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Pre-mRNA splicing is performed by the spliceosome, a dynamic macromolecular
complex consisting of five small uridine-rich ribonucleoprotein complexes (the U1,
U2, U4, U5, and U6 snRNPs) and numerous auxiliary splicing factors. A plethora
of human disorders are caused by genetic variants affecting the function and/or
expression of splicing factors, including the core snRNP proteins. Variants in the genes
encoding proteins of the U5 snRNP cause two distinct and tissue-specific human
disease phenotypes – variants in PRPF6, PRPF8, and SNRP200 are associated with
retinitis pigmentosa (RP), while variants in EFTUD2 and TXNL4A cause the craniofacial
disorders mandibulofacial dysostosis Guion-Almeida type (MFDGA) and Burn-McKeown
syndrome (BMKS), respectively. Furthermore, recurrent somatic mutations or changes
in the expression levels of a number of U5 snRNP proteins (PRPF6, PRPF8, EFTUD2,
DDX23, and SNRNP40) have been associated with human cancers. How and why
variants in ubiquitously expressed spliceosome proteins required for pre-mRNA splicing
in all human cells result in tissue-restricted disease phenotypes is not clear. Additionally,
why variants in different, yet interacting, proteins making up the same core spliceosome
snRNP result in completely distinct disease outcomes – RP, craniofacial defects or
cancer – is unclear. In this review, we define the roles of different U5 snRNP proteins in
RP, craniofacial disorders and cancer, including how disease-associated genetic variants
affect pre-mRNA splicing and the proposed disease mechanisms. We then propose
potential hypotheses for how U5 snRNP variants cause tissue specificity resulting in the
restricted and distinct human disorders.

Keywords: disease, cancer, U5 snRNP, pre-mRNA splicing, retinitis pigmentosa, Burn-McKeown syndrome,
mandibulofacial dysostosis Guion-Almeida type, spliceosome

INTRODUCTION

The vast majority of human genes contain introns which interrupt the coding exons. Genes are
transcribed into precursor messenger RNA (pre-mRNA) which contain introns that must be
removed in the nucleus, in the process of pre-mRNA splicing. Splicing joins together the coding
exons to form a functional open reading frame which can be translated to make protein in the
cytoplasm. Splicing is carried out by a large, dynamic, macromolecular complex known as the
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spliceosome, which is composed of five small uridine-rich nuclear
RNAs (snRNAs) complexed with proteins to form small nuclear
ribonucleoprotein complexes (snRNPs), as well as almost 200
auxiliary proteins (Jurica and Moore, 2003; Will and Luhrmann,
2011; Matera and Wang, 2014). Splicing is initiated as the U
snRNPs and auxiliary proteins assemble onto the pre-mRNA
guided by cis-acting sequences within the mRNA itself (namely
the 5′ and 3′ splice sites at either end of the intron and the branch
point sequence a short distance upstream of the 3′ splice site),
allowing the removal of the intron and the joining together of the
exons via two sequential transesterification reactions (Wang and
Burge, 2008; Will and Luhrmann, 2011). There are two principal
forms of spliceosomes in eukaryotes. The majority of introns
(approximately 95.5%) are spliced by the major spliceosome,
which contains the U1, U2, U4, U5, and U6 snRNPs. The minor,
or U12-dependent, spliceosome is formed of the U1atac, U2atac,
U4atac, U5 and U6atac snRNPs and is responsible for the splicing
of approximately 800 introns (Turunen et al., 2013). The U5
snRNP is the only common complex in both the major and minor
spliceosome. The vast majority (an estimated 95%) of human
multi-exon genes are also alternatively spliced, whereby the same
pre-mRNA transcript is spliced in multiple different ways to
produce distinct mature mRNAs (Pan et al., 2008; Gerstein
et al., 2014). Alternative splicing allows tissue-specific and/or
functionally distinct isoforms of a protein and vastly increases the
protein-coding capacity of the genome in higher eukaryotes (Yeo
et al., 2004; Kelemen et al., 2013).

The eukaryotic split gene architecture demands for an
intricate splicing regulatory network consisting of various RNA
sequences, snRNP complexes and auxiliary splicing factors.
Given this complexity, it is perhaps unsurprising that this
stage of gene expression is highly susceptible to variants
(both hereditary and somatic) which are implicated in human
disorders; it is estimated that approximately 50% of human
disease-causing variants affect pre-mRNA splicing (Ward and
Cooper, 2010; Lim et al., 2011; Singh and Cooper, 2012;
Fredericks et al., 2015; Scotti and Swanson, 2016). Splice-
affecting variants include: cis-acting variants within the pre-
mRNA sequences themselves; microsatellite expansion disorders
and RNA gain-of-function; trans-acting variants in auxiliary
splicing proteins leading to splicing factor dysregulation
and/or mis-expression; and variants affecting core proteins of
the spliceosome.

Disorders caused by variants which affect core spliceosome
constituents (factors making up the U snRNPs) are one of the
most interesting and enigmatic classes of splice-affecting variants.
These disorders are relatively rare, presumably because the effects
of complete loss-of-function variants are often incompatible
with life, while non-coding or hypomorphic variants are more
challenging to identify. Pre-mRNA splicing is a ubiquitous pre-
mRNA processing step which occurs in all cells and tissues at
all times, and so variants in core proteins of the spliceosome
could be expected to have widespread and systemic effects on
multiple tissues. However, all these U snRNP related disorders
affect only one or a small number of cell or tissue types. The
mechanisms underlying tissue-specific rather than pleiotropic
effects arising from core spliceosome variants remain poorly

understood. Current hypotheses to explain this phenomenon
include a higher dependence on spliceosomal function in
different tissues and/or additional (and as-yet-unknown) tissue-
specific functions for certain spliceosomal proteins which
are disrupted by pathogenic variants (Lehalle et al., 2015;
Beauchamp et al., 2020).

A further unknown related to variants in core spliceosomal
proteins is that very distinct, tissue-restricted phenotypes arise
from variants within different proteins of the same spliceosomal
complexes. One of the best examples of this phenomenon, and
the focus of this review, is the U5 snRNP. The U5 snRNP
is a large complex consisting of the U5 snRNA, a ring of
seven Sm proteins and eight core protein factors (Table 1;
Will and Luhrmann, 2011). During splicing by the major
spliceosome, the U5 snRNP is recruited to the spliceosome
as part of the U4/U6.U5 tri-snRNP, and following extensive
spliceosomal remodelling the U5 snRNP associates with the
pre-mRNA via interaction of the U5 snRNA loop I with the
exonic sequence upstream of the 5′ splice site (Newman and
Norman, 1991, 1992; Wyatt et al., 1992; Cortes et al., 1993;
Sontheimer and Steitz, 1993; Newman et al., 1995; O’Keefe et al.,
1996; O’Keefe and Newman, 1998; Alvi et al., 2001; McGrail
and O’Keefe, 2008). Following the first transesterification step
of splicing, further spliceosomal rearrangements result in the
U5 snRNA loop I contacting exonic nucleotides immediately
downstream of the 3′ splice site, and therefore the U5
snRNP both tethers the 5′ exon to the spliceosome after
the first step of splicing and aligns the 5′ exon and 3′
exon for the second catalytic step of splicing (Newman and
Norman, 1991, 1992; Wyatt et al., 1992; Cortes et al., 1993;
Sontheimer and Steitz, 1993; Newman et al., 1995; O’Keefe et al.,
1996; O’Keefe and Newman, 1998; Alvi et al., 2001; Turner
et al., 2004; McGrail and O’Keefe, 2008; Will and Luhrmann,
2011).

Variants in U5 snRNP proteins have been associated with
human disorders, and these disorders generally fall into two
categories – retinal disorders and craniofacial disorders – with no
known overlap as yet (Table 1; Lehalle et al., 2015; Ru◦žičková and
Staněk, 2017; Beauchamp et al., 2020). Why and how these tissue-
specific and very distinct manifestations arise from variants in
different, but interacting, core proteins of the U5 snRNP complex
remains poorly understood. It is worth noting that variants in
the spliceosome-associated factor CWC27 have recently been
identified in individuals presenting with a retinal phenotype,
craniofacial defects and developmental delay, indicating that
the overlap of the distinct phenotypes is possible (Xu et al.,
2017). However, no individuals with both retinal and craniofacial
phenotypes resulting from pathogenic variants in U5 snRNP
proteins have been observed so far. Additionally, links between
somatic mutations in and/or altered expression of several of the
U5 snRNP proteins (including those associated with craniofacial
or retinal phenotypes) and human cancers have been established
(Table 1). These findings indicate that human cells are highly
susceptible to altered expression and/or function of certain
core spliceosome proteins. The direction and magnitude of the
alteration may determine the cellular dysregulation and the
resulting phenotypic presentation.
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THE U5 SNRNP AND RETINITIS
PIGMENTOSA (RP)

Retinitis pigmentosa (RP) is one of the leading causes of
hereditary blindness, with an estimated prevalence of 1:4000
(Hamel, 2006). RP initially presents as night blindness (often
starting in adolescence), followed by loss of peripheral vision
and eventually total blindness. RP is characterised by progressive
dysfunction and loss of photoreceptor rod and cone cells. It
is thought that the genetic background of individuals and
environmental factors play an important role in the highly
variable age of onset, severity, presence of secondary symptoms
and rate of disease progression in RP patients (Hartong et al.,
2006; Sorrentino et al., 2016; Ru◦žičková and Staněk, 2017). RP
may be described as non-syndromic, where there are no other
clinical features, or syndromic when RP presents with other
clinical phenotypes, such as Usher syndrome where patients
suffer from RP with partial or complete deafness (Daiger et al.,
2013). RP may also be secondary to other systemic disorders. RP
is highly heterogenous, including genetic, allelic, phenotypic and
clinical heterogeneity (Daiger et al., 2013). Autosomal dominant
(adRP) (30–40% of all cases), autosomal recessive (arRP)
(approximately 50% cases) and X-linked (xlRP) (approximately
10%) modes of inheritance are all associated with RP (Hartong
et al., 2006; Ru◦žičková and Staněk, 2017). RP is very rarely
inherited as a non-Mendelian phenotype (Hartong et al., 2006).

