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Abstract: The appearance and evolution of biofuel cells can be categorized into three groups:
microbial biofuel cells (MBFCs), enzymatic biofuel cells (EBFCs), and enzyme-like nanomaterial
(nanozyme)-based biofuel cells (NBFCs). MBFCs can produce electricity from waste; however, they
have significantly low power output as well as difficulty in controlling electron transfer and mi-
crobial growth. EBFCs are more productive in generating electricity with the assistance of natural
enzymes, but their vulnerability under diverse environmental conditions has critically hindered
practical applications. In contrast, because of the intrinsic advantages of nanozymes, such as high
stability and robustness even in harsh conditions, low synthesis cost through facile scale-up, and tun-
able catalytic activity, NBFCs have attracted attention, particularly for developing wearable and
implantable devices to generate electricity from glucose in the physiological fluids of plants, animals,
and humans. In this review, recent studies on NBFCs, including the synthetic strategies and catalytic
activities of metal and metal oxide-based nanozymes, the mechanism of electricity generation from
glucose, and representative studies are reviewed and discussed. Current challenges and prospects
for the utilization of nanozymes in glucose biofuel cells are also discussed.

Keywords: glucose biofuel cell; nanozymatic biofuel cell; enzymatic biofuel cell; enzyme mimic;
electron transfer

1. Introduction

Currently, humans are facing a shortage of energy sources and a wide range of envi-
ronmental challenges caused by over-exploitation and over-consumption of fossil fuels.
To overcome this crisis, new energy sources with sustainable and environmentally friendly
characteristics are urgently required [1–5]. In the field of bio-electrochemical research,
biofuel cells have emerged as an alternative energy conversion device to generate electricity
from biomass while simultaneously preventing environmental pollution. Moreover, the bio-
fuel cell is recognized as a key factor for realizing self-powered sensors, wearable devices,
and implantable devices [6]. Biofuel cells can be categorized into three groups: microbial
biofuel cells (MBFCs), enzymatic biofuel cells (EBFCs), and enzyme-like nanomaterial
(nanozyme)-based (nanozymatic) biofuel cells (NBFCs) (Figure 1) [4,6,7].

The MBFC is a system that utilizes a microorganism as a reactor to catalyze the oxi-
dation of biomass or waste and thus convert biochemical energy to electrical energy [1].
Fundamentally, the prototype architecture of MBFCs includes the anode, cathode, and mem-
brane between the two (Figure 1A). The anodic compartment consists of electrochemically
active microorganisms on a supportive electrode, and exoelectrogens, as defined by Lo-
gan et al. [8], play a role in donating electrons to the electrode by oxidizing substrates,
whereas the large amount of oxygen in the cathodic compartment can accept electrons and
protons to form harmless water. Supportive electrodes can be fabricated from carbon-based
materials such as carbon fibers, carbon sheets, carbon cloth, carbon graphite, and carbon
nanotubes [9–11]. Membrane is also an important component, That inhibits the diffusion
of mediators and substrates, thereby reducing unwanted flux between the two electrodes
but keeping them ionically and chemically conjugated [1]. Without membrane, severe
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biofouling can happen on the electrode surface, yielding instability and low efficiency
in power generation during long-term operation. MBFCs have diverse biofuels, including
wastewater, marine sediment soil, freshwater soil, and active sludge [1,12,13]. Electron
transfer in MBFCs can be performed through direct contact between bacterial pili and
electrode or short-range electron transfer [14], and indirect processes are possible via elec-
tron shuttles [15]. Although the MBFC possesses many advantages in waste processing
and environmental protection, the critical drawbacks that limit its wide application and
commercialization are significantly low power output and extreme difficulty of electron
transfer control inside the microorganisms.

Figure 1. Three representative types of glucose biofuel cells. (A) Microbial biofuel cell (MBFC) archi-
tecture consists of an anode and cathode constructed using microorganisms, mediator, and supportive
electrodes. (B) Enzymatic biofuel cell (EBFC) architecture includes an anode and cathode constructed
using natural enzymes and mediator. (C) Nanozyme-based biofuel cell (NBFC) architecture includes
an anode and cathode constructed using nanozymes.

