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Abstract

A two-stage decomposition approach based on a novel multi-agent system (MAS) is proposed

for the distributed resource constrained multi-project scheduling problem (DRCMPSP). In

stage one, from the point of view of each local project manager, a forward-backward hybrid

genetic algorithm (FBHGA) is developed to generate an initial local schedule with the objective

of minimizing individual project makespan. In stage two, from the global perspective of project

management office, a sequential game-based negotiation mechanism is employed to eliminate

global resource conflicts with the objective of minimizing total tardiness cost (TTC). The pro-

posed approach is tested on 140 benchmark problem instances. According to the computa-

tional results, high-quality local project schedules can be obtained by FBHGA in stage one.

Furthermore, it is observed that our method is capable of dealing with various complex multi-

project instances under different degrees of resource conflicts in reasonable CPU running

time. Compared to the existing decentralized methods for DRCMPSP, the proposed approach

with sequential game-based negotiation mechanism shows the superiority in producing multi-

project schedules with lower TTC, especially for large-size and strong conflicting instances.

Introduction

The resource-constrained multi-project scheduling problem (RCMPSP), as a generalization of

the traditional resource-constrained project scheduling problem (RCPSP) [1], is more perva-

sive in today’s enterprise project management. According to Turner [2], at least 90% of proj-

ects are executed in a multi-project environment. Indeed, more and more companies are likely

to manage more than one project simultaneously for the purpose of lower management cost

and shorter completion time. As mentioned by Payne [3], managing multiple projects at the

same time could bring tremendous benefits for the business firms. Moreover, the current

multi-project context is becoming more and more distributed with the speedy development of

Internet technology and globalization [4], which means that the multiple projects could be

located at different places and each project is managed by an autonomous decision maker (i.e.,

local project manager). In this circumstance, local project managers are responsible for sched-

uling all activities within their respective projects independently. Consequently, the distributed
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resource constrained multi-project scheduling problem (DRCMPSP) has been put forward

formally [5].

A great deal of multi-project scheduling problems in service operations and manufacturing

are managed and run in a distributed way. Examples can be commonly found in maintenance

services [6,7] and supply chain management [8–10]. How to determine the right location for

shared storage facilities and allocate the limited global resources to each project is vital for

achieving the success of multi-project scheduling with resource transfers [11]. In the past,

RCMPSP is mainly solved by centralized methods, which focus on allocating resources and

scheduling activities for all projects by only one decision maker in an integrated way [12,13].

Specifically, multiple projects are combined into a single mega-project with two dummy activi-

ties which represent the start and end of all the projects respectively. Compared to the inte-

grated means, DRCMPSP dedicates to making decisions in a distributed manner. To be more

specific, all projects running parallel in different sites are performed by different decision mak-

ers i.e., the local project managers. Given the distributed nature, DRCMPSP involves the coor-

dination of shared global resources among multiple projects. Owing to the assumption of

asymmetric distribution of information in DRCMPSP, multi-agent systems (MAS) are used to

make distributed decisions [14]. A MAS represents a decentralized system including a set of

independent, autonomous and self-interested agents [15]. It is prevalent that companies adopt

the dual level management structure for multi-project scheduling: the project management

office (i.e., senior manager) who controls the resource allocation and coordination among the

rival projects, and the project managers who are responsible for the specific affairs of each

project such as scheduling [16]. Therefore, agents playing the roles of senior manager and

project manager should be considered in MAS. Furthermore, the coordination mechanism for

shared resources allocation is the key to solving DRCMPSP.

In this paper, we employ a two-stage decomposition approach based on a new MAS for

DRCMPSP. It corresponds to the dual level managerial mechanism in actual enterprises. In

stage one, each project manager is devoted to completing all tasks as soon as possible. In stage

two, the senior manager acts as a coordinator agent and is mainly responsible for eliminating

the resource conflicts among competing projects by a novel sequential game-based negotiation

mechanism. Taking into account the delay penalty such as customer complaints and reputa-

tion loss, a senior manager usually attaches more importance to the total tardiness cost (TTC)

rather than the most regular and popular measure of time performance (e.g. average project

delay (APD)) in practical multi-project management scenarios [17]. Therefore, we develop the

forward-backward hybrid genetic algorithm (FBHGA) to generate an initial local schedule

with the goal of minimizing project makespan for each project manager in stage one, and

design a sequential game-based negotiation mechanism to coordinate the global resources

allocation for the senior manager in stage two where the best subgame perfect Nash equilib-

rium is determined with minimized TTC after several iterations. In order to test the proposed

approach, we implement computational experiments on the instances from MPSPLIB problem

library for DRCMPSP [18]. The results given by FBHGA in stage one are compared to the

optimal solutions given by the branch-and-bound (B&B) algorithm embedded in RESCON

[19]. To illustrate the strength of the two-stage decomposition approach with sequential game-

based negotiation mechanism, we also compare our approach with two state-of-the-art decen-

tralized methods with respect to the objective of minimizing TTC.

The remainder of this paper is structured as follows: an overview of the previous work on

DRCMPSP is provided in Section 2, followed by a detailed description of the problem dis-

cussed in this paper (Section 3). In Section 4, we introduce the agent-based two-stage decom-

position approach. Section 5 demonstrates an illustrative example. Section 6 explores the
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experiments and analyzes the computational results. Concluding remarks are drawn in the last

Section 7.

Literature review

Resource-constrained project scheduling problem (RCPSP), as one of the most complicated

problems of operation research, has gained significant importance in the past few years. It is a

classical and well-known standard problem in project management [20]. As a generalization of

the job-shop scheduling problem, it is NP-hard in the strong sense [21]. Demeulemeester &

Herroelen [22] proposed a depth-first branch-and-bound algorithm to solve the exact optimal

solutions for smaller instances. A large number of heuristic and meta-heuristic procedures

have been developed to obtain the approximate optimal solutions for large-scale problems.

