by Ma et al.15. Still, it could be inferred that β-Fe8O8(OH)8Cl1.35 was an intermediate corrosion product 
that was primarily derived from γ-FeOOH and further developed into α-FeOOH. However, this unique β-formed 
crystal has never been specified in literature. Instead, the formation of akaganite (β-FeOOH), an unstable phase 
of iron oxyhydroxide, has been largely emphasized in traditional research under conditions of high chloride 
contents9–12. In contrary to previous studies, no obvious β-FeOOH was observed in this study for both ductile 
iron and carbon steel, even though high concentrations of chloride were provided. Two possible speculations 
are given here for the absence of β-FeOOH. First, it was possibly due to the inhomogeneous characteristics of 
soils such as the high diffusion resistance of chloride through soils, relatively different from the atmospheric 
and aquatic situations under which most of the conventional conclusions were drawn. According to Ma et al.15, 
β-FeOOH only appears when chloride ions are above the critical concentrations in atmospheric environments. 
In saline soils, perhaps, the already high chloride concentrations in soils are still difficult to continuously diffuse 
through the soil matrix and condense on the metal surface, thus the surface concentrations are still lower than 
the required critical concentrations. Secondly, the absence of β-FeOOH in this study might be attributed to the 
relatively short exposure time and the incomplete analysis of the rust compositions during the whole exposure 
period which requires further research.

Overall, it was reasonable to assume that chloride ions in soils significantly influenced the compositions of 
corrosion products, possibly by diverting the corrosion processes and even participating in the corrosion reac-
tions, especially at high chloride concentrations. The potential transformation processes are shown in Fig. 5.

Corrosion kinetics.  The general corrosion rate based on the weight loss measurement is calculated by equa-
tion (1), where v is the general corrosion rate (mm/y), W is the weight loss (g), ρ is the density of ferrous metals 
(ductile iron 7.3 g/cm3, carbon steel 7.8 g/cm3), A is the total exposed area (cm2) and T is the exposure time (d).

ρ
= × ×v W

AT
365 10

(1)

The corrosion rates of ductile iron and carbon steel showed similar trends after different exposure periods 
(Fig. 6). Regardless of the variation in chloride levels, the corrosion rates decreased sharply from the initiation till 
five weeks of exposure; since then the reduction in corrosion rates was less pronounced until a relatively stable 
status was achieved. Meanwhile, with the enhancement of chloride concentrations, the corrosion rates generally 
increased but the accelerating effect weakened as the exposure time prolonged. Further, the acceleration influ-
ence of chloride on corrosion rates was more evident in carbon steel compared with ductile iron, indicating that 
carbon steel might be more susceptible to chloride attacks. This was also demonstrated by the local penetration 
pit depths in Table 5, showing that both of the maximum and average pit depths of carbon steel were larger than 

Corrosion products

Chloride concentrations (wt.%)

0.015 0.065 0.115 0.315 0.515 1.015

Quartz SiO2 √ √ √ √ √ √

Lepidocrocite γ-FeOOH √ √ √

β-Fe8O8(OH)8Cl1.35 √ √ √ √ √

Goethite α-FeOOH √ √

Magnetite Fe3O4 √ √ √ √ √ √

Hematite α-Fe2O3 √

Table 4.  Main compositions of corrosion products of carbon steel coupons exposed to soils of different chloride 
concentrations after 12 weeks.
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those of ductile iron. Similarly, the relatively low corrosion resistance of carbon steel against the localized attack 
by chloride ions was also verified by Ma et al.15. Besides, as chloride concentrations increased, the pit depths 
increased as well. As Caleyo et al.41 reported, the profile of pit depths largely reflects the severity of the threat 
posed by soil corrosion.

Figure 7 used the results of thickness loss derived from the weight loss measurement by plotting the thickness 
loss (μm) against the exposure time in log-log coordinates15. It was found that the corrosion process of ductile iron 
(Fig. 7a) fitted well with the probabilistic model proposed by Romanoff42 and widely utilized by other studies7, 15, 43,  
which was intended for estimating the failure of steel pipes based on equation (2):

=D kt (2)n

Figure 5.  The potential transformation processes of ferrous metals in soils with different chloride contents.