Unlike MBFCs, EBFCs catalyze the oxidation of biofuels with the assistance of natural
enzymes to produce electricity. Biofuels for EBFCs are generally sugar relatives, such
as glucose, sucrose, fructose, alcohols, including ethanol and methanol, organic acids,
and organic salts such as sulfite salts [4,16,17]. Among them, the glucose-based EBFC
is a well-known object because of the ubiquitous nature of glucose in the physiological
fluids of plants, animals, and humans with high potential energy, facile mass production,
low financial expenditure, and biocompatibility [18]. The estimated availability of glucose
concentration in the human blood is approximately 2–10 mM [19], which is sufficient for
developing enzymatic glucose biofuel cells. Like MBFCs, the EBFC comprises an anode and
cathode, but the membrane may not be involved because of the high substrate specificity
of natural enzymes on each electrode (Figure 1B) [20]. In the glucose biofuel cell, the anode
generally consists of two kinds of enzymes, glucose oxidase (GOx) and catalase, to convert
glucose to gluconolactone with hydrogen peroxide (H2O2) and H2O2 to water with oxygen,
respectively. The cathode comprises laccase, which catalyzes the conversion of oxygen
into harmless water. During the catalysis of one glucose molecule, two electrons are
transferred through the electrode either directly or indirectly, which is also important for
cell performance [4,5]. Glucose-based EBFCs have attracted much attention because of
their capability to utilize glucose in physiological fluids to generate electricity, as well
as improved power output in comparison with MBFCs. Nevertheless, glucose-based
EBFCs have many limitations derived from natural enzymes, such as easy denaturation
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and instability, high production cost, and difficult electron transfer. Thus, exploring
an alternative to natural enzymes that resolve these limitations is urgently needed. [7].

In this scenario, nanozymes take the spotlight with their preferable intrinsic pecu-
liarities in comparison to those of natural enzymes, such as long-term stability, ease of
synthesis with low cost, and tunable enzyme-mimicking activities, that present them as
potential catalytic material for developing a glucose biofuel cell, namely the nanozyme-
based glucose biofuel cell (Figure 1C). Nanozymes are functional nanomaterials having
an ability to mimic the actions of natural enzymes, and until now, nanozymes typically
include metals, metal oxides, metal chalcogenides, nanocarbons, and their composites, that
induce distinct catalytic functions [21]. Nanozymes have been exploited in a wide range
of applications for biosensors, environmental treatments, therapeutics, and particularly
for glucose biofuel cell. To the best of our knowledge, no review paper has specifically
discussed nanozyme-based glucose biofuel cell. In this review, we describe recent re-
search progress on the representative synthetic strategies and catalytic characteristics of
nanozymes, mechanisms of electricity generation from glucose, and application studies.
We also describe the current challenges and prospects of advanced glucose-based NBFCs,
based on the unique properties of nanozymes.

2. Synthetic Strategies and Catalytic Characteristics of Nanozymes to Replace Natural
Enzymes in Glucose Biofuel Cells

To develop glucose-based NBFCs, nanozymes that mimic GOx and catalase are re-
quired to construct an anode for catalyzing glucose oxidation without accumulating H2O2,
as well as laccase-mimicking nanozymes to construct a cathode for accepting electrons,
which are produced and transferred to the cathode during glucose oxidation. Glucose-
based NBFCs can be constructed by placing appropriate nanozymes in either both elec-
trodes or a single electrode. Diverse types of nanozymes have been reported to mimic GOx,
catalase, and laccase, and they can be categorized into noble metal and metal oxide-based
nanozymes based on their composition. In this section, we describe the representative
synthetic strategies and catalytic activities that are essentially utilized to develop glucose
biofuel cells.