Kolisch [23] presented the priority rule-based approached for RCPSP and evaluated the per-

formance of different priority rules. Lova & Tormos [12] analyzed the effect of serial and paral-

lel schedule generation schemes with five priority rules for single project and multi-project

instances, respectively. According to the computational study, the parallel scheduling genera-

tion scheme was superior for multi-project scheduling problem. Gonçalvesabc [24] and Men-

des et al. [25] employed a genetic algorithm (GA) for RCPSP where the chromosome

representation was based on the random keys. Moreover, the simulated annealing (SA) [26],

tabu search (TS) [27] and ant colony optimization (ACO) [28] algorithms were also widely

used for RCPSP. Hartman & Kolisch [29] summarized and categorized a large of heuristics in

the RCPSP literature. They also evaluated the performance of several state-of-the-art algo-

rithms and examined the impact of problem characteristics on it. The experimental investiga-

tion was updated a few years later [30].

While a large body of public literature addresses RCPSP, less importance has been attached

to the multiple projects cases. It goes without saying that the great majority of papers on multi-

project scheduling problem concentrate on allocating shared resources in an integrated man-

ner where the multiple projects are controlled by only one manager [12,31,32]. In light of the

distributed environment of multi-project management in the real world, studies on DRCM

PSP have attracted increasing attention in the last decade. Traditional approaches to RCMPSP

are no longer applicable to DRCMPSP owing to the informational decentralization. MAS is

generally used to formulate DRCMPSP. Moreover, different coordination mechanisms for

global resources allocation will exert a significant effect on the quality of solutions.

Some of the existing studies are committed to market-based mechanisms. Lee et al. [4] put

forward a dynamic economy model, where a market-based control mechanism was developed

to allocate limited shared resources for each required project to minimize APD. Confessore

et al. [5] formally distinguished between local resources and global resources. An iterative

combinatorial auction mechanism was proposed to address the global resource conflicts.

Unfortunately, above-stated approaches were only suitable for small problems with the

assumption that all global resources were single-unit. Araúzo et al. [33] presented a combina-

torial auction mechanism to allocate the limited resources for project portfolio. Only global

resources were considered. Adhau et al. [34] proposed a multi-unit combinatorial auction-

based negotiation approach (DMAS/ASN). To minimize APD, three cost elements were con-

sidered in calculating the bidders’ utility. The authors further extended the above model with

the assumption that the cost and time in transferring global resources could not be ignored

[35]. Song et al. [36] resolved the DRCMPSP based on the multi-unit combinatorial auction

method and the global resource conflicts were coordinated on project level instead of activity

level. In addition to the above-mentioned market-based mechanisms to address DRCMPSP,

negotiation based approaches have also gained tremendous popularity. Homberger [37]
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proposed a MAS-based restart evolution strategy to coordinate the allocation of global

resources. Several scheduling agents with a mediator agent were contained in the MAS. On the

basis of this work, the author presented a generic negotiation-based mechanism to solve all the

problem instances in MPSPLIB problem library with the goal of minimizing APD [18]. Wau-

ters et al. [38] introduced a learning-based game theoretic method depending on a simple

sequence learning game played by multiple project agents and coordinated by a mediator

agent. The minimization of APD and total makespan (TMS) were considered as the objectives.

Zheng et al. [39] proposed a critical chain based elimination mechanism to resolve resource

conflicts by considering both resource constraints and precedence constraints. The DMAS/

EM algorithm was developed to obtain low APD of solutions even for large-size problems.

The above literature review shows that much more attention has been paid to solve the

DRCMPSP with the objective of minimizing APD. Unfortunately, according to Vanhoucke

et al. [17], most enterprises often faced the tardiness penalties as a result of project completion

delays when they hiring subcontractors, research teams and maintenance crews. From a more

realistic point of view, the senior manager would prefer to achieve a global TTC objective of

multiple projects rather than a uniformity local delay goal of each project [40]. Since each proj-

ect has different delay penalties, the multi-project schedule that minimizes APD does not

ensure a minimized TTC. Each project manager is more concerned about completing the proj-

ect as early as possible while the senior manager takes the TTC of the multi-project schedule as

his primary consideration. Rather than aiming at the objective of minimizing APD as in the lit-

erature for DRCMPSP, this paper concentrates on developing a MAS-based approach to mini-

mize TTC, which fulfills such gaps in existing works. In addition, a group of project managers

plays sequential games to compete for global resources and eliminate conflicts. The sequential

game theoretic approach has gained increasing popularity in optimizing resource allocation in

grid environment [41,42] and integrating production and maintenance in the permutation

flow shop sequencing problem [43]. We propose a two-stage decomposition approach to

DRCMPSP by applying a new MAS and a sequential game-based negotiation mechanism.

Problem description

In DRCMPSP, two types of renewable resources need to be distinguished which are required

by each project. The local resources are only available to the corresponding project while the

global resources are always shared by all projects. There is no relationship among projects

except the shared global resources. Each individual project manager makes scheduling deci-

sion independently. The objective of the DRCMPSP proposed in this paper is to determine a

multi-project schedule that minimizes TTC, such that the precedence constraints and local/

global resource constraints are all satisfied. The symbols involved in this paper are defined as

follows:

• There are m (i = 1, 2, . . ., m) projects to be scheduled simultaneously. Each project i has an

arrival date adi�0 representing the earliest start time [44]. For each project i, the unit tardi-

ness cost tci�0 is given [45].

• Each project i consists of Ji (j = 1, 2, . . ., Ji) non-preemptable activities. aij stands for the jth
activity of project i. Two dummy activities ai0 and aiðJiþ1Þ are added to each project i to repre-

sent the start and end time of the project, respectively. Each aij has a deterministic duration

dij.

• There are s (g = 1, 2, . . ., s) kinds of global resources shared by m projects. Global resource g
is available with constant capacity RRg. In addition, there are k (l = 1, 2, . . ., k) types of local

resources which only occupied by project i. Each local resource l has a constant capacity of
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Ril. Every aij requires rlij units of local resources l and rrgij units of global resources g during its

whole duration dij. Without loss of generality, the durations and local/global resource

requirements of the two dummy activities in each project are zero. The resources involved in

this study are renewable resources that are not consumed as the progress of project.

• Eij refers to the predecessor activity set of aij. Only when all the activities in Eij have been

completed can aij be started.

• T denotes the whole planning horizon. It is the upper bound of all projects completion time.

t (t = 0, 1, . . ., T) is the time point in the process of scheduling.

In addition, the final solution for the proposed DRCMPSP is represented by the vector S =

(S1, S2,. . ., Sm), where Si = (si0, si1,. . .,siðJiþ1Þ) denotes the schedule of project i and sij is the start

time of activity aij.