Considering both syndromic and non-syndromic forms of RP,
over 100 genes have been associated with RP1 (Daiger et al., 2013;
Diakatou et al., 2019; González-del Pozo et al., 2020; Sun et al.,
2020). Many of these RP genes are expressed specifically in the
retina and are involved in photoreceptor function; however, other
genes associated with RP are expressed more widely in many or
all human tissues (Hartong et al., 2006). Indeed, variants in at
least eight spliceosome genes (six snRNP and two non-snRNP
genes) are associated with RP (Table 2; Ru◦žičková and Staněk,
2017). Interestingly, all the RP variants in the U snRNPs are
found in the U4/U6.U5 tri-snRNP or are non-snRNP splicing
factors; there have been no RP variants reported in U1 or U2

1https://sph.uth.edu/retnet/

snRNP complexes to date (Boon et al., 2007). Three of these RP-
associated snRNP genes – PRPF6, PRPF8 and SNRNP200 – are
members of the U5 snRNP complex (Table 2). While the RP-
linked variants in these three U5 snRNP genes have well-defined
effects on spliceosome assembly and/or function, and result in
inefficient splicing in vitro and in vivo, how and why the observed
defects in splicing translate to specific retinal degeneration and
an RP phenotype is not well understood. It is hypothesised that
distinct groups of pre-mRNAs which have important functions in
the retina are mis-spliced in spliceosome-associated RP; however,
these retina-specific mis-spliced transcripts are not currently
well-characterised (Ru◦žičková and Staněk, 2017).

It has been suggested that different cell types have differing
rates of transcription and translation at different stages
of development, meaning that certain tissues have higher
dependencies on spliceosomal function. The human retina
expresses very high levels of certain housekeeping genes, as
well as major and minor spliceosomal snRNAs, compared to
other tissues (Cao et al., 2011; Ru◦žičková and Staněk, 2017).
Therefore, variants in the spliceosomal genes in RP may cause
global splicing dysregulation that manifests in the retina because
of its enhanced splicing activity and increased burden on the
spliceosome (Tanackovic et al., 2011b). However, this hypothesis
cannot be the sole explanation for the phenotypic restriction of
RP; if this is true, retinal degeneration would be expected to be
a phenotypic characteristic of all disorders arising from variants
in core spliceosomal factors, which is not the case (Lehalle
et al., 2015). Another, non-mutually exclusive, possibility is that
additional (and as-yet-unknown) tissue-specific functions for
certain spliceosomal proteins are also disrupted by the disorder-
associated variants. However, there is currently little evidence to
support this hypothesis as a causative mechanisms in RP.

PRPF6
PRPF6 is a 941 amino acid, 102 kDa protein which acts as
a molecular bridge between the U5 snRNP and the U4/U6
di-snRNP and is essential for the assembly of the tri-snRNP,
confirmed by recent atomic structures of the human tri-snRNP
(Figure 1; Makarov et al., 2000; Liu, 2006; Agafonov et al., 2016;
Ru◦žičková and Staněk, 2017). The first autosomal dominant RP

TABLE 1 | Functions of the core U5 snRNP proteins, S. cerevisiae homologues and their association with retinitis pigmentosa, craniofacial disorders, or cancer.

U5 snRNP protein Homologue in
S. cerevisiae

Function in spliceosome Retinitis
pigmentosa

Craniofacial
disorder

Cancer

TXNL4A Dib1p Prevents premature spliceosome activation? No Yes No

SNRNP40 None Protein-protein interaction, important for assembly or stability of
U4/U6.U5 tri-snRNP? Function not well-characterised

No No Yes

CD2BP2/U5-52K Snu40p Interacts with PRPF6 and TXNL4A, not part of the tri-snRNP No No No

DDX23/PRPF28 Prp28p DEAD-box helicase, required for spliceosome B formation although
function not well-characterised

No No Yes

PRPF6 Prp6 Assembly of tri-snRNP, molecular bridge between U5 snRNP and
U4/U6 snRNP

Yes No Yes

PRPF8 Prp8p Assembly of U5 snRNP, regulation of SNRNP200, forms catalytic
centre of spliceosome

Yes No Yes

SNRNP200 Brr2p Unwinding of U4/U6 snRNA duplex, activation of spliceosome Yes No No

EFTUD2 Snu114p Regulation of SNRNP200, regulation of spliceosome dissociation No Yes Yes
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variant reported in PRPF6 was a heterozygous c.2185C > T
(p.Arg729Trp) variant in exon 16 (Table 2; Tanackovic et al.,
2011a). Arginine 729 is a highly conserved residue which lies
within one of the HAT repeat domains at the C-terminal end
of PRPF6. Mutant PRPF6 harbouring the p.Arg729Trp variant
accumulates in Cajal bodies in patient lymphoblasts. Cajal bodies
are nuclear structures involved in snRNP maturation, tri-snRNP
regeneration and the site of defective snRNP accumulation
(Tanackovic et al., 2011a; Staněk, 2017). Accumulation of
mutant PRPF6 in Cajal bodies indicates impairment of tri-
snRNP assembly in patients with the PRPF6 p.Arg729Trp
variant. Indeed, the HAT domain containing Arg729 is in a
region of PRPF6 known to interact with the U4/U6 di-snRNP
and therefore likely affects PRPF6 interactions with this di-
snRNP (Tanackovic et al., 2011a). Additionally, human cell lines
with the p.Arg729Trp variant displayed inefficient splicing of
a number of introns whose decreased splicing is associated
with PRPF-linked RP in cell lines from various RP patients
with PRPF3, PRPF31, and PRPF8 variants (Tanackovic et al.,
2011a,b). Therefore, the PRPF6 p.Arg729Trp variant affects both
spliceosomal composition and function.

A further two novel PRPF6 heterozygous missense variants
were identified in a cohort of Chinese patients with RP by next-
generation sequencing. These variants, c.514C > T, p.Arg172Trp
and c.551A > G, p.Asp184Gly, co-segregated with the disease,
were absent in population variation databases and were predicted
as damaging, but no further characterisation of the variants was
performed (Huang et al., 2015). Furthermore, another missense
variant, c.1430A > G, p.Asn477Ser, was identified within PRPF6
co-segregating with the neurodegenerative Kufs disease. The
patients with this PRPF6 p.Asn477Ser variant were reported
with visual impairment (Velinov et al., 2012). However, further
work is required to confirm whether this PRPF6 p.Asn477Ser
variant has a role in either Kufs disease or the visual impairment
(Ru◦žičková and Staněk, 2017).

PRPF8
The 220 kDa PRPF8 is the largest known protein of the
spliceosome. PRPF8 is a highly conserved protein which forms
the catalytic centre of the spliceosome and interacts with the U5
snRNA and the 5′ and 3′ splice sites (Galej et al., 2014; Yan et al.,
2015; Bertram et al., 2017; Ru◦žičková and Staněk, 2017). PRPF8
interacts with numerous tri-snRNP components including the
U5 proteins, EFTUD2 (Snu114p in Saccharomyces cerevisiae) and
SNRNP200 (Brr2p in S. cerevisiae), which have essential roles in
the splicing cycle (Figures 1, 2). EFTUD2 and PRPF8 regulate the
activity of SNRNP200, which unwinds the U4/U6 snRNA duplex
to activate the spliceosome (Kuhn et al., 1999; Small et al., 2006;
Frazer et al., 2008; Maeder et al., 2009; Mozaffari-Jovin et al., 2012,
2013, 2014; Nancollis et al., 2013; Nguyen et al., 2013).