2.1. Synthetic Strategies of Nanozymes

Nanozymes are generally synthesized via physicochemical routes similar to conventional
nanomaterials. Different methods are available, and depending on the experimental orienta-
tion and application purpose, researchers can select between the appropriate top-down or
bottom-up approach. The top-down approach includes a solid-state reaction route, in which
the starting materials are scaled down to the synthesized product via ball milling, nanolithog-
raphy, sputtering, and thermal decomposition processes; the bottom-up approach is a wet
chemical route comprising sol-gel, reverse micelle, chemical vapor decomposition, pyroly-
sis, biosynthesis, microwave-assisted, and flow synthesis processes [22]. Between the two,
the bottom-up approach is considered more efficient, and thus, it has been generally employed
to synthesize diverse kinds of nanozymes. The bottom-up approach is capable of precisely
controlling the size, morphology, crystalline structure, and surface properties of nanostruc-
tures. These features not only affect the physicochemical properties, but also significantly
affect enzyme-mimicking activities. For example, smaller nanozymes around 10 nm in their
diameter generally yielded higher activity than larger nanozymes, possibly due to their higher
surface-to-volume ratio to combine with substrate [23]. Nanozymes preserving more active
crystallographic facets showed higher activity due to higher surface reactivity [24]. Moreover,
recent studies have been conducted to chemically mimic the structures of natural enzymes,
including the active center or substrate-binding pocket, that yielded further enhancement of
activity as well as selectivity toward the target substrate [25]. Therefore, material processing
is a key factor for tailoring an arbitrary nanomaterial to obtain the required properties and
realize the desired applications.
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2.2. Enzyme-Mimicking Characteristics of Nanozymes

Natural enzymes are categorized into six groups based on the type of catalytic reaction:
oxidoreductase, transferase, hydrolase, lyase, ligase, and isomerase [26]. Four groups have
already been mimicked by nanozymes, including oxidoreductase [27,28], hydrolase [29,30],
isomerase [31–33], and lyase [34]. Diverse material types, such as noble metals, bi- or
tri-metallic alloys, metal oxides, carbon, and hybrid-like metal-organic frameworks, have
been reported as nanozymes. As nanozymes mimicking GOx, catalase, and laccase are
utilized to develop glucose biofuel cells; the catalytic features of these nanozymes are
discussed with recent examples.

2.2.1. Nanozymes with GOx-like Activity

GOx plays a critical role in generating electrons by catalyzing the oxidation of glucose
within the biofuel cell. Complete oxidation of one glucose molecule can theoretically
produce up to 24 electrons; however, this process involves a series of catalytic reactions.
For the GOx-mediated oxidation of one glucose molecule, two electrons are formed by
the production of one gluconolactone and one H2O2. Based on the high research and
application significance, diverse types of nanomaterials comprising noble metals and metal
oxides have been studied as GOx-mimicking nanozymes [35–39]. Among them, gold
nanoparticles (Au NPs) have been a focus of investigation, and interestingly, their glucose
oxidation mechanism was proposed to be the same as that of natural GOx [35], which
is highly affected by morphological features, including size, and reaction environments,
including temperature, pH, and reaction time [37] (Figure 2). Interestingly, the GOx-like
activity of Au NPs was further improved by utilizing a molecularly imprinted polymer
functionalized on their surface, resulting in a 270-fold higher catalytic activity than that
of bare Au NPs [39]. In addition to Au NPs, other nanomaterials composed of metals,
including Pt, Pd, Ru, Rh, and Ir, or metal oxides, including MnO2 and CeO2, have been
reported to serve as GOx-like nanozymes, which have high potential for use in biofuel cell
systems [40,41].

GOx-like nanozymes developed to date have been demonstrated to be utilized for cat-
alyzing the oxidation of glucose on the anode to generate electrons for glucose biofuel cells.
However, there are many unresolved problems limiting their practical applications, such
as relatively low catalytic activity, poor substrate specificity, and limited electron transfer.
The development of advanced GOx-like nanozymes has great significance in glucose-based
NBFCs and other applications utilizing glucose.
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Figure 2. (A) Schematic illustration of electron transfer in the electrocatalytic oxidation of alcohols and the oxygen reduction
reaction. (B) Comparison of the reaction rates. (C) Mechanism of glucose oxidation catalyzed by natural glucose oxidase
(GOx). (D) Mechanism of glucose oxidation catalyzed by noble metal nanozyme. Reprinted with permission from ref. [35].
Copyright 2021 Springer Nature.