Therefore, the total tardiness cost (TTC) is defined as below to evaluate the sequential game

results for global resources coordination.

TTCðSÞ ¼
Xm

i¼1

tci � ðsiðJiþ1Þ � adi � CPLiÞ ð1Þ

where (siðJiþ1Þ-adi) denotes the final makespan of project i and CPLi stands for the critical path

length of project i [5,12]. Therefore, tci � (siðJiþ1Þ-adi-CPLi) is the tardiness cost incurred as the

delay penalty of project i.

Agent-based two-stage decomposition approach

Multi-agent system for distributed decision process

As demonstrated in Fig 1, the MAS consists of two types of self-interested and autonomous

agents namely: Project Agent (PA) and Coordinator Agent (CA). If there is competition for

shared resources among PAs, they are coordinated by CA to achieve the global objective of

multi-project scheduling.

1. Project Agent (PA): Each PA is an independent local decision maker who plays the role of

project manager in the company. There are as many PAs as projects. A PA is in charge of

his own local information and responsible for generating a satisfactory initial local schedule

privately. In addition, the PAs compete for global resources at each conflicting time slot and

then modify their local schedule dynamically according to the coordination message

received from CA. All the local information and scheduling scheme of individual PAs are

secret to each other.

2. Coordinator Agent (CA): CA is a global decision maker who acts as the senior manager in

the company. He holds the public information about the global objective and global

resource availabilities. CA is mainly responsible for identifying the conflicting time slots,

coordinating PAs to eliminate conflicts, and allocating global resources to related PAs.

In addition, all global resources are stored in the global resources pool. It is an important

part in the MAS and opens for CA to offer global resources to each PA.

Local initial decision-making stage

In stage one, owing to all the PAs do not know any information about the global resources allo-

cation, each project is supposed to be scheduled independently with all the capacities of global

resources. Since each PA is autonomous and self-interested, it will make a feasible and possibly
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optimal local schedule to achieve his own objective in this stage before CA identifies whether

there are shared resource conflicts if all projects are scheduled simultaneously.

Local decision model. Each PA aims at generating a local schedule to complete his project

as soon as possible. The local decision model for each project i is formulated as below:

min
XT

t¼0

t � xi;Jiþ1;t ð2Þ

s:t:
XT

t¼0

xijt ¼ 1; 8j ¼ 0; 1; . . . ; Ji þ 1 ð3Þ

XT

t¼0

ðt � dijÞ � xijt �
XT

t¼0

t � xiht � 0; 8ði; hÞ 2 Eij ð4Þ

X

j2Vi

Xtþdij � 1

q¼t

xijq�r
l
ij � Ril; 8l ¼ 1; 2; . . . ; k; 8t 2 T ð5Þ

Fig 1. Multi-agent information and communication.

https://doi.org/10.1371/journal.pone.0205445.g001
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X

j2Vi

Xtþdij � 1

q¼t

xijq�rr
g
ij � RRg ; 8g ¼ 1; 2; . . . ; s; 8t 2 T ð6Þ

XT

t¼0

t�xi;Ji� 1þ1;t � adi ð7Þ

xijt 2 f0; 1g; 8j ¼ 0; 1; . . . ; Ji þ 1; 8t 2 T ð8Þ

where xijt is a binary decision variable whose value is 1 if activity aij is completed at time t, oth-

erwise 0.

Objective function (2) minimizes the project completion time, where element Ji+1 is the

subscript of last dummy activity used to record the completion time of project i. The project

makespan is calculated by subtracting the arrival date from the project completion time [46].

Eq (3) assures that each activity is non-preemptive. Eq (4) is the precedence constraints. Con-

straints (5) and (6) limit the local and global resource requirements of all activities being exe-

cuted at time t to the availabilities. Eq (7) forces the project to be started not earlier than its

arrival date. The feasible domain constraints of decision variables are defined in Eq (8).

Local initial scheduling algorithm. Considering the good performance of genetic algo-

rithm (GA) [29] and forward-backward scheduling (FBS) method [47,48] for RCPSP, we

develop the FBHGA by combining the GA with FBS method to solve the local decision model

for each PA. More concretely, the chromosome is encoded as an activity list and decoded by

the forward-backward scheduling method with serial schedule generation scheme (SSGS).

Firstly, the SSGS is used to forward schedule activities sequentially according to the activity

list. The initial completion times of all activities and the initial project makespan are obtained

by forward scheduling. Then, the completion time of last dummy activity is determined to

start backward scheduling. Based on a priority list formed by sorting the activities’ completion

times in descending order, activities are scheduled one by one at their latest reverse precedence

and resource feasible start time. If the start time of the first dummy activity obtained in back-

ward scheduling latter than the project arrival date, the project schedule can be improved by

adjusting the start time of the dummy start node to equal 0 [48]. The completion times of all

activities and the project makespan obtained in forward scheduling process are updates. Oth-

erwise, the project schedule is determined as the forward schedule. We adopt the 2-tourna-

ment selection operator [49] and the two-point crossover operator [50], which perform better

for RCPSP. Mutation is performed by exchanging two adjacent activities of selected chromo-

somes in turn with the precedence constraints. The algorithm is given below:
Algorithm 1: FBHGA for PAi.
Step 1. Generate initial population POP0.
Step 2. Forward-backward scheduling.
(a) Forward schedule activities by SSGS.
(b) Record the completion times of all activities in descending order
as priority list L.
(c) Backward schedule activities according to the priority list L.
(d) Record the start time of the first dummy activity as si0.

if si0< adi
Determine the forward schedule as the initial schedule of proj-

ect i;
else

si0  adi;
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Modify the backward schedule by shifting all the activities left
si0—adi units;

end if
Step 3. Genetic operation for population.
(a) Initialize generation counter n  0. Gen = generations.
(b) while n�Gen do

2-tournament selection operator;
Two-point crossover operator;
Mutation operator;
Go to step 2;
n  n+1;

end while
Step 4. Return the best schedule of project i.