At least 19 variants in PRPF8 have been associated with
autosomal dominant RP (Table 2; Malinová et al., 2017;
Ru◦žičková and Staněk, 2017). All the known variants cluster
in the C-terminal Jab1/MPN domain of the PRPF8 protein
which interacts with SNRNP200 (McKie et al., 2001; Kondo
et al., 2003; Martinez-Gimeno et al., 2003; Ziviello et al., 2005;
Towns et al., 2010; Malinová et al., 2017). The majority of the
variants fall in exon 42, although a few PRPF8 variants (including
p.Ser2118Phe) lie within exon 38. In yeast, RP variants in PRP8
(yeast homologue of PRPF8) lead to growth defects, although the
growth defects were not completely consistent and may be related
to the genetic background of the yeast strain (Boon et al., 2007;
Maeder et al., 2009; Mozaffari-Jovin et al., 2013; Ru◦žičková and
Staněk, 2017). Inhibition of U5 snRNP assembly and disruption
of the transition between the first and second steps of splicing
were also observed in yeast models, with yeast containing Prp8p
RP mutations interacting less efficiently with Snu114p and
Brr2p and disrupting the regulation of Brr2p helicase activity,
leading to defects in pre-mRNA splicing (Boon et al., 2007; Pena
et al., 2007; Maeder et al., 2009; Mozaffari-Jovin et al., 2013;
Ledoux and Guthrie, 2016; Mayerle and Guthrie, 2016). Reduced

TABLE 2 | Spliceosome protein genes associated with retinitis pigmentosa, including S. cerevisiae homologues, spliceosome complex, inheritance pattern, whether
disease variants affect evolutionarily conserved amino acids and references.

Spliceosome
factor gene

S. cerevisiae
homologue

Spliceosome
complex

Type of retinitis
pigmentosa

Disease variants
affect conserved

amino acids

Selected references

PRPF3 PRP3 U4/U6 snRNP and
U4/U6.U5 tri-snRNP

Autosomal dominant Yes Chakarova, 2002; Martinez-Gimeno et al.,
2003; Gamundi et al., 2008; Zhong et al., 2016

PRPF4 PRP4 U4/U6 and U4/U6.U5
tri-snRNP

Autosomal dominant Yes Benaglio et al., 2014; Chen et al., 2014; Linder
et al., 2014

PRPF6 PRP6 U5 snRNP Autosomal dominant Yes Tanackovic et al., 2011a; Huang et al., 2015

PRPF8 PRP8 U5 snRNP Autosomal dominant Yes McKie et al., 2001; Erkenez et al., 2002;
Martinez-Gimeno et al., 2003; Ziviello et al.,
2005; Towns et al., 2010; Maubaret et al., 2011

PRPF16/DHX38 PRP16 Non-snRNP Autosomal recessive Yes Ajmal et al., 2014

PRPF31 PRP31 U4 snRNP Autosomal dominant Yes Vithana et al., 2001; Xia et al., 2004; Sullivan
et al., 2006; Waseem et al., 2007; Frio et al.,
2008; Jin et al., 2008; Xiao et al., 2017

RP9/PAP1 No homologue Non-snRNP Autosomal dominant NA Keen et al., 2002

SNRNP200 BRR2 U5 snRNP Autosomal dominant Yes Zhao et al., 2009; Li et al., 2010; Benaglio
et al., 2011; Liu et al., 2012; Pan et al., 2014
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FIGURE 1 | Structural model of the human tri-snRNP in two different orientations. Left: An overview of the human tri-snRNP, including all RNA/protein components.
Right: Rotated view of the model, exclusively showing the structural relationships between the disorder-associated U5 snRNP proteins discussed in this review.
Other tri-snRNP RNA/protein components have been omitted for clarity. Model built using a previously reported 2.9Å cryo-electron microscopy (cryo-EM) structure
of the human tri-snRNP (PDB: 6QW6) (Charenton et al., 2019).

assembly of the spliceosome, inefficient splicing and differential
alternative splicing was also observed in human cells derived
from RP patients with PRPF8 variants (Tanackovic et al., 2011b).
PRPF8 RP variants introduced into HeLa cells accumulated
in the cytoplasm as well as displaying the normal PRPF8
nuclear localisation, while the majority of PRPF8 mutant proteins
degraded more rapidly than the wildtype PRPF8 (Malinová
et al., 2017). Furthermore, the majority of PRPF8 RP variants
specifically affected spliceosome assembly via inhibition of tri-
snRNP formation, reducing the number of fully assembled
functional spliceosomes, and consequently splicing defects were
observed (Malinová et al., 2017). However, two PRPF8 variants
examined (p.Tyr2334Asn and p.Phe2314Leu) did not affect
snRNP biogenesis but did affect splicing in vivo (Malinová
et al., 2017). These p.Tyr2334Asn and p.Phe2314Leu variants
inhibited SNRNP200 helicase activity and weakened association
with SNRNP200, respectively, and the resulting SNRNP200
mis-regulation likely accounts for the splicing defects observed
(Malinová et al., 2017).

SNRNP200
SNRNP200 (Brr2p in yeast) is a 200 kDa protein which interacts
with and is regulated by PRPF8 and EFTUD2 at the heart
of the U5 snRNP (Figures 1, 2; Van Nues and Beggs, 2001;
Liu, 2006; Frazer et al., 2008; Häcker et al., 2008; Mozaffari-
Jovin et al., 2012; Nguyen et al., 2013). A recent 7Å cryo-
electron microscopy (cryo-EM) structure of the human tri-
snRNP revealed that SNRNP200 interacts with the PRPF8 Jab1

domain, the region of PRPF8 containing the majority of PRPF8
RP-linked variants (Figure 1; Agafonov et al., 2016). SNRNP200
is one of eight ATP-dependent DExD/H box RNA helicases
in the spliceosome (Cordin and Beggs, 2013). SNRNP200 has
an N-terminal domain of unknown function and two helicase
modules, an active N-terminal helicase module which unwinds
the U4/U6 snRNA duplex during spliceosome activation, and
a C-terminal helicase module which acts as an intramolecular
regulator (Pena et al., 2009; Zhang et al., 2009). Recent cryo-EM
structures of the human spliceosomal pre-B and B complexes
have indicated that as well as driving the pre-B to B complex
transition during spliceosome activation, SNRNP200 undergoes
a major conformational shift, resulting in a drastic change in
the overall structure of the spliceosome (Zhan et al., 2018;
Zhang et al., 2018).

A number of heterozygous variants in SNRNP200 have been
linked to autosomal dominant RP (Table 2). The first two
variants identified, p.Ser1087Leu and p.Arg1090Leu, were found
in the Sec63-like domain of the N-terminal active helicase
module. In yeast, both variants resulted in reduced U4/U6 snRNA
unwinding (Zhao et al., 2009; Cvačková et al., 2014). In human
cells, neither SNRNP200 variant affected snRNP assembly (unlike
the PRPF6 and the majority of PRPF8 RP-linked variants) but
did promote the use of cryptic splice sites (Cvačková et al., 2014).
The authors proposed that SNRNP200 has an important role in 5′
splice site recognition and splicing fidelity, which is compromised
by the two RP variants. Subsequently, additional SNRNP200
variants were identified in the Ski2-like helicase domain of

Frontiers in Genetics | www.frontiersin.org 5 January 2021 | Volume 12 | Article 636620

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-636620 January 22, 2021 Time: 16:8 # 6

Wood et al. The U5 snRNP in Disease

FIGURE 2 | Functional and physical interactions between U5 snRNP proteins involved in retinal and craniofacial genetic disorders. A summary of the interactions
between RP-associated U5 snRNP proteins and craniofacial disorder-associated U5 snRNP proteins discussed in this review. A double-headed arrow indicates an
interaction between the two proteins. Blue labels describe the known function or hypothesized function of the interaction between the proteins. Genetic disorders
associated with each protein are indicated in red along with the specific tissue type affected in each case. BMKS, Burn-McKeown syndrome; MFDGA;
mandibulofacial dysostosis Guion-Almeida type; RP, retinitis pigmentosa. Figure created with BioRender.com.

N-terminal active helicase module, which likely disrupt the RNA
helicase activity of SNRNP200 (Benaglio et al., 2011; Liu et al.,
2012; Bowne et al., 2013; Zhang et al., 2013; Huang et al.,
2015). Indeed, in a structural model of the SNRNP200 with
a RP-associated p.Gln885Glu mutation, the affected residue is
predicted to be a key nucleic acid interaction site and the change
in electrostatic potential caused by the mutation would affect
nucleic acid contact, disrupting U4/U6 snRNA unwinding and
stalling the spliceosome (Liu et al., 2012).

These SNRNP200 RP variants suggest that mis-regulation or
defects in SNRNP200 are detrimental to spliceosome activity and
may disrupt RNA splicing (Ru◦žičková and Staněk, 2017).

THE U5 SNRNP AND CRANIOFACIAL
DISORDERS

Variants in five of the core spliceosomal proteins are associated
with human disorders in which patients display abnormal
craniofacial development as the primary phenotype. Two
of these disorders – mandibulofacial dysostosis Guion-
Almeida type (MFDGA) and Burn-McKeown syndrome

(BMKS) – are caused by variants in U5 snRNP proteins,
EFTUD2 and TXNL4A, respectively. These two disorders
share overlapping phenotypic features, although there are
unique elements to the craniofacial presentations in each
case (Table 3).