Figure 6.  Corrosion rates of ductile iron (a) and carbon steel (b) after being exposed in soils with different 
levels of chloride.

Material Types

Chloride concentrations (wt.%)

0.015 0.065 0.115 0.315 0.515 1.015

Ductile iron

Maximum pit 
depth /mm 0.57 0.72 0.69 0.97 1.02 1.28

Average pit 
depth/mm 0.25 0.45 0.49 0.61 0.67 0.77

Carbon steel

Maximum pit 
depth/mm 0.73 0.80 0.87 1.09 1.21 1.46

Average pit 
depth/mm 0.39 0.56 0.63 0.66 0.70 0.83

Table 5.  Maximum and average pit depths of ductile iron and carbon steel coupons exposed to soils of different 
chloride concentrations after 12 weeks.
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D is the loss of thickness, and k and n are regression parameters. This well-known formulation is widely adopted 
in decision making systems for rehabilitation and maintenance20, such as the UtilNets program developed by the 
European Union37. Nevertheless, the corrosion behavior of carbon steel (Fig. 7b) deviated from this classic equa-
tion (2); instead, the bi-logarithmic curve in this case was a broken line composed of two linear segments, which 
could be delineated based on the equation (3)44:

= ≥−D kt t t t( ) (3)n n n
1 1

1 2 2

t1 is the length of the first period of slope n1, and n2 is the slope of the second period. The similar phenomenon 
was once reported by Ma et al.15 when carbon steel coupons were exposed to marine atmosphere. However, dif-
ferent from the changing turning points in previous research, the turning points in this study maintained at the 
week three regardless of the variations in chloride levels. However, the actual t1 might be shorter than three weeks 
due to lack of data points between week 1 and 3. The regression results are presented in Supplementary Table S2, 
according to the equation (2) and (3), respectively.

According to Li45 and Ma15, the corrosion rates increase when n > 1 and decrease while n < 1; n = 1 indicates 
that the corrosion proceeds at a constant rate. In this case, all slope values of n were much less than 1 except n1 
of carbon steel exposed to soils of 1.015 wt.% chloride contents. This phenomenon was in line with the results in 
Fig. 6, indicating that corrosion of both ductile iron and carbon steel were decelerated processes as the exposure 
prolonged. Also, most of n values were even less than 0.5 implying that the corrosion was highly restrained. Likely, 
the corrosion in soil is more complicated than in atmospheric environments due to the soil conditions in particu-
lar the oxygen diffusion, the moisture content and the chloride ions reaching the surfaces of the buried metals. It 
has been reviewed that the soil moisture will be profoundly influenced by soil types ranging from 0.5% in sand 
soil to 217% for bentonite clay soil7. Accordingly, the oxygen diffusion will change as well, i.e. being lowest at 
highest moisture contents. In this case, 20% moisture as a normal status, the diffusion of oxygen might be the lim-
iting factor, because the soil samples were filled in a relatively compact way and no aeration process was provided 
in the well-sealed soil reactors. On the other hand, as the exposure prolonged, the thickening and compacting 
rust layers primarily composed of γ-FeOOH, β-Fe8O8(OH)8Cl1.35, α-FeOOH and α-Fe2O3 may also contribute 
to inhibiting the corrosion process. However, to verify the correlation between different corrosion products and 
corrosion rates, more quantitative analysis of corrosion products and their evolution with time is needed.