Global coordination decision-making stage

In the real world, each local initial schedule generated in stage one could be destroyed owing

to the limited global resources. Therefore, it is indispensable to design an effective coordina-

tion mechanism for shared resources allocation without conflicts. In this section, the sequen-

tial game-based negotiation mechanism is proposed to eliminate the global resource conflicts

among projects. Specifically, CA as a coordinator organizes sequential games for PAs when a

shared resource conflict occurs. After several sequential game negotiations, CA determines the

best subgame perfect Nash equilibrium according to the global decision model. Then multiple

PAs resolve their local schedules with the allocated global resources from CA independently.

Sequential game-based negotiation mechanism. In game theory, the sequential game is

defined as a game consisting of finite and at least two players where each player takes actions

at different times or in turn. In other words, one player selects his action before other players

choosing theirs, which means that players who make move later have additional information

about the actions of those who make move before it in the game [51]. As a rational player, the

toper one in the sequence has first-mover advantages since his global resources requirements

can be satisfied firstly. In DRCMPSP, we regard the time as discrete resources, namely time

slots of a resource. The conflicting time slot is a decision point where the global resource

requirements exceed the available amounts. The sequential game among multiple projects is

composed of five key elements.

• Players: At each resource conflicting time slot, the PAs who require the limited global

resources to schedule their activities are treated as the sequential game players.

• Strategies: The feasible start time slots of conflicting activities at which no resource conflict

occurs are defined as strategies or actions for PAs.

• Sequence: Every player takes action in an order. A player chooses its strategy depending on

actions taken by other players ordered before him.

• Payoff: It represents the player’s preferences for chosen strategies. Since each PA aims at

completing the project as soon as possible, the opposite of the project tardiness cost is evalu-

ated as the payoff of associated PA.

• Equilibrium: The combined strategies selected sequential rationally by all the game players

for their activities at a certain conflicting time point are described as the subgame perfect

Nash equilibrium.

For a sequential game, the subgame is defined as a subset of the game that contains an initial

node and all its successor nodes. Nash equilibrium describes the players’ behavior in a steady
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state, where any player has no incentive to change his/her own decision. A subgame perfect

equilibrium is an equilibrium strategy profile that in no subgame can any player do better by

taking an action different from the profile while every other player adheres to it [51], according

to which the resource conflict is resolved. To obtain the subgame perfect equilibrium for a

sequential game, the Nash equilibrium is defined for each subgame as below.

Definition (Nash equilibrium). Let A be an action profile including all feasible start time

slots of conflicting activities for game players, in which the action set of each player PAi is Ai. Let

aa�i ð8aa
�
i 2 AiÞ and aai (8aai 2 Ai) be the optimal and any feasible start time slots chosen by

player PAi, respectively. Then (aai; aa�� i) represents the action profile in which all players other

than PAi adhere to choose the best action of aa�q (8q 2 {1,. . .,i − 1,i + 1,. . .,m}) while PAi chooses

aai. If aai ¼ aa�i , then of course (aai; aa�� i) = (aa�i ; aa
�
� i) = aa� (aa� ¼ faa�

1
; . . . ; aa�i ; . . . ; aa�mg).

In a normal-form game, the action profile aa� is a Nash equilibrium if, for each player PAi and

any other feasible time slots actions aai 2 Ai, aa�i is the best response of player PAi to the strategies

aa�
� i specified for the other players. Equivalently, for each player PAi and every feasible time slots

action aai of player PAi,

uiðaa
�Þ � uiðaai; aa

�

� iÞ ð9Þ

where ui is a payoff of player PAi.

In the light of the sequential structure, each player’s strategy need to be optimal in the

sequential game to avoid a perturbed steady state or achieve the Nash equilibrium. The optimal

strategy chosen by each PA is proposed and proved as follows.

Proposition. In a sequential game, the strategy best for any given player depends on the

other players’ actions. The subgame perfect Nash equilibrium is determined if, every player is

sequentially rational which means that no matter what happened in the past, each player PAi

prefers to choose the optimal strategy i.e. the earliest available time slots according to the deci-

sion-making sequence. At each conflicting time slot, the PAs involved in the sequential game

will employ the virtual scheduling method (see Section “Resource conflicts dynamic elimina-

tion algorithm”) to resolve their respective local schedules.

Proof. Suppose that it’s time for PAi to make decision for activity aij, PAi chooses a strat-

egy other than the best one which is later than the earliest available time slots. Then aij is

scheduled at the time slot determined by the chosen strategy. According to the virtual

scheduling method, unscheduled activities of PAi belonged to the successors of aij will not

start earlier than its local initial start time obtained in stage one, which means the project

makespan cannot be shortened. According to Eq (1), the tardiness cost of project i will not

be reduced. In other words, no additional payoffs are gained for PAi. As a rational project

agent, no changes will be made to realize his local objective and a steady state is achieved.

Therefore, in each iteration of sequential game negotiation, the strategy combination that

every player chooses the earliest available time slots orderly is consist of subgame perfect

Nash equilibrium.

Global decision model. For each conflicting time slot, CA, acts as a senior manager, is

responsible for finding a best sequence with the best subgame perfect Nash equilibrium to

meet the following global decision model:

min
p2P

TTCðSvðp; tcÞÞ ð10Þ

where objective function (10) seeks to minimize the TTC of the multi-project scheduling Sv (π,

tc) obtained by using a virtual scheduling method (see Section “Resource conflicts dynamic

elimination algorithm”) at the conflicting time slot tc following a sequence π 2P. It is worth

noting that the global resource feasibility at tc is guaranteed by the virtual scheduling method.
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Resource conflicts dynamic elimination algorithm. After all the PAs generating their

local initial schedules in stage one, a local activity list of each PA is generated by ordering activ-

ities with ascending start times. As shown in Fig 2, the information of global resource require-

ments of PAs is submitted to CA. Afterwards, CA identifies the resources conflicts and

eliminates them one by one. For a sequential game involving N players, there will be a total N!