The causative variants in EFTUD2 and TXNL4A are predicted
to lead to the mis-splicing of specific subsets of pre-mRNAs which
play an important role in craniofacial development, resulting in
the craniofacial defects observed in patients. This mis-splicing
of disorder-relevant genes is similar to the proposed disease
mechanism discussed for RP. How variants in these different
proteins of the same spliceosome complex result in the mis-
splicing of specific (and different) groups of pre-mRNAs affecting
different developmental processes is not well-understood. Thus
far, none of the patients identified with the craniofacial disorders
resulting from U5 protein gene variants have presented with
retinal problems, although the craniofacial defects identified in
the patients are present at birth whereas retinal degeneration
in RP tends to initiate later in life. It would be interesting to
follow-up with MFDGA and BMKS patients in their later years
to investigate whether clinical or sub-clinical retinal degeneration
and vision loss has occurred.
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EFTUD2 in Mandibulofacial Dysostosis
Guion-Almeida Type (MFDGA)
Mandibulofacial dysostoses (MFDs) are craniofacial disorders in
which malar and mandibular hypoplasia are the core phenotypic
features; hearing loss, dysplastic ears and eyelids, and cleft palate
are also frequently observed in patients (Wieczorek, 2013). In
MFDGA, patients display typical MFD features, microcephaly,
external ear malformations and intellectual disability. Hearing
loss, cleft palate, choanal atresia, oesophageal atresia, congenital

TABLE 3 | Summary of the key clinical features of mandibulofacial dysostosis
Guion-Almeida type (MFDGA) and Burn-McKeown syndrome (BMKS), indicating
the overlapping and unique phenotypic characteristics of patients with
these syndromes.

Phenotypes observed in
patients

MFDGA BMKS

Craniofacial phenotype

Mandibular hypoplasia X X

Malar hypoplasia X

External ear anomalies X X

Preauricular tags X X

Hearing loss X X

Auditory canal stenosis X X

Choanal atresia X X

Cleft palate/bifida uvula X X

Facial asymmetry X

Eye anomalies X X

Lower eyelid defects X

Semicircular canal anomalies X

Cleft lip X

Microstomia X

Absent lachrymal duct X X

Neurological phenotype

Microcephaly X

Psychomotor delay/ID X X (one patient only)

Brain MRI anomalies X

Epilepsy X

Autism X

Limb defects

Upper limb anomalies X (mainly thumbs)

Lower limb anomalies X (minor feet anomalies)

Radio-ulnar anomalies X

Growth retardation X X

Congenital heart defect X (VSD, ASD, PDA) X (PDA, PFO)

Visceral malformations

Oesophageal atresia X

Anal stenosis X

Spine and thorax defects

Scoliosis X

Genito-urinary defects X X (renal agenesis)

A tick represents a feature which has been observed in at least one patient suffering
from the disease. The most frequent features of each syndrome, which has been
observed in more than 85% of affected individuals, are highlighted in red. ASD,
atrio-septal defect; ID, intellectual disability; PDA, persistent ductus arteriosus;
PFO, persistent foramen ovale; VSD, ventriculo-septal defect. Adapted from Lehalle
et al. (2015); Beauchamp et al. (2020).

heart defects and radial ray defects are also (less commonly)
observed (Table 3; Wieczorek, 2013).

In 2012, using exome sequencing approaches, Lines et al.
(2012) identified heterozygous pathogenic variants in the
EFTUD2 gene as the cause of MFDGA in 12 unrelated
individuals. This study, and subsequent reports, have revealed
a variety of different EFTUD2 variants, including missense
variants (some of which are pathogenic by affecting splicing
of EFTUD2 pre-mRNA), nonsense variants, splice site variants
and frameshifts, all of which are predicted to inactivate one
allele and therefore reduce EFTUD2 expression, supporting
haploinsufficiency as the mechanism of disease (Gordon et al.,
2012; Lines et al., 2012; Luquetti et al., 2013; Voigt et al., 2013;
Lehalle et al., 2014; Sarkar et al., 2015; Smigiel et al., 2015; Huang
et al., 2016; Vincent et al., 2016; Matsuo et al., 2017; Yu et al., 2018;
Lacour et al., 2019; Thomas et al., 2020).

EFTUD2 encodes a GTPase which is essential during multiple
steps of the spliceosomal cycle, and is highly conserved across
eukaryotes from yeast to humans (Fabrizio et al., 1997). Snu114p
(yeast orthologue of EFTUD2) plays critical roles in spliceosomal
remodelling and dynamics during pre-mRNA splicing (Frazer
et al., 2008). Snu114p interacts genetically and physically with
Brr2p and Prp8p (Brenner and Guthrie, 2005; Häcker et al., 2008;
Nguyen T. H. D. et al., 2016). Similarly, in humans, yeast two-
hybrid and in vitro binding assays have demonstrated physical
interactions between EFTUD2, SNRNP200 and PRPF8 proteins
(Figures 1, 2), and these interactions have been confirmed by
recent cryo-EM structures of the human U4/U6.U5 tri-snRNP
(Figure 1; Liu, 2006; Agafonov et al., 2016; Charenton et al.,
2019). Prior to the first catalytic step of splicing, Snu114p is
involved in the dissociation of the U4 and U6 snRNAs by
regulating the activity of Brr2 (Bartels, 2002; Bartels et al., 2003;
Liu, 2006; Small et al., 2006; Agafonov et al., 2016). After the
splicing reactions are complete, Snu114p is also believed to
regulate the dissociation of spliceosomal subunits (Small et al.,
2006). Interestingly, while Snu114p/EFTUD2 interacts with both
Brr2p/SNRNP200 and Prp8p/PRPF8, EFTUD2 is associated with
a craniofacial phenotype while SNRNP200 and PRPF8 both cause
RP (Figure 1). It is remarkable that variants in functionally and
physically interacting proteins of the same spliceosome complex
lead to two very different disease phenotypes.

Several groups have generated zebrafish models in which the
eftud2 gene is disrupted that display severe, disease-relevant
phenotypes, indicating a vital, conserved role for eftud2 in
vertebrate development (Deml et al., 2015; Lei et al., 2017).
In particular, Lei et al. (2017) developed a zebrafish model in
which the eftud2 gene contains a nonsense mutation leading
to reduced eftud2 expression. The authors found increased
apoptosis and mitosis of neural progenitors but little effect
on differentiated neurons in these mutants. RNA-Seq and
functional analyses revealed that there was a transcriptome-wide
splicing deficiency, with increased intron retention and exon
skipping events, leading to inadequate nonsense-mediated decay
(NMD) and activation of p53-dependent apoptosis in this eftud2
mutant zebrafish. The authors proposed that these non-degraded,
aberrant, transcripts imposed particular stresses on neural
progenitors because eftud2 expression is highly concentrated in
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the brain in zebrafish embryos after 36 hours post-fertilisation
(36hpf) (although it was broadly expressed at earlier stages of
development), promoting neural-specific apoptosis. Together,
these findings demonstrated an important involvement of eftud2
in neural progenitor development, which may contribute to the
neurological abnormalities observed in MFDGA patients (Lei
et al., 2017). Beauchamp et al. (2019) recently used in situ
hybridisation to characterise Eftud2 expression during mouse
development and revealed that Eftud2 is expressed throughout
development (as expected for a core spliceosome factor), but with
a particularly enrichment in the developing head and craniofacial
regions. The authors also generated a mouse model with a loss-
of-function exon 2 deletion in Eftud2; however, heterozygous
embryos did not model MFDGA, while homozygous mutant
embryos were not observed post-implantation, confirming a
requirement for Eftud2 expression for survival and viability of
pre-implantation embryos (Beauchamp et al., 2019).

Recently, we generated an EFTUD2 knockdown HEK293
cell line modelling EFTUD2 haploinsufficiency in MFDGA
(Wood et al., 2019). Reduction of EFTUD2 expression in
these cells resulted in decreased proliferation, cell cycle defects
and an increased sensitivity to endoplasmic reticulum (ER)
stress. Furthermore, RNA-Seq analysis revealed widespread mis-
expression and mis-splicing of genes, including transcripts
relevant to embryonic and craniofacial development, with
the mis-spliced genes sharing common cis-acting sequence
properties thought to allow (by an as-yet-unknown mechanism)
increased sensitivity to dysregulated splicing when EFTUD2
expression is lowered. We, and others, have proposed a
mechanism in which an increased burden of mis-spliced pre-
mRNAs in the ER resulting from reduced EFTUD2 expression
ultimately activates p53-dependent apoptosis (Wood et al., 2019;
Beauchamp et al., 2020). Why cells of the developing craniofacial
region are particularly affected remains to be determined,
although the apparent dependence of neural progenitors on
EFTUD2 in animal models is a likely explanation. Indeed,
neural progenitors have very high turnover of pre-mRNAs
and high levels of alternative splicing (similar to the human
retina), indicative of a high reliance on spliceosome function
compared to other tissues (Gurok, 2004; Rosignoli et al., 2010;
Burow et al., 2015; Su et al., 2018; Weyn-Vanhentenryck et al.,
2018). Additionally, neural crest cells (NCCs), the key cells
involved in vertebrate craniofacial development and central to the
aetiology of a number of other similar craniofacial disorders, are
particularly sensitive to activated p53 and are twofold more likely
to undergo apoptosis when exposed to stabilised p53 (Calo et al.,
2018; Merkuri and Fish, 2019). NCCs also express higher levels of
p53 than other cell types during development (Rinon et al., 2011;
Merkuri and Fish, 2019). Taken together, these findings would
corroborate a mechanism for MFDGA involving NCC-specific
apoptosis during development.