2.2.2. Nanozymes with Catalase-like Activity

Natural GOx or GOx-like nanozymes catalyze glucose oxidation and produce H2O2
as a by-product, which has a detrimental effect on the electrode, resulting in decreased
activity, lowered power output, and shortened lifetime. To overcome this obstacle, catalase,
which converts H2O2 into O2 and H2O, and therefore preventing undesirable phenomena,
needs to be involved in the construction of the anode of the glucose biofuel cell. Specifically,
the enzymatic removal of H2O2 prevents the deleterious effects for GOx, as well as increases
current density at the anode by its electrochemical reduction [5]. CeO2 nanoparticles are
typical examples of catalase-like nanozymes [42,43]. Pirmohamed et al. [42] reported
an important finding that the Ce3+/Ce4+ ratio determines the types of enzyme-mimicking
activity of CeO2 nanoparticles. Catalase activity was predominant when the Ce3+/Ce4+

ratio was low. The mechanism for the catalytic behavior of CeO2 nanoparticles was ex-
plained by the electron exchange between the Ce3+ and Ce4+ present on the nanoparticles,
arising from the H2O2 absorption in the oxygen vacancies of the CeO2 crystalline surface
and the concomitant production of H2O and O2 by the electron-transfer reaction [43].
Once H2O and O2 were generated and detached from the surface, another H2O2 would
subsequently attach to the CeO2 surface and continue the catalysis chain. Coordination
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polymer-based nanozymes were shown to exhibit catalase-like activity [44]; Fe3+ and adeno-
sine monophosphate-coordinated nanoparticles exhibited catalase-like activity at neutral
pH, while peroxidase-like activity was observed at acidic pH values via Fenton chemistry.

Catalase-like nanozymes cannot be utilized solely for glucose biofuel cell develop-
ment; however, bi-enzymatic nanozymes showing GOx and catalase have been reported
to serve as an anode in glucose biofuel cells [45,46]. In this regard, finding efficient
catalase-like nanozymes or bi-enzymatic nanozymes showing both GOx and catalase-like
activity, for preparing an efficient anode in glucose biofuel cells is crucial for decompos-
ing the byproduct H2O2 and enhancing the power output and extending the lifetime of
glucose-based NBFCs.

2.2.3. Nanozymes with Laccase-like Activity

Laccase catalyzes the reduction of O2 to H2O by accepting electrons. The active site
in natural laccase has four coppers, which are classified into three types: T1, T2, and T3.
The substrate is oxidized at the T1 Cu site, and then transferred to the T2/T3 trinuclear Cu
site, where oxygen is reduced to H2O [47,48]. Inspired by the active site structure, recent
laccase-mimicking nanozymes have been designed and synthesized based on their molecu-
lar shapes. An interesting example is the imitation of the active site of natural laccase via
the coordination of Cu+/Cu2+ with histidine and cysteine as ligands to form a laccase-like
nanozyme (Figure 3) [47]. The laccase-like activity of the nanozyme was so efficient to
yield even a four-order higher catalytic efficiency than that of natural laccase, presumably
due to the presence of more active sites than natural laccase. Similarly, nanozymes having
the active site-mimicking structures coordinated with Cu with cysteine-aspartic acid dipep-
tide or DNA-copper hybrid nanoflowers were also reported to exhibit laccase-like activity,
which was higher and more stable than that of the natural counterpart [48,49].