of possible sequences of players, which is well-known to be NP-hard. Therefore, a randomized

search heuristic method is used to determine the best sequence and best subgame perfect Nash

equilibrium. More concretely, at the first conflicting time slot, CA allocates global resources to

the corresponding projects by initiating multiple iterations of sequential game-based negotia-

tion. In each iteration, the sequence of game players is determined randomly. Then the proj-

ects involved in the sequential game are virtually scheduled by a given method. Specifically, for

each PA, activities starting earlier than the conflicting time are virtually scheduled as its local

initial schedule, activities starting at the conflicting time are virtually scheduled according to

the subgame perfect Nash equilibrium, and activities starting later than the conflicting time

are virtually scheduled by a fast heuristic procedure with SSGS based on the local activity list

determined in stage one. After several iterations of negotiation, CA determines the best sub-

game perfect Nash equilibrium with minimal TTC according to the global decision model to

eliminate the current resource conflict. Followed by CA allocating global resources, each of the

corresponding PA modifies its local schedule by the above method. The following conflicts are

identified and solved in the same way. Until there is no conflicts at all time slots, the whole pro-

cess is terminated. Details of the conflicts dynamic elimination process are described as Algo-

rithm 2.
Algorithm 2: Resources conflicts dynamic elimination.
Initialize: current time t  0.
Step 1. Identify conflicting time slots.

while t�T do
Each PA submits its global resource requirements information to

CA;
Determine the earliest conflicting time slot tc;
Go to step 2;

end while
Step 2. Perform sequential game-based negotiation on PAs.
(a) Determine the set of game players GP.
(b) Initialize negotiation iteration N  0, Max iterations Ω.
(c) Virtually schedule each local project.

while N�Ω do
Determine a game sequence;
Solve subgame perfect Nash equilibrium;

for each PAi in GP do
Activities with start time sij<tc are virtually scheduled as its

local initial schedule;
Activities with start time sij = tc are virtually scheduled

according to the subgame perfect Nash equilibrium;
Activities with start time sij>tc are virtually scheduled by

SSGS based on the local initial activity list;
end for

Compute TTCN according to Eq (1);
N  N +1;

end while
Step 3. Coordinate global resources allocation.
(a) Determine the best subgame perfect Nash equilibrium with minimal
TTC.
(b) CA allocates the global resources to corresponding PAs.
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Fig 2. Flowchart of conflicts elimination.

https://doi.org/10.1371/journal.pone.0205445.g002
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(c) Each PA modifies and updates its local initial scheduling.
(d) t  t +1;

Return to step 1.
Output: final multi-project schedule and final TTC.

An illustrative example

In this section, we present a simple example to demonstrate the proposed approach for

DRCMPSP. In addition, we use this example to illustrate the fact that the multi-project schedule

that minimizes APD cannot guarantee a minimum TTC for the senior manager. An illustrative

multi-project scheduling problem with two projects is considered. Each project consists of five

activities where two of them are dummies. Each activity requires r1
ij; r2

ij units of local resources

and rr1
ij units of global resources. Fig 3 demonstrates the activity-on-node (AON) networks and

all information of the two projects. The duration dij and requirements of local/global resources

r1
ij; r2

ij and rr1
ij of each activity are marked on the top and bottom of the corresponding node,

respectively. Dummy activities have zero duration and resources requirements. Other informa-

tion about arrival date adi, unit tardiness cost tci, and local resource capacities Ril of each project

is presented in the box left to the corresponding project AON network. As shown between the

two boxes, the capacity RR1 of global resource is assumed to be 15.

In the following, we elaborate the whole two-stage decision-making process.

Stage one: Local initial decision-making process

As shown in Fig 4, each PA generates an initial schedule independently to minimize the

project completion time. It can be seen that the makespan of project 1 and project 2 are 10 and

6 respectively, which are equal to the critical path length (CPLi) of each corresponding project.

Obviously, the global resource requirements violate the given capacity from time slot 6. There-

fore, it is necessary for CA to eliminate the global resource conflicts.

Stage two: Global coordination decision-making process

Fig 3. Information for illustrative example.

https://doi.org/10.1371/journal.pone.0205445.g003
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After each PA produces its local initial schedule without consideration of sharing global

resources with other PAs, CA receives the global resource requirements information from each

PA. The first conflicting time slot 6 is identified firstly by CA, and then the process of sequen-

tial game-based negotiation between PA1 and PA2 begins. At the first conflicting time slot 6,

game players PA1 and PA2 decide when to start a13 and a21, respectively. Time slots after time

point 5 constitute the strategies for each PA to execute its corresponding activities. Suppose

the game sequence is {PA1, PA2} in the first iteration, the subgame perfect Nash equilibrium is

determined, i.e. a13 and a21 are started at time slot 6 and time slot 11 by PA1 and PA2, respec-

tively. It can be calculated that the TTC of the virtual multi-project schedule in the first itera-

tion is 50. In the same way, if the game sequence is {PA2, PA1} in the second iteration, the

subgame perfect Nash equilibrium is determined, i.e. PA1 schedules a13 at time slot 8 and PA2

schedules a21 at time slot 6. The TTC of virtual multi-project schedule in the second iteration

is 10. The virtual multi-project schedule in each iteration is shown in Fig 5. Then CA deter-

mines the best subgame perfect Nash equilibrium with the objective of minimizing TTC.

Clearly, CA prefers to allocate global resources according to the negotiation result in the sec-

ond iteration (Fig 5(B)). Similarly, the virtual schedule in each iteration after eliminating the

second conflict is demonstrated in Fig 6. CA will choose the schedule in Fig 6(B) as its final

decision since the TTC value is smaller.

Fig 4. Initial schedule of each project.

https://doi.org/10.1371/journal.pone.0205445.g004

Fig 5. Virtual schedule of multi-project after eliminating the first conflict at time slot 6.

https://doi.org/10.1371/journal.pone.0205445.g005
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Since the unit delay penalty may differ by projects, a multi-project schedule with minimized

APD is not aligned with the objective of TTC minimization. As illustrated in Fig 5(A), the APD
in this case is minimized with the value of 2.5 while the TTC is 50. In Fig 6(B), the schedule is

determined with the minimum TTC of 30 while the APD is 3. Therefore, our study focus on

minimizing the TTC objective of multi-project from the portfolio perspective rather than

devoting to obtain lower APD on the project level.