In RP it has been suggested that constant production of
mis-folded snRNP proteins over time activates the unfolded
protein response and creates long-lasting stress. Together with
photo-oxidative damage common to retinal cells, this stress
eventually triggers apoptosis leading to retinal degeneration later
in life, especially as photoreceptor cells do not regenerate so

protein defects and cell stresses accumulate over time (Figure 3;
Ru◦žičková and Staněk, 2017). This hypothesis links the potential
mechanisms of RP and MFDGA and the susceptibilities of retinal
cells and NCCs to apoptosis may help to explain why these are
the primary tissues affected by spliceosome protein variants.

TXNL4A in Burn-McKeown Syndrome
(BMKS)
Burn-McKeown syndrome is an MFD in which affected
individuals display a characteristic combination of choanal
atresia, craniofacial anomalies, including cleft lip and/or
palate, lower eyelid coloboma, short palpebral fissures, a
prominent nasal bridge, large protruding ears and sensorineural
deafness (Table 3). Cardiac defects and other extra-craniofacial
phenotypes may also be observed, but intellectual development
is usually normal (except in one reported case thus far) (Table 3;
Burns et al., 1992; Toriello and Higgins, 1999; Wieczorek et al.,
2003, 2014; Lehalle et al., 2015; Goos et al., 2017; Strang-Karlsson
et al., 2017; Narayanan et al., 2020). BMKS is a rare human
disorder – fewer than 20 individuals with the condition have
been reported, including a large consanguineous Alaskan family
who were initially diagnosed with oculo-oto-facial dysplasia
(Hing et al., 2006).

Wieczorek et al. (2014) identified biallelic variants in the U5
snRNP gene TXNL4A as causative in BMKS. Most patients have a
34 bp deletion (known as type 11) in the promoter region of one
allele of TXNL4A in combination with a loss-of-function variant
(microdeletion, splice site, nonsense or frameshift variant) on
the other allele (Wieczorek et al., 2014; Goos et al., 2017). Some
patients are homozygous for a slightly different 34 bp deletion,
the type 21, in the promoter region of TXNL4A (Wieczorek
et al., 2014; Narayanan et al., 2020). The type 11 and type 21
promoter deletions led to a reduction in reporter gene expression
in a dual luciferase assay, with the type 21 causing a more
severe reduction in reporter gene expression (Wieczorek et al.,
2014). This more severe reduction in expression for type 21
might explain why a homozygous type 21 is sufficient to cause
BMKS, while a type 11 must be combined with a null allele.
Nonetheless, it is considered that BMKS is the product of reduced
dosage of TXNL4A in affected individuals, with more severe
genotypes such as homozygous loss-of-function variants being
incompatible with life.

Interestingly, a study by Goos et al. (2017) identified two
cousins with a homozygous TXNL4A type 21 with choanal
atresia and other minor facial anomalies but not the full features
of BMKS, in contrast to the previously described type 21 patients
with BMKS. This finding may indicate variable or incomplete
penetrance. Compensatory genetic variants in TXNL4A or other
genes may abrogate the reduction in TXNL4A expression to some
extent and lead to a milder phenotype.

TXNL4A is one of eight core protein members of the
U5 snRNP (Liu, 2006). The S. cerevisiae orthologue of
TXNL4A, DIB1, encodes a small highly conserved protein
which is absolutely required for pre-mRNA splicing in vivo,
as demonstrated by genetic depletion experiments (Reuter
et al., 1999). In S. cerevisiae, null mutations of DIB1 are
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FIGURE 3 | Unified mechanism for a retinal-specific phenotype caused by variants in core U5 snRNP proteins. Variants affecting the PRPF6, PRPF8, or SNRNP200
proteins result in the mis-splicing of retina-specific pre-mRNAs in the nucleus through defective tri-snRNP assembly and/or defects in U4/U6 snRNA unwinding and
spliceosome activation. Why the splicing of specific pre-mRNAs is affected is currently unknown although the pre-mRNAs may share common physical features.
Furthermore, an accumulation of high levels of mis-folded snRNPs in the nucleus of retinal cells, largely stemming from the increased dependency on the
spliceosome in the retina due to high levels of transcription and translation compared to other tissues, activates the unfolded protein response and generates cell
stress. Over time, the accumulation of cell stress, along with photo-oxidative damage to the retinal cells, triggers apoptosis of retinal cells. In the cytoplasm,
additional non-spliceosomal functions of these U5 snRNP proteins in cilia biogenesis and/or maintenance may be disrupted, affecting ciliated cells of the retina.
These converging mechanisms together result in retinal degeneration and an eye-specific disease phenotype. Figure created with BioRender.com.

lethal, as are deletions of the Schizosaccharomyces pombe
orthologue DIM1. In haploid S. cerevisiae in which DIB1 was
placed under the control of the GAL1 promoter, defective
assembly of the U4/U6.U5 tri-snRNP was observed when
DIB1 expression was blocked, which was predicted to
affect downstream pre-mRNA splicing (Reuter et al., 1999;
Wieczorek et al., 2014). Because DIB1 is highly evolutionarily
conserved from yeast to humans, it is likely that reduced

TXNL4A expression arising from the BMKS-associated
variants in affected patients also leads to defective tri-
snRNP assembly. These defects in spliceosome assembly
could, in turn, lead to the altered splicing of a subset of pre-
mRNAs, the downstream consequence of which is the clinical
manifestation of BMKS.

Recent studies have suggested that Dib1p has an important
role in preventing premature spliceosome activation, and the
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departure of Dib1p and other proteins from the spliceosome
defines the transition from the B to Bact complex during the
splicing cycle (Schreib et al., 2018). It has been proposed that
Dib1p acts as a “placeholder” in the B complex, preventing
formation of certain RNA-RNA interactions, the recruitment
of other proteins and/or required movements to form the Bact

complex. Schreib et al. (2018) generated a range of Dib1p
mutants and found that Dib1p is robust and can tolerate many
mutations, even at positions believed to be critical for folding
stability, possibly through the compact structure of Dib1p.
Dib1p also readily exchanged in splicing extracts, indicating
accessibility of the Dib1p binding site in the spliceosome, despite
Dib1p being a core protein of the U5 snRNP. The authors
did identify two temperature-sensitive mutants which stalled
in vitro splicing reactions before the first catalytic step of
splicing and blocked spliceosome assembly at the B complex.
It was proposed that the temperature-sensitivity resulted from
altered interactions between Dib1p and other spliceosomal
proteins, such as Prp6p and Prp8p, and not changes in Dib1p
conformation (Figures 1, 2; Schreib et al., 2018). This study has
provided insight into how Dib1p functions in the activation of
the spliceosome. Furthermore, a recent cryo-EM structure of
the human U4/U6.U5 tri-snRNP also revealed that TXNL4A is
connected to EFTUD2 via PRPF8 and the U5 snRNA loop I,
and it is hypothesized that EFTUD2 may catalyse the removal
of TXNL4A from the tri-snRNP (Figures 1, 2; Fabrizio et al.,
2009; Agafonov et al., 2016; Wan et al., 2016; Wood et al.,
2019). Cryo-EM structures of the human spliceosome pre-B
and B complexes also revealed that the N-terminus of PRPF6
forms two short α-helices on the surface of TXNL4A, and it is
hypothesized that PRPF6 might block TXNL4A from exiting the
spliceosome prematurely during the splicing cycle (Zhan et al.,
2018). These findings indicate the RP- and craniofacial disorder-
linked U5 snRNP proteins form an intricate network of physical
and functional interactions at the heart of the spliceosome,
making the phenotypic discrepancies all the more intriguing
(Figures 1, 2).

Recently, we discovered that induced pluripotent stem
cells (iPSCs) generated from a BMKS patient have defective
differentiation to NCCs compared to maternal and unrelated
control iPSCs, in particular revealing defects in the epithelial-
to-mesenchymal transition (EMT) (Wood et al., 2020). RNA-Seq
analysis revealed widespread differential gene expression and
differential splicing in patient NCCs, with an enrichment for
genes involved in processes involved in craniofacial development
and the mis-splicing of a gene early in the WNT signalling
pathway required for NCC specification. The mis-spliced genes
shared common sequence features, although how these sequence
properties render a pre-mRNA more vulnerable to mis-splicing
when TXNL4A expression is reduced is unclear. Interestingly,
the BMKS patient NCCs did not display increased apoptosis
compared to maternal and control NCCs, indicating a different
mechanism to that proposed for MFDGA (Wood et al., 2019,
2020). Furthermore, the mis-expressed and mis-spliced pre-
mRNAs in HEK293 EFTUD2 knockdown cells and in BMKS
patient-derived NCCs did not overlap to a great extent, although
again this finding may be due, at least in part, to cell type

specificity, and there were different sequence features associated
with the mis-spliced pre-mRNAs in each disease model (Wood
et al., 2019, 2020). It would be expected that the majority of the
affected transcripts in MFDGA and BMKS would be the same,
resulting in the overlapping clinical features in the two disorders.
Nonetheless, the differences in affected transcripts could explain
the non-identical phenotypes of MFDGA and BMKS, although
for a true comparison between the disorders iPSCs should be
generated from MFDGA patients and differentiated to NCCs as a
disorder-relevant cell type-specific model.