Moreover, for ductile iron, n generally increased with the enhancement of chloride contents, probably indi-
cating that the decreasing of corrosion rates become less severe. Together with the results in Fig. 6a, it was rea-
sonable to infer that higher chloride contents not only induced higher corrosion rates but also suppressed the 
decreasing of corrosion for ductile iron, especially during the corrosion initiation. Chloride ions, minor in radius, 
are assumed necessary for the corrosion initiation mainly due to its ability for de-passivation of the passive film8. 
Additionally, the increased chloride contents are conducive to diminishing soil resistivity thus providing a more 
favorable environment for corrosion. Nevertheless, for carbon steel, deviation from the classic function (2) was 
observed along with the first slope values n1 much bigger than the second slope values n2. Interestingly, the val-
ues of n1 generally decreased under intermediated chloride levels (0.115–0.515 wt.%). According to the previous 
investigation15, this phenomenon could be possibly attributed to the aforementioned potential transformation 
from γ-FeOOH to α-FeOOH that made the rust layer more stabilized. However, as chloride reached 1.015 wt.%, 
n1 abruptly increased to almost 1 implying that the rust again presented less protective properties. The reason 
for this irregular fluctuation of corrosion behavior was still not clear which needs further study by quantitatively 
analyzing the corrosion products and their transformation.

Collectively speaking, corrosion of ferrous metals in soils is a decelerated process, but chloride ions can sup-
press the decreasing for both ductile iron and carbon steel following different kinetics models respectively. By 
comparing the two ferrous metals, we observed that chloride could increase more corrosion on carbon steel than 
the ductile iron. Further, after reaching a certain chloride degree, the thickness loss would increase remarkably 

Figure 7.  Bilogarithmic plots of thickness loss versus exposure time of ductile iron (a) and carbon steel (b) after 
being exposed in soils with different levels of chloride.

http://S2
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for both of ductile iron and carbon steel (Fig. 7), with different critical chloride concentrations (ductile iron 
0.515 wt.%, carbon steel 1.015 wt.%). Accordingly, this study suggest that ductile iron might be advantageous over 
carbon steel in terms of corrosion resistance, when it is used as pipe materials in saline soils with high levels of 
chloride. However, other features including the mechanical and economical properties of those materials require 
further verification.

Linear polarization measurements.  Figure 8 shows the typical linear polarization curves at the initiation 
(week 1) and end of exposure (week 12); other curves not shown here performed similarly and were used to 
calculate the reciprocal of linear polarization resistance (Rp) (Fig. 9). Generally, most coupons presented higher 
potentials after 12 weeks exposure which indicated a more stabilized state, knowing that lower Ecorr values suggest 
a higher corrosion risk46, 47. However, the fluctuating trend of potentials as the chloride increased implied that 
the corrosion process in soils was complicated and the corrosion potentials were difficult to predict. Figure 9 pre-
sented the variations in the reciprocal of linear polarization resistance (Rp), which is positively proportional to 
the instantaneous corrosion rate15, 46, 47. Different from the clear trend of corrosion rates (Fig. 6), the instantaneous 
corrosion rates based on polarization measurements showed higher variation, probably attributed to the unsteady 
electrochemical reactions that induced the transformation of varied corrosion products. In particular, for carbon 
steel, as the chloride contents reached beyond 0.315 wt.%, the values of 1/ Rp fluctuated with the exposure time, 
which was likely caused by the variation in rust layers. The changing status of lepidocrocite (γ-FeOOH) and 
β-Fe8O8(OH)8Cl1.35 that are able to exhibit reduction reactivity may enhance transient corrosion processes, thus 
leading to the increase of 1/Rp to some degree. Generally, the trends of instantaneous corrosion rates in terms of 
1/Rp, decreasing with time and increasing with chloride contents, roughly correspond with the general corrosion 
trends in Fig. 6., and it also compensated the incapability of general corrosion rates to detect the in-situ corrosion 
transformation.

Electrochemical impedance spectroscopy.  EIS measurements of ductile iron and carbon steel were car-
ried out after exposure to different chloride enriched soils. Figure 10 shows the representative Nyquist plots cor-
responding to the lowest (0.015 wt.%) and highest (1.015 wt.%) chloride conditions. In general, two semi-circles 

Figure 8.  Polarization curves i.e. potential-log (current) of ductile iron (a) and carbon steel (b) in soils with 
different levels of chloride after 1 week (solid) and 12 weeks (hollow) of exposure.