Computational study

In order to evaluate the performance of the proposed approach, we carry out a series of

computational experiments. Algorithms are coded in Matlab R2013a. All the experiments are

executed on a single computer with Inter Core i7 (3.4GHz, 8GB RAM). The performance of

the solutions is evaluated in two aspects:

a. The local initial schedule obtained in stage one are evaluated according to project makespan

(MSi). The results are also compared with the optimal solutions obtained by the B&B algo-

rithm to demonstrate the quality of the schedules obtained by using FBHGA.

b. The performance of the proposed sequential game-based negotiation mechanism is evalu-

ated based on the measure of TTC. We conduct the pre-experiment by using different num-

bers of negotiation iterations. We also compare the performance of our algorithm in terms

of TTC with two state-of-the-art variants of the coordination mechanism integrated in a

new multi-agent system (CMAS) based decentralized methods: CMAS/ES with the (μ,λ)-

coordination mechanism [18], and CMAS/SA with the mechanism proposed by Fink [52].

Since these two existing methods focus on minimizing APD, we use the feasible multi-proj-

ect schedules produced by the two methods which are available from MPSPLIB (http://

www.mpsplib.com, last check of address: 16 November 2017) to compute the TTC of each

multi-project instance according to Eq (1) for comparison.

Problem instances

The proposed algorithm is tested on all the 140 problem instances from MPSPLIB (Supporting

Information file S1 Appendix). As shown in Table 1, these instances are classified into 20 sub-

sets according to the Utilization Factors (UF). Each problem subset is named as “MPJi_m”

Fig 6. Virtual schedule of multi-project after eliminating the second conflict at time slot 8.

https://doi.org/10.1371/journal.pone.0205445.g006
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(MP subsets) or “MPJi_mAC” (MPAC subsets), where the number of activities Ji per project is

30, 90, or 120, and the number of projects m is 2, 5, 10, or 20. Each problem instance is pro-

vided with s and k types of global and local resources, respectively. UFg is the utilization factor

of global resource g2G indicating the ratio of the total requirements rrg to the constant capac-

ity RRg available in each time period over the global critical path [18]. UF is calculated as Eq

(11) denoting the maximum tightness of the constraints on required global resources [53].

UF ¼ max
g2G

UFg ð11Þ

The UFAV in Table 1 is the average of the UF values of a given problem subset. UF>1 indi-

cates a medium to high overload which means the global resource conflicts among multiple

projects are relatively strong, while UF<1 denotes a low to medium overload which means the

conflicts are relatively weak [12].

Results and analysis

The performance of the proposed two-stage scheduling algorithm for DRCMPSP is evaluated

on two stages separately. For algorithm 1, the best parameter settings of GA are determined by

pre-experiments as follows: the population size POP0 = 60, the number of generations

Gen = 100, the crossover and mutation rates are 0.9 and 0.1 respectively. For algorithm 2, to

obtain the final solution in reasonable CPU running time, we set the number of negotiation

iterations O to three levels: 1, 5, and 10, respectively.

Table 1. Problem instances for DRCMPSP (Homberger 2012).

Problem subset NOI Characterization per instance UFAV

m Ji Problem size (s; k)

MP30_2 5 2 30 60 (1; 3)、(2; 2)、(3; 1) 0.84

MP90_2 5 2 90 180 (1; 3)、(2; 2)、(3; 1) 0.57

MP120_2 5 2 120 240 (1; 3)、(2; 2)、(3; 1) 1.31

MP30_5 5 5 30 150 (1; 3)、(2; 2)、(3; 1) 0.82

MP90_5 5 5 90 450 (1; 3)、(2; 2)、(3; 1) 0.61

MP120_5 5 5 120 600 (1; 3)、(2; 2)、(3; 1) 1.32

MP30_10 5 10 30 300 (1; 3)、(2; 2)、(3; 1) 2.38

MP90_10 5 10 90 900 (1; 3)、(2; 2)、(3; 1) 1.14

MP120_10 5 10 120 1200 (1; 3)、(2; 2)、(3; 1) 1.91

MP30_20 5 20 30 600 (1; 3)、(2; 2)、(3; 1) 3.37

MP90_20 5 20 90 1800 (1; 3)、(2; 2)、(3; 1) 0.90

MP120_20 5 20 120 2400 (1; 3)、(2; 2)、(3; 1) 0.87

MP90_2AC 10 2 90 180 (4; 0) 2.27

MP120_2AC 10 2 120 240 (4; 0) 1.36

MP90_5AC 10 5 90 450 (4; 0) 4.99

MP120_5AC 10 5 120 600 (4; 0) 3.80

MP90_10AC 10 10 90 900 (4; 0) 3.85

MP120_10AC 10 10 120 1200 (4; 0) 2.61

MP90_20AC 10 20 90 1800 (4; 0) 2.70

MP120_20AC 10 20 120 2400 (4; 0) 3.65

NOI no. of instances; m no. of projects; Ji no. of activities of project i; s no. of global resource types; k no. of local resource types of each project i; UFAV average

utilization factor.

https://doi.org/10.1371/journal.pone.0205445.t001
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Comparison of local initial schedule. To compare the results in terms of project make-

span of each local initial schedule obtained in stage one, we have performed the exact B&B

algorithm and the proposed FBHGA on 1295 single projects from the 140 multi-project prob-

lem instances. The optimal solutions of some small-size single project instances are obtained

by the B&B algorithm embedded in RESCON software [19]. Note that the solvable solutions

obtained by RESCON are all optimal results and any solutions cannot be found if the RESCON

runs out of memory.

Table 2 shows the comparison of the average project makespan (APM), the number of proj-

ects with optimal solutions (NPOS), and the number of projects with no feasible solutions

(NPNS) solved by B&B and FBHGA respectively, meanwhile the last column shows the average

relative deviation (ARD) of the non-optimal solutions obtained by FBHGA from the optimal

results reached by B&B of each subset. It is clear that out of the 1295 single projects, B&B can

obtain optimal solutions for 954 projects and 89.3% of which are also obtained by FBHGA. In

addition, the more the activities involved in a project, the less the possibility that a feasible

solution can be obtained by B&B before running out of memory, especially for projects with

120 activities. However, the FBHGA can achieve a feasible scheduling solution efficiently for

any size project case. For each problem subset, the results of APM obtained by FBHGA and

B&B are very close with respect to the solvable solutions. Furthermore, the ARD of each subset

is lower than 5%. The average of ARD over all of the 20 subsets is less than 1% (0.81%). Accord-

ing to the statistical analysis of T test, there is no significant difference between B&B and

Table 2. Comparison of results obtained by B&B and FBHGA in stage one.