Therefore, similar to the discussion for RP, the variants in
the core U5 snRNP proteins linked to craniofacial disorders
result in changes in pre-mRNA splicing. These defects in pre-
mRNA splicing are presumed to result in the specific disease
phenotype at least in part, by affecting transcripts involved
in the relevant developmental processes. Additionally, global
mis-splicing and cell type-specific apoptosis may also play a
role in the disease mechanism, at least for MFDGA. However,
distinct groups of genes are presumably mis-spliced in RP and
craniofacial disorders which leads to the different phenotypic
features of each disorder. Understanding why specific sequence
features render certain pre-mRNAs more vulnerable to mis-
splicing when different U5 snRNP proteins are mutated or have
reduced expression may be the key to understanding how the
distinct phenotypic differences arise. It is plausible that, as every
pre-mRNA is unique, certain spliceosomal proteins have a more
important role in the splicing of pre-mRNAs with particular
features, making those pre-mRNAs more reliant on proper
functioning or amount of that spliceosomal protein for normal
splicing. However, there is still much work needed to unravel
this hypothesis.

THE U5 SNRNP AND CANCER

While variants leading to altered function and/or expression
of U5 snRNP proteins are linked to retinitis pigmentosa and
craniofacial disorders, links between the U5 snRNP and human
cancers have also emerged. Alterations in the splicing process
has been implicated in a large number of cancers, and cancer
cells exploit RNA splicing to promote tumorigenesis. Aberrant
alternative splicing is now considered a hallmark of cancer as
cells move through the oncogenic process. Cells gain proliferative
ability, become angiogenic, invasive and antiapoptotic, achieve
growth factor independence, display altered metabolism to
overcome hypoxia, evade the immune system, undergo an
epithelial-to-mesenchymal transition and become metastatic as
they become oncogenic, all of which require a switch in pre-
mRNA splicing (Hanahan and Weinberg, 2000, 2011; Oltean and
Bates, 2014).

Recurrent somatic mutations in spliceosome proteins and/or
dysregulated expression of RNA binding proteins involved
in splicing contribute to mis-splicing of transcripts which
promote cancer growth and progression (Wang and Aifantis,
2020). For example, frequent heterozygous somatic missense
mutations in SRSF2, SF3B1, ZRSR2 and U2AF1 have been
identified in many cancers, especially in certain subtypes of
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leukaemia (Wang et al., 2011; Yoshida et al., 2011; Graubert
et al., 2012; Yoshida and Ogawa, 2014; Anczuków and
Krainer, 2016; Wang and Aifantis, 2020). These splicing factor
mutations lead to changes in RNA splicing patterns, including
global dysregulation of splicing, mis-splicing of subsets of
genes involved in critical cell signalling pathways involved in
tumorigenesis, and the promotion of tumorigenic isoforms of
specific pre-mRNAs such as BRD9 (promotes tumours growth)
and IRAK4 (hyperactivation of NF-κB signalling) (Inoue et al.,
2019; Visconte et al., 2019; Wang and Aifantis, 2020). Cancer
cells can also have mis-expression of RNA binding proteins,
resulting in dysfunctional splicing patterns and tumour-specific
dependencies (Wang and Aifantis, 2020).

Initially, the spliceosome proteins found to be commonly
mutated in human cancers were all associated with the U1
and U2 snRNPs. However, somatic mutations in PRPF8 have
now been linked to myeloid neoplasms, while altered expression
levels of several other U5 snRNP proteins (PRPF6, EFTUD2,
SNRNP40, and DDX23) have been associated with human cancer
(Table 4). PRPF6, PRPF8, and EFTUD2 have all been associated
with genetic disorders (RP and MFDGA, respectively), and
in all cases it is proposed that the causative variants result
in the mis-splicing of particular pre-mRNAs relevant for the
disorder phenotype. However, somatic mutations and/or changes
in expression of these same spliceosome proteins in cancers
are also proposed to result in the dysregulation of splicing
of pre-mRNAs which promote tumorigenesis. How and why
different mutations and/or different expression levels of the
same gene can result in such contrasting phenotypes as retinal
or craniofacial defects and cancer is an enigma. In particular,
precisely how and why different subsets of genes appear to be
mis-spliced in each case is unclear. It may be that different types
of variants and/or variants affecting different functional domains
of the same spliceosomal protein alter the interaction with
different classes of pre-mRNAs, depending on the characteristics
of the specific pre-mRNAs, but more evidence is required to
support this hypothesis. Nonetheless, these findings indicate that
human cells are exquisitely sensitive to the expression level and
function of core U5 snRNP factors, and any deviation can have
major consequences in terms of specific rare disease phenotypes
and/or cancer. The direction or magnitude of the deviation
likely plays an imperative role in governing the phenotypic
outcome in patients.

PRPF8
In addition to the role of PRPF8 in RP, recurrent somatic
mutations and hemizygous deletions have been identified
in PRPF8 in myeloid neoplasms including myelodysplastic
syndrome (Table 4) (MDS). Kurtovic-Kozaric et al. (2015)
screened a large cohort of patients with MDS and related
conditions to identify a number of somatic missense and
somatic nonsense mutations in PRPF8, as well as numerous
cases containing the deletion of one copy of the PRPF8
locus exhibiting PRPF8 haploinsufficiency (Makishima et al.,
2012; Kurtovic-Kozaric et al., 2015). The PRPF8 missense
mutations are distributed throughout the length of the gene,
including the Jab1/MPN domain, and were most frequently

identified in primary and secondary acute myeloid leukaemia
(AML), suggesting an association with more aggressive cancer
phenotypes compared to low-risk MDS. PRPF8 mutations
resulted in increased cellular proliferation, and PRPF8 mutations
and deletions correlated with the presence of ringed sideroblasts
(RS) and pseudo Pelger-Huet anomaly (PHA) (Kurtovic-Kozaric
et al., 2015). The authors suggested that the identified PRPF8
mutations alter the internal dynamics of the spliceosome, and
revealed that splicing patterns and splice site recognition were
altered in both yeast and human cells carrying the MDS-
associated PRPF8 mutations (Kurtovic-Kozaric et al., 2015).
Gene expression patterns were also altered in PRPF8 mutated
and deleted samples, with many of the differentially expressed
genes and mis-spliced genes associated with mitochondrial
function and haematopoietic differentiation (Kurtovic-Kozaric
et al., 2015). More recent work has found that PRPF8 missense
mutations in MDS patients are generally secondary mutations,
and often co-occurred with other more common cancer splicing
factor mutations (SRSF2, SF3B1, LUC7L2, U2AF1, and ZRSR2)
(Adema et al., 2017).

Precisely how and why these PRPF8 mutations impact the
overall function of PRPF8 protein resulting in neomorphic
splicing activity and leading to the malignant phenotype of
aggressive myeloid malignancies with increased RS is not yet
understood (Ru◦žičková and Staněk, 2017). It seems likely that
the mis-expression and mis-splicing of genes involved in iron
accumulation in the mitochondria and abnormal haematopoiesis
has a central role in the cancer phenotype (Kurtovic-Kozaric
et al., 2015). Furthermore, how different missense changes can
cause such a dramatically different phenotype to other missense
changes in the same protein (cancer versus retinitis pigmentosa)
is not known. While both PRPF8 mutations in MDS and PRPF8
variants in RP alter RNA splicing and change splicing patterns,
why different groups of genes (presumably with different physical
properties) are specifically affected by the different missense
mutations in the same protein and how these result in the very
different disease presentations is not known. One hypothesis
is the cancer-associated variants affect the entire length of the
PRPF8 protein and so may affect different functions and/or
interactions of PRPF8 than the RP-linked PRPF8 variants which
are only found in the Jab1/MPN domain (Kurtovic-Kozaric et al.,
2015; Ru◦žičková and Staněk, 2017). However, mutations affecting
the Jab1/MPN domain have been identified in some cancers as
well, so this explanation cannot fully account for the different
disease presentations (Kurtovic-Kozaric et al., 2015). Even within
the Jab1/MPN domain, different amino acids may be involved
in different functions so the exact identity of the altered residue
likely has an important role in disease outcome.

PRPF6
In addition to its role in RP, overexpression or amplification
of PRPF6 is a common oncogenic driver of proliferation in
human primary and metastatic colon cancer (Table 4; Adler et al.,
2014; Lokody, 2014). Knockdown of PRPF6 expression in human
cancer cell lines with increased levels of PRPF6 inhibited cell
growth in vitro, and inducible knockdown of PRPF6 in xenograft
tumours led to tumour shrinkage only in tumour models with
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TABLE 4 | U5 snRNP proteins linked to human cancer via somatic mutation or dysregulation of expression, and their association with other disorders.