Within the biofuel cell system, laccase can be utilized for developing cathodes, and many
metal-based catalysts, including Pt, Mn, Fe, Co, and Ni, are generally efficient for preparing
the cathode [50–53]. When we choose laccase-like nanozymes on cathode, general crite-
rion is to maximize open circuit voltage (OCV) by considering the employed nanozymes
on the anode, that can yield the highest power output. For their widespread utilization,
unresolved problems of metal-based catalysts, such as high production costs, toxicity to hu-
mans and ecosystems, and limited substrate specificity, need to be addressed. Particularly,
for the construction of miniaturized biofuel cell, the specificity toward target substrate
enables simple assembly of both the anode and cathode without the need for membrane,
thus reducing biofuel cell volume significantly. Moreover, unwanted side reactions can be
effectively avoided, which is also important to safely generate electricity from the physio-
logical molecules like glucose. Thus, the exploration of laccase-like nanozymes exhibiting
superior catalytic performance with high conductivity is important for future applications
of glucose biofuel cells.
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Figure 3. (A) Schematic illustration of the construction of laccase mimicking Cys-His (CH)-
Cu nanozymes, which preserve many catalytic centers mimicking the active site of natural lac-
case. (B) Schematic illustration of possible catalytic mechanism involving the CH-Cu nanozymes.
Reprinted with permission from ref. [47]. Copyright 2019 Elsevier.

3. Recent Research Examples of Glucose-Based NBFCs

The glucose-based NBFC was composed of an anode, a cathode, and an electrolyte
containing glucose. Depending on the working environment, components in the NBFC can
be modified to improve power output, conductivity, OCV, stability, and lifetime. In this
section, we briefly summarize recently reported and representative examples of glucose-
based NBFCs. We categorize our discussion into two main groups based on the types of
nanozymes employed, primarily noble metals and several metal oxide-based ones. In most
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studies, these nanozymes were anchored on carbon-based materials, and then utilized to
construct electrodes of the biofuel cell system, which could provide much enhancement
in electrical conductivity as well as other catalytic advantages including facilitated substrate
or mediator transfer.

3.1. Noble Metal-Based Nanozymes for Glucose-Based NBFC

Noble metals such as Au, Pt, and Pd, which show outstanding GOx-mimicking activity,
have been widely applied in glucose biofuel cells [54–56]. Xie et al. [54] introduced an Au
nanozyme-based glucose biofuel cell, where Au salt was dispersed into a glucose electrolyte
and deposited on the electrode during glucose oxidation to obtain a high-performance
NBFC. Another NBFC comprising GOx-like Au nanowires as the anode and Pt/carbon
as the cathode was reported [55]. Thanks to the large surface area and small particle size
of the Au nanowires, a high-power output of 126 µW/cm2 and an OCV of 0.425 V were
obtained. Another glucose-based NBFC incorporating an Au NP-based anode, graphene-
based cathode, and Nafion membrane was developed to yield a high-power output of
10.7 mW/cm2, which is among the best results for glucose-based NBFCs [56].

Binary [50,57–62] or ternary [58,62] noble metal alloys have also been employed for
developing glucose-based NBFCs, based on their synergistically enhanced enzyme-like
activity and ability to circumvent the poisonous intermediates generated during the cat-
alytic oxidation at the anodic electrode [51,58,60,61]. Chu et al. [61] developed a Pt/Au
alloy-based glucose biofuel cell consisting of an anode of a GOx-like Pt/Au nanozyme
and a cathode of graphene with a Nafion membrane. In this study, the optimized Pt/Au
ratio (1:4) and glucose (6 mM) with saturated oxygen environment yielded good biofuel
cell performances with power output of 0.32 mW/cm2 and OCV of 0.42 V. Guo et al. [50]
designed and prepared another glucose-based NBFC consisting of nanoporous Au-PtBi
as the anode, Pt/carbon as the cathode, and glucose electrolyte mixed with NaOH. At an
optimized glucose concentration (0.5 M), a high-power output performance of 8 mW/cm2

and an OCV of 0.95 V were achieved. A bimetallic nanozyme-based glucose biofuel cell
comprising an anode constructed of GOx-like Au80Pt20/carbon and a cathode of Pt/carbon
with a glucose solution containing KOH, has been reported [51]. In this study, a series of
experimental parameters were tested, and the glucose and KOH concentration, reaction
temperature, and flow rate of glucose solution were optimized to be 0.6 M, 4 M, 328 K,
and 50 mL/min, respectively. By adopting the optimized conditions, a high-power out-
put of 95.7 mW/cm2 and an OCV of 0.34 V were achieved, but the initial power output
decreased to 82.5 mW/cm2 after only 20 min of operation because of the deterioration of
the electrodes.