Problem subset NSP B&B FBHGA ARD (%)

APM NPOS NPNS APM NPOS NPNS
MP30_2 10 54.30 10 0 55.30 4 0 1.83

MP90_2 10 93.50 8 2 93.50 8 0 0

MP120_2 10 98.00 1 9 102.00 0 0 4.08

MP30_5 25 58.80 25 0 59.72 18 0 1.50

MP90_5 25 88.85 20 5 88.90 19 0 0.04

MP120_5 25 101.75 4 21 102.00 3 0 0.30

MP30_10 50 52.26 50 0 53.04 32 0 1.55

MP90_10 50 88.19 37 13 88.19 37 0 0

MP120_10 50 103.57 14 36 104.50 8 0 0.94

MP30_20 100 57.09 100 0 57.59 76 0 0.84

MP90_20 100 92.59 88 12 93.07 76 0 0.49

MP120_20 100 103.53 15 85 104.47 10 0 0.90

MP90_2AC 20 76.50 4 16 76.50 4 0 0

MP120_2AC 20 85.50 12 8 86.58 8 0 1.38

MP90_5AC 50 83.67 6 44 84.67 3 0 1.22

MP120_5AC 50 88.73 15 35 89.27 12 0 0.64

MP90_10AC 100 78.97 70 30 79.26 66 0 0.32

MP120_10AC 100 94.62 86 14 94.67 84 0 0.05

MP90_20AC 200 79.06 200 0 79.06 200 0 0

MP120_20AC 200 97.21 189 11 97.29 184 0 0.09

Total 1295 83.83a 954 341 84.48a 852 0 0.81a

NSP no. of projects; APM average project makespan of the problem subset; NPOS no. of projects with optimal solutions; NPNS no. of projects with no feasible solutions;

ARD (%) average relative deviation
a Average of column values over all problem subsets.

https://doi.org/10.1371/journal.pone.0205445.t002
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FBHGA solutions (the P_value is 0.750). It fully turned out that the FBHGA performs well on

generating high-quality local initial schedules with satisfactory makespan for every PA in stage

one.

Performance analysis of coordination mechanism. It should be noted that the number

of iterations O for sequential game negotiation is considered in three modes i.e. 1, 5, and 10.

As revealed in Table 3, with the increasing of iterations, the average TTC of each subset reduces

while the CPU running time increases. The effect of the number of iterations on either TTC or

CPU running time is statistically significant based on the related-samples Kendall’s coefficient

of concordance test (the P_value of each test is 0.000). The reason is that the more the negotia-

tion iterations, the greater the possibility of finding better solutions and thus the more CPU

time is consumed. Compared to the results with O = 1, the improvements on TTC of MP sub-

sets and MPAC subsets with O = 5 and O = 10 are depicted respectively in Fig 7. Clearly, the

TTC results with O = 10 are improved more than that with O = 5 by comparing the corre-

sponding results with O = 1 for all subsets. Additionally, the greater improvements with both

O = 5 and O = 10 are made for large-size subsets with high UFAV . Fig 8 illustrates the CPU

time results of MP subsets and MPAC subsets with different sets of iterations. It is clear that

the larger the size of subsets, the longer the CPU running time is. Meanwhile, the MPAC sub-

sets generally run longer than the MP subsets with the fact that more conflicts need to be

solved for MPAC subsets as a result of the higher UFAV . Since the better solution of each

multi-project instance can be obtained within about 20 min, we set O = 10 for following study

analysis.

Given the complexity and diversity of the practical multi-project scheduling environment,

senior managers in the company often have to deal with multiple projects under different

Table 3. Computational results with different number of negotiation iterations.

Problem subset O = 1 O = 5 O = 10

TTC CPU (s) TTC CPU (s) TTC CPU (s)

MP30_2 474 0.12 429.2 0.43 412.6 0.54

MP90_2 949.2 0.40 924 1.19 890.4 1.21

MP120_2 12688.6 1.50 12266.6 6.08 11767.8 7.95

MP30_5 1592.4 0.85 1535.8 1.57 1486.4 1.62

MP90_5 2952.4 1.42 2866.2 4.53 2827.4 6.41

MP120_5 23300 5.10 23052 23.37 21205 35.74

MP30_10 10438.8 2.97 9997.2 15.58 9461 21.65

MP90_10 19678.2 8.59 19180.4 44.88 18879 69.72

MP120_10 78803.8 23.79 77484.2 102.65 76361.2 175.23

MP30_20 61415.6 14.02 59556.6 70.35 58972.6 110.11

MP90_20 33573.6 19.41 32943.4 105.45 32046.8 149.08

MP120_20 44071.8 24.09 42992 128.86 41850.4 183.34

MP90_2AC 11186.2 2.51 10601.4 10.00 10394 10.19

MP120_2AC 7656.4 2.77 7193.9 11.33 6796.7 13.38

MP90_5AC 59236.4 17.75 57322 91.19 56614.9 112.19

MP120_5AC 114389.1 20.79 112376.3 118.73 110993.3 140.02

MP90_10AC 103492.5 33.97 103358.7 196.51 101098.8 269.80

MP120_10AC 123481.7 35.89 119767.8 221.88 117991.9 276.27

MP90_20AC 79310.7 60.99 79099.9 369.63 77437.4 453.42

MP120_20AC 424001.6 146.93 422560.2 856.94 419621.6 1230.46

The TTC and CPU (s) are the average values of each problem subset.

https://doi.org/10.1371/journal.pone.0205445.t003
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degrees of conflicts [54]. To evaluate the performance of the proposed sequential game-based

negotiation mechanism on different instance subsets with various problem sizes and degrees

of conflicts, we analyze two indicators: DTTC and NC. DTTC is the deviation of the final actual

total tardiness cost (TTC(S), obtained in stage two) from the initial total tardiness cost (TTC
(Sinitial), obtained in stage one). NC represents the number of conflicts occurred in the whole

multi-project scheduling horizon.

According to the values of UFAV , the 20 problem subsets are classified into two groups: sub-

set group with UFAV <1 and the other one with UFAV >1. As shown in Fig 9, the average val-

ues of DTTC and NC of the subset group with UFAV <1 are significantly lower than those

values of the subset groups with UFAV >1. It reveals that the stronger the degrees of conflicts

among multiple projects, the greater the final actual TTC value deviates from the initial TTC

Fig 7. Comparison of TTC improvements of MP subsets and MPAC subsets.

https://doi.org/10.1371/journal.pone.0205445.g007

Fig 8. Comparison of CPU time of MP subsets and MPAC subsets.

https://doi.org/10.1371/journal.pone.0205445.g008
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value, and the more the number of conflicts existing in the process of multi-project scheduling.