U5 snRNP protein Cancer association References Genetic disorder association

PRPF6 Overexpression/amplification in colon cancer Adler et al., 2014 RP

PRPF8 Recurrent somatic mutations in myeloid neoplasms Kurtovic-Kozaric et al., 2015 RP

EFTUD2 Overexpression in colitis-associated cancer Lv et al., 2019 MFDGA

SNRNP40 High inter-cell expression variability in breast cancer cells, low
expression associated with metastatic outcomes

Nguyen A. et al., 2016 None

DDX23 Overexpression in gliomas Yin et al., 2015 None

RP, retinitis pigmentosa, MFDGA, mandibulofacial dysostosis Guion-Almeida type.

high PRPF6 expression (Adler et al., 2014). Reduced PRPF6 led to
intron retention of a relatively small subset of genes, including an
oncogenic long isoform of the ZAK kinase (ZAK-LF) (Adler et al.,
2014). ZAK-LF levels correlated with PRPF6 expression in colon
cancer cells, and PRPF6 was required for the alternative splicing
of ZAK to produce ZAK-LF. Expression of ZAK-LF transformed
immortalised murine fibroblasts and induced xenograft tumour
formation in immunodeficient mice, while depletion of ZAK-LF
reduced the growth of PRPF6-overexpressing colon cancer cells
in vitro and in xenografts (Adler et al., 2014; Lokody, 2014).

From this study, it was suggested that overexpression of
PRPF6 has an important role in driving colon cancer, via
the altered splicing of gene isoforms related to growth and
proliferation (Adler et al., 2014). Why different groups of
genes may be differentially spliced from PRPF6 overexpression
compared to RP missense variants in PRPF6, remains unclear.
Characterising the sequence properties of the mis-spliced RNAs
in each case may help to begin unravelling this difference.

SNRNP40
The function of SNRNP40 in the U5 snRNP complex during
pre-mRNA splicing is not well-understood. In 2016, Nguyen
et al., identified clonal human breast cancer subpopulations with
different levels of morphological and molecular diversity (which
are associated with metastatic colonisation and chemotherapeutic
survival), and identified genes with high inter-cell transcript
expression variability (Nguyen A. et al., 2016). The authors found
high variability in genes encoding splicing machinery proteins,
including SNRNP40 (Table 4). The authors engineered cells
with variable SNRNP40 expression and revealed that SNRNP40
depletion promoted systemic metastasis, with increased levels of
unspliced pre-mRNAs in cells with low SNRNP40 expression.
Clinically, low SNRNP40 expression was found associated with
metastatic outcomes. It was proposed that deregulation of
splicing factors, including SNRNP40, may amplify alterations
of gene regulatory and expression networks and might lead to
molecular and phenotypic diversity associated with metastasis
(Nguyen A. et al., 2016). However, the underlying mechanisms
of precisely how variable expression of splicing factors, including
SNRNP40, promote metastatic progression and the overall
contribution to cancer progression is not understood.

EFTUD2
While reduced expression of EFTUD2 is associated with
MFDGA, increased expression of EFTUD2 has been linked to
human colitis-associated cancer (CAC) (Table 4). This contrast

in phenotypes indicates that human cells are very sensitive
to alterations in EFTUD2 expression levels. EFTUD2 plays a
role in preventing hepatitis C virus (HCV) by upregulating
expression via splicing of interferon-stimulated genes (ISGs)
such as RIG-I and MDA5, suggesting EFTUD2 is a novel
innate immune system regulator (Zhu et al., 2015). More
recently, in mouse models of CAC, Eftud2 was overexpressed
in colonic tissues and infiltrating macrophages (Lv et al.,
2019). Myeloid-specific knockout of Eftud2 suppressed chronic
intestinal inflammation and tumour development by decreasing
inflammatory cytokine and tumorigenic factor production via
compromised activation of NF-κB signalling. This impaired
signalling activation resulted from changes in Eftud2-mediated
alternative splicing of components of the NF-κB pathway in
macrophages. The authors concluded that overexpression of
Eftud2 is involved in the pathogenesis of CAC by modulating
the inflammatory response of macrophages, highlighting the
link between inflammation, cancer and alternative splicing in
the innate immune system. Furthermore, this work emphasises
how excessive EFTUD2 expression can also lead to distinct
pathological consequences compared to reduced EFTUD2
expression in MFDGA. Why the processing and/or expression
of different groups of genes is affected when EFTUD2 is
overexpressed, resulting in such a different phenotype, compared
to EFTUD2 knockdown cells modelling MFDGA remains to
be determined (Wood et al., 2019). It is possible that different
levels of EFTUD2 result in the formation of different splicing
complexes and/or that more or less EFTUD2 protein allows either
faster or slower regulation of SNRNP200, which in turn could
affect the splicing of different pre-mRNAs.

DDX23
DDX23 is an 820 amino acid DEAD-box RNA helicase protein
of the U5 snRNP which is required for the formation of the
spliceosomal B complex after its phosphorylation by SRPK2
(Mathew et al., 2008). However, the exact role of DDX23 in the
spliceosome is not well-understood. Yin et al. (2015) identified
DDX23 overexpression in glioma tissues, with high expression of
DDX23 correlating with poor glioma patient survival (Table 4).
The authors found that knockdown of DDX23 in vitro and in vivo
suppressed glioma cell proliferation and invasion. Interestingly,
the DDX23 protein promoted the post-transcriptional biogenesis
of microRNA mir-21 via interaction with the Drosha complex
(Yin et al., 2015). miR-21 upregulation was previously known to
be strongly associated with proliferation, invasion and radiation
resistance of glioma cells (Kwak et al., 2011; Ha and Kim, 2014).
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Mutagenesis demonstrated that the helicase activity of DDX23
was essential for processing of mir-21. Furthermore, inhibiting
DDX23 activity chemically with the RNA helicase inhibitor
ivermectin decreased miR-21 levels and blocked invasion and
cell proliferation in glioma cell lines and decreased glioma
growth in mouse xenografts (Yin et al., 2015). Thus, unlike
other U5 proteins associated with cancer, the key role of DDX23
upregulation in glioma progression does not appear to stem from
specific alterations in pre-mRNA splicing, but rather through
additional functions of the protein, in this case microRNA
processing. It is possible that additional, non-spliceosomal and
as-yet-unknown functions of the other U5 snRNP proteins may
play a role in the pathogenesis of cancer, retinitis pigmentosa or
craniofacial disorders.

Interestingly, the phosphorylation of DDX23 by SPRK2
following pausing of RNA polymerase II during transcription
plays an important role in suppressing R-loops, nucleic acid
structures generated during transcription that can lead to
genomic instability (Skourti-Stathaki and Proudfoot, 2014;
Sollier and Cimprich, 2015). The absence of either SPRK2 or
DDX23 leads to an accumulation of R-loops resulting in massive
genomic instability, with the role of DDX23 in suppressing
R-loops not requiring a functional U5 snRNP (Achsel et al.,
1998; Makarov et al., 2000; Grainger and Beggs, 2005; Agafonov
et al., 2016; Sridhara et al., 2017). DDX23 mutations and
homozygous deletions have been identified in several different
cancers, including adenoid cystic carcinoma (ACC), implicating
DDX23 loss as a potential source of genomic instability which
may have an important role in cancer development (Sridhara
et al., 2017). Again, this link between DDX23 and cancer is not
related to its function in the spliceosome and argues that extra-
spliceosomal functions of certain U5 proteins could potentially
play a role in their pathogenesis.

DISCUSSION

Here we have reviewed the association between the U5 snRNP
and human disease. In particular, the tissue-specific and distinct
phenotypic consequences of genetic variants in different, but
interacting, proteins of the same spliceosomal complex – RP
and craniofacial disorders – remains arguably the biggest enigma
in this field. Furthermore, the association of certain U5 snRNP
proteins with cancer, including proteins also linked to RP or
craniofacial defects, introduces an additional layer of complexity
as mutations in and/or altered expression levels of the same
protein can have very different phenotypic outcomes.