To further increase the power-generating performance of NBFCs, not only single or
binary noble metallic glucose-based NBFCs, but also ternary noble metallic NBFCs have
been demonstrated [58,62]. Basu et al. [58] compared the power generation performances
between bimetallic PdPt/carbon and tri-metallic PdPtAu/carbon, employed as GOx-like
anode catalysts. The results indicated that the ternary metallic anode yielded a higher
OCV but a similar power output compared to the bimetallic anode. Another interesting
NBFC consisted of a thick film-type anode and cathode, manufactured by the e-beam
evaporation technique, where the anode and cathode were made of PtNi alloy and porous
Pd, respectively [63]. With a physiological glucose concentration (3.7 mM), the NBFC yielded
a power output of 2.83 µW/cm2, an OCV of 0.35 V, and a current density of 8.2 µA/cm2.

Metal-based nanozymes have been frequently anchored on carbon-based materials,
particularly carbon nanotubes and graphene oxide (GO), to construct the electrodes of
NBFC, owing to their advantageous characteristics as a support material such as excel-
lent conductivity, large surface area, biocompatibility, insignificant mass, and possibility
to tailor the catalytic activity and specificity toward a certain substrate. For example,
Irfan et al. [64] designed a glucose biofuel cell including an anodic electrode made from
a Ni/Co composite anchored on reduced GO (rGO), with a cathodic electrode made from
Cu2O. Compared with Ni-rGO and Co-rGO, Ni/Co-rGO significantly improved the cat-
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alytic activity of glucose oxidation because of the synergistic effect of Ni, Co, and rGO.
In particular, rGO served as a dispersant to prevent the aggregation of the Ni-Co composite,
as well as a facilitator for the electron transfer between Co(III)/Co(II) and Ni(III)/Ni(II)
couples when the glucose molecules attach to its grain boundary and sharp edges. The sys-
tem showed a maximum power output of 28.807 W/m2, which was twice that of the fuel
cell with a bare activated carbon electrode system. Another NBFC, composed of Pt/rGO
as an anode and FeCo/Ketjen Black (KB) with 10 wt% polytetrafluoroethylene (PTFE)
as a cathode, has been reported (Figure 4) [53]. With the level of glucose fuel (5 mM) and
flowrate (0.33 mL/s) controlled to the same as those present in vein blood in a human
arm, the NBFC yielded high potential of 388 mV of OCV at the first cycle, which could
effectively be maintained with marginal power loss by successful circulation to remove
the intermediate molecules. As this system utilizes circulating glucose as in the human
vein, it could be utilized as a power source within an implantable device. Su et al. [65]
also reported an interesting glucose-based NBFC, which included graphene sheets grafted
with Pt and Pd as the anode and nitrogen-doped GO nanoribbons as the cathode. With
physiological glucose (4 mM) in neutral cerebrospinal fluid, a high OCV of 0.216 V and
maximal power output of 8.96 µW/cm2 were obtained with great stability and durability,
which maintained the initial power output during one week with only a 7.9% decrease.
The energy generation of this NBFC was more efficient at high temperatures, yielding
a higher maximal power output of 24.9 µW/cm2 at 80 ◦C, demonstrating its potential for
use in extreme weather environments.

Figure 4. Schematic description of the nanozyme-based glucose biofuel cell system showing the potential to be utilized
as a power source within implantable devices. Reprinted with permission from ref. [53]. Copyright 2020 Elsevier.

Noble metal-based NBFCs were also extended to construct implantable devices to
generate electricity from real biological fluids. NBFCs composed of buckypaper modified
with Au80Pt20 nanoparticles and carbon paper modified with Pt nanoparticles as anode
and cathode, respectively, were implanted in orange pulp [66]. The implanted NBFCs
successfully utilized glucose and fructose within the orange, and a high OCV (0.36 V)
and power output of 182 µW were produced. The generated power was successfully
applied to wireless signal transmission and the initial power was preserved for 7 h. Im-
plantable NBFCs on humans have also been developing. For example, NBFCs composed
of Au/carbon black