The results indicate that the multi-project scheduling environment will become complicated

and more TTC will be incurred when the global resource conflicts among projects are rela-

tively strong.

Fig 10 illustrates the relationship between problem size and TTC result for all subsets.

According to the one-way ANOVA test, the problem size has no significant effect on TTC (the

P_value is 0.558), which is mainly because the unit tardiness cost of each project in a multi-

project instance is different.

In order to evaluate the performance of the proposed two-stage decomposition approach

with respect to TTC, the comparisons with two existing decentralized methods i.e. CMAS/ES

and CMAS/SA are shown in Table 4. The best results of each subset are marked in bold, those

Fig 9. Comparisons of DTTC and NC under different degrees of conflict.

https://doi.org/10.1371/journal.pone.0205445.g009

Fig 10. Relationship between problem size and TTC result.

https://doi.org/10.1371/journal.pone.0205445.g010
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of strong conflicts (UFAV >1) and large-size multi-project instances are shown with � sign and

underline, respectively. As can be seen in Table 4, for 15 out of 20 subsets, the proposed

approach performs best. Specifically, for 12 out of 14 subsets with strong conflicts and for 7

out of 8 subsets with large-size multi-project instances, the proposed approach obtains a much

lower TTC than any other methods. To clearly show the better performance with regard to the

instance size and resource utilization factor, we compute the percentage improvement of our

method comparing with CMAS/ES and CMAS/SA, respectively. The statistical comparisons

Table 4. Comparisons of TTC among different decentralized methods.

Problem

subset

Problem

size

UFAV Two-stage

decomposition

CMAS/ES CMAS/SA

MP30_2 60 0.84 412.6 529.4 527.8

MP90_2 180 0.57 890.4 752.8 790

MP120_2 240 1.31 11767.8� 12470.4 12017.6

MP30_5 150 0.82 1486.4 1612.4 1737

MP90_5 450 0.61 2827.4 3959.6 2687.6

MP120_5 600 1.32 21205 23118 20232.6�

MP30_10 300 2.38 9461� 11920.4 12221.4

MP90_10 900 1.14 18879� 20509.8 19799.2

MP120_10 1200 1.91 76361.2� 82799.8 119064

MP30_20 600 3.37 58972.6� 69797.4 68681.6

MP90_20 1800 0.90 32046.8 33716.2 29935.4

MP120_20 2400 0.87 41850.4 52210 NA

MP90_2AC 180 2.27 10394� 10585.6 10944.75

MP120_2AC 240 1.36 6796.7 6925.4 5735.2�

MP90_5AC 450 4.99 56614.9� 62085.3 59998.9

MP120_5AC 600 3.80 110993.3� 135607.3 130062.9

MP90_10AC 900 3.85 101098.8� 122450.8 117388.2

MP120_10AC 1200 2.61 117991.9� 153229.9 147253.8

MP90_20AC 1800 2.70 77437.4� 94605.6 88618

MP120_20AC 2400 3.65 419621.6� 520681.9 500280.1

NA indicates some schedule results of multi-project instances in MP120_20 subset are not available on MPSPLIB web site.

https://doi.org/10.1371/journal.pone.0205445.t004

Fig 11. Percentage improvement with respect to different problem sizes.

https://doi.org/10.1371/journal.pone.0205445.g011
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for small- and large-size instances, and for UFAV <1 and UFAV >1 instances are depicted in

Fig 11 and Fig 12, respectively. In each figure, the maximum and the average of percentage

improvements are demonstrated on the left (a) and right (b), respectively. It is indicated that

for both CMAS/ES and CMAS/SA, our method shows superior performance on large-size and

strong conflicts instances. Moreover, for all subsets, the percentage improvements of our

approach in reducing TTC achieve an average of 10%-15% compared to CMAS/ES, and a max-

imal of 20%-36% compared to CMAS/SA. From above results, the two-stage decomposition

approach outperforms other decentralized methods in providing satisfactory solutions in

terms of TTC, especially for large-size and strong conflicts instances.

Conclusion and future work

This paper is devoted to solving DRCMPSP using a two-stage decomposition approach. Indi-

vidual project managers focus on minimizing the project completion time initially while the

senior manager pays more attention to reducing TTC from a global perspective. A FBHGA is

introduced to determine the local initial schedule for each PA in stage one, and a sequential

game-based negotiation mechanism is proposed to coordinate the global resources allocation

among multiple projects in stage two.

The performance of the proposed approach has been evaluated on the MPSPLIB bench-

mark. High-quality local initial schedules can be generated by FBHGA for every individual PA
and the average ARD with respect to the optimal solutions over all problem subsets is less than

1%. By conducting preliminary experiments on all subsets, satisfactory solutions in terms of

TTC can be generated in reasonable CPU running time after 10 iterations of sequential game-

based negotiation. The senior manager will face complex multi-project management situation

and more TTC will be incurred when the shared global resources are relatively scarce. The per-

formance of our approach is compared with two existing decentralized methods with different

coordination mechanisms. Experiments reveal that the proposed approach with sequential

game-based negotiation mechanism can significantly reduce TTC, especially for the instances

with large problem size and high resource utilization factor.

As the increasing of multinational corporations in the process of globalization, more and

more multiple projects are executed simultaneously at different locations. Our proposed two-

stage decomposition approach provides decision guidance for distributed multi-project sched-

uling managers. Meanwhile, the sequential game-based negotiation mechanism opens a new

perspective for shared resource allocation. However, there is a limitation that the randomized

Fig 12. Percentage improvement with respect to different degrees of conflicts.

https://doi.org/10.1371/journal.pone.0205445.g012
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search heuristic procedure is used to obtain a best subgame perfect Nash equilibrium result. In

the future, we aim to find the approximate optimal solutions by efficient meta-heuristics. In

addition, considering the possible uncertain environments in today’s globally active industries,

the proposed two-stage decomposition approach with sequential game-based negotiation

mechanism opens up new directions for stochastic distributed multi-project scheduling

problem.
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