For both RP and the craniofacial disorders MFDGA and
BMKS, much evidence from disease modelling supports the mis-
splicing of distinct subsets of genes which may be involved
in retinal function or craniofacial development, respectively.
It may be that at least some of these mis-spliced genes are
predominantly or only expressed in the retina or NCCs and are
vitally important in development of that tissue, meaning these
tissues are the more sensitive to mutation in the U5 snRNP and
most affected phenotypically. The pathways affected by the mis-
splicing events may also have a greater role in the development of

certain tissues than others. Retina-specific mis-spliced transcripts
have not yet been identified in PRPF6, PRPF8, and SNRNP200-
associated RP, although data from PRPF31-defective RP patient
retinal pigment epithelium (RPE) and retinal organoids has
identified retinal-specific mis-splicing events (Ru◦žičková and
Staněk, 2017; Buskin et al., 2018). In patient-derived NCCs
modelling BMKS, defects in the WNT signalling pathway were
observed, which was attributed to the mis-splicing of a key WNT
pathway gene (Wood et al., 2020). WNT signalling is critical
in NCC specification in vitro and in vivo, and while the WNT
pathway is also involved in the development of other tissue
types, it was proposed that WNT signalling is proportionally
more important for NCC development than in other tissues
and/or the branch of the WNT pathway particularly affected by
the mis-splicing event is more active in developing NCCs than
other tissue types. Both the retina and developing craniofacial
tissue appear to have a greater dependence on spliceosomal
function than other tissues, and are thus more likely to be
affected by spliceosomal dysfunction (Gurok, 2004; Rosignoli
et al., 2010; Cao et al., 2011; Tanackovic et al., 2011b; Burow
et al., 2015; Su et al., 2018; Weyn-Vanhentenryck et al., 2018).
However, as the retinal degeneration and craniofacial defects are
completely distinct, at least for U5 snRNP variants, it argues that a
simple increased requirement for the spliceosome cannot be the
complete answer for the phenotypic tissue specificity. However,
there are further clues. For example, the proposed mechanism
for MFDGA involving accumulation of mis-spliced pre-mRNAs
and mis-folded proteins triggering ER stress and apoptosis,
which particularly affects the activated p53 sensitive NCCs, is an
intriguing explanation for tissue-specificity (Wood et al., 2019;
Beauchamp et al., 2020). However, there is no evidence of this
mechanism also holding true for BMKS at present.

A further hypothesis for tissue specificity of disorders
arising from core U5 snRNP variants can be derived from
ribosomopathies. Disorders including Diamond-Blackfan
anaemia, Shwachman-Diamond syndrome and isolated
congenital asplenia are all tissue-specific disorders caused
by haploinsufficiency of genes involved in ribosome synthesis
or function (Draptchinskaia et al., 1999; Boocock et al., 2003;
Bolze et al., 2013). It has been proposed that the expression
and/or activity of various ribosome proteins is not the same in
all cell types, meaning that different ribosome proteins may be
more or less important in different tissue types (Xue and Barna,
2012; McCann and Baserga, 2013; Lehalle et al., 2015). The same
may be true for the spliceosome, with cell type specificity of
spliceosome function. For example, it is possible that PRPF6,
PRPF8, and SNRNP200 are more highly expressed than other
spliceosomal proteins in the retina and play a more important
role in splicing in photoreceptors, while EFTUD2 and TXNL4A
are relatively more important in NCCs. Profiling the expression
levels of the individual U5 snRNP proteins in different tissues
at different stages of development would allow an investigation
of the phenomenon of tissue-specific spliceosomes. That said,
as core spliceosome factors the roles of each of these proteins
in the spliceosome does seem to be universally important – for
example, unwinding of the U4/U6 snRNAs (by SNRNP200)
would be considered to be an essential step in splicing and
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no more or less important for one pre-mRNA than another.
However, the speed of U4/U6 snRNA unwinding may influence
splicing decisions. Slow unwinding and activation of a particular
spliceosome may favour one splicing pattern over another. If a
particular exon is usually spliced out rapidly after it has been
transcribed, slowing down unwinding and delaying spliceosome
activation may allow time for another exon to be transcribed and
spliced instead, similar to the effect of transcriptional speed on
alternative splicing patterns (Alpert et al., 2017; Pai et al., 2017;
Tellier et al., 2020). Therefore, subtle differences in ubiquitous
reactions in the splicing cycle could lead to differential splicing
choices. It is interesting to note that causative variants in the gene
inosine monophosphate dehydrogenase 1 (IMPDH1), which
controls the rate-limiting step in GTP production, are also linked
to autosomal dominant retinitis pigmentosa (Bowne et al., 2002;
Aherne et al., 2005; Mortimer and Hedstrom, 2005; Spellicy
et al., 2010; Bennett et al., 2020). Since EFTUD2 is a GTPase,
a common connection could be GTP availability in the retina,
although this hypothesis does not account for why variants in
EFTUD2 do not manifest in a retinal phenotype.

The evidence suggests that the subsets of pre-mRNAs
which are mis-spliced in RP, MFDGA and BMKS have
different conserved sequence properties which makes them more
vulnerable to mis-splicing when the corresponding splicing factor
genes are mutated or mis-expressed (Wickramasinghe et al.,
2015; Lei et al., 2017; Wood et al., 2019, 2020). Why particular
sequence properties make certain pre-mRNAs more vulnerable to
alterations in a specific U5 snRNP factor are not clear, but may be
the key to unravelling why only certain pre-mRNAs are affected.
For MFDGA, it has been suggested that the sequence features
of certain exons make them more difficult to splice (less easily
recognised by the spliceosome), and reducing the expression of
EFTUD2 tips the balance and results in aberrant exon skipping
(Wood et al., 2019). A similar mechanism is likely true for BMKS
and RP, but again this raises the question of what links certain
pre-mRNA cis features to alterations in specific U5 proteins.

Finally, the links between the U5 snRNP proteins and cancer
highlights pleiotropic phenotypic consequences arising from
different mutations in, and/or different expression levels of, the
same U5 snRNP component. PRPF8 is the only U5 snRNP
protein where recurrent somatic mutations have been linked
to cancer, joining the ranks of spliceosome factors such as
U2AF1 and SF3B1 as frequently mutated in certain types of
human cancers, in particular leukemias (Grosso et al., 2008;
Yoshida and Ogawa, 2014; Visconte et al., 2019). Why and
how different groups of pre-mRNAs are affected by different
missense mutations in the same protein in RP and cancer is
not at all understood. It is true that PRPF8 has multiple roles
in the splicing cycle, including assembly of the tri-snRNP and
regulation of SNRNP200 activity (Grainger and Beggs, 2005).
One can postulate that RP-associated variants and cancer-linked
somatic mutations affect different aspects of PRPF8 function,
although RP PRPF8 variants can affect both spliceosome
assembly and SNRNP200 regulation (Ru◦žičková and Staněk,
2017). Similarly, while haploinsufficiency of EFTUD2 causes
MFDGA, overexpression of EFTUD2 is linked to CAC, and it is
again thought that different groups of pre-mRNAs are affected

in each case (Lines et al., 2012; Lv et al., 2019). It appears that
the spliceosome is exquisitely sensitive to the expression levels
and function of EFTUD2 and other U5 snRNP proteins, and
tipping the balance in either direction can disrupt homeostasis
and have pathogenic consequences. Finally, it is interesting that
the link between DDX23 and glioma progression stems from a
non-spliceosomal role of the protein (Yin et al., 2015). Similarly,
the links between DDX23 and genomic instability related to its
role in suppressing R-loops is not connected to its function in
splicing (Sridhara et al., 2017). It may be worth investigating
whether any of the other U5 snRNP proteins associated to human
disease or cancer have roles outside of their canonical function
in the spliceosome which are disrupted by pathogenic variants
and could link to the observed phenotypes. Intriguingly, there
is growing evidence suggesting that spliceosome proteins have
a role in cilia function (Wheway et al., 2015; Kim et al., 2016;
Johnson and Malicki, 2019). The photoreceptor outer segment is
a specialized primary cilium while the retinal pigment epithelium
is a ciliated monolayer epithelium, and variants in a number
of ciliary proteins, including RPGR, cause retinitis pigmentosa
(Ghosh et al., 2009; Parmeggiani et al., 2011; Wheway et al.,
2014). Interestingly, in retinal organoids derived from PRPF31-
defective RP patients, there was an enrichment for differentially
expressed genes related to the ciliary membrane and the primary
cilium, while fibroblasts from the same PRPF31 RP patients had
significant mis-splicing of genes involved in ciliogenesis (Buskin
et al., 2018). Both PRPF6 and PRPF8 have been identified as genes
which may be important in the biogenesis and/or maintenance
of the primary cilium in siRNA screens (Wheway et al., 2015).
Furthermore PRPF6, PRPF8 and SNRNP200 all localize to
the ciliary basal body or the centrosome, outside the nucleus,
indicating additional cytoplasmic roles for these U5 snRNP
proteins in cilia biology unrelated to their functions in splicing
(Johnson and Malicki, 2019). Therefore, defects in the formation
or maintenance of the cilia in the eye caused by the variants in
the core spliceosome factors could, at least in part, link genotype
to phenotype. Perhaps cilial defects in combination with the mis-
splicing of retinal-specific pre-mRNAs and an overall increased
burden on spliceosomal activity in the retina together result
in a tissue-specific phenotype (Figure 3). Furthermore, links
have been identified between components of the spliceosome,
including the U5 snRNP components EFTUD2 and SNRNP200,
with cohesin (Kim et al., 2019). The depletion of splicing
factors including EFTUD2 and SNRNP200 in HeLa cells resulted
in mitotic arrest, indicating the interaction of cohesin with
these splicing factors is required for mitotic progression (Kim
et al., 2019). The link between U5 snRNP components, cohesin
and the cell cycle may be important in cancer development
and progression.

Taken together, while we are beginning to understand the
molecular and cellular consequences of variants in the U5 snRNP
proteins and how they relate to human disease and cancer,
further research is required to understand the tissue specificity
of these disorders, the distinct phenotypes arising from variants
in interacting proteins of the same spliceosome complex, and the
pleiotropic phenotypes arising from different changes in the same
U5 snRNP factor.
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