Figure 9.  The variation of 1/Rp of ductile iron (a) and carbon steel (b) in soils with different levels of chloride.
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related to two constant-phase elements (CPE) were observed in each plot, representing the electrical double layers 
(EDL) between soils and rusts, and between rusts and metal surfaces, respectively. The second semi-circle, in 
relatively low frequency range, was the main focus which exhibited the behavior of rust layers.

When exposed to low chloride soils (0.015 wt.%), the second semi-circle expanded largely with the exposure 
time, which implied the increasing resistivity of the rust layers probably caused by the growth in rust thickness 
and density. Likely, this phenomenon explained why the corrosion rates of coupons decreased with exposure 
time, assuming that the rust layers behaved as a protective layer against corrosion acceleration. On the other 
hand, the impedance diagrams obtained in the spectra were not perfect semicircles, indicating the heterogeneities 
of the rust layers31, 48. This non-monotonous characterization was in line with the morphology analysis in sections 
3.1 and 3.2, that the development of the rust layers was not even or monotonous. When exposed to soils of high 
chloride contents (1.015 wt.%), the electrochemical behavior of rust layers was relatively different. As the expo-
sure time increased, the second semi-circle gradually transformed into diffusional tails, indicating the increasing 
difficulty in diffusion process. Likely, this performance was attributable to higher chloride concentrations which 
facilitated the continuous thickening and compacting of the rust layer, thus making the corrosion process limited 
by the diffusion process. Similar studies reported that the building up of rust layers may decrease the corrosion 
rates, apparently by blocking the pathways for oxygen diffusion and limiting cathodic reactions7. Therefore, it 
could be inferred that chloride ions exert multiple effects on the corrosion kinetics of ferrous metals, not only by 
suppressing the decreasing of corrosion rates at the initiation, but also diverting corrosion reactions and influ-
encing the thickness and density of corrosion layers. In addition, in-depth analysis of the electrochemical results 
including the polarization curves, EIS and equivalent electrical circuits need to be further conducted for the 
understanding of the corrosion development and processes.

Conclusions
The effects of chloride ions in saline soils on corrosion of ductile iron and carbon steel were investigated in terms 
of surface morphology, rust compositions and corrosion kinetics. This has led to the following key findings: 

	 1.	 Low levels of chloride tend to cause general corrosion while high levels of chloride likely induce localized 
corrosion. However, no strict boundaries exist between the general and localized process along with higher 
chloride concentrations and prolonged exposure time.

	 2.	 Chloride influences the compositions of corrosion products by diverting potential corrosion pathways or 
even participating in corrosion reactions directly. At low levels of chloride, α-FeOOH and iron oxides are 
major corrosion products; at high levels of chloride, γ-FeOOH and β-Fe8O8(OH)8Cl1.35 appears sequential-
ly. β-Fe8O8(OH)8Cl1.35 is observed for the first time when high chloride concentrations are provided, and 
Fe3O4 exists in most of the rust layers.

	 3.	 Corrosion of ductile iron and carbon steel in soils is decelerated, but higher chloride concentrations induce 

Figure 10.  Nyquist plots of ductile iron (a) (the first row) and carbon steel (b) (the second row) in soils (0.015 
wt.% and 1.015 wt.% of chloride contents) after different exposure periods.
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higher corrosion rates, larger pit depths and suppress the decreasing of corrosion rates especially during 
the initiation. After longer exposure, however, high levels of chloride may thicken the rust layers, thus 
retarding corrosion conversely. The instantaneous corrosion rates based on in-situ polarization measure-
ments largely conforms to the weight-loss based corrosion rates.

	 4.	 Compared with ductile iron, chloride could increase more corrosion on carbon steel which is also more 
susceptible to localized attacks than ductile iron. The corrosion kinetics of ductile iron corresponds well 
with the classic probabilistic model, whereas that of carbon steel follows the bilinear model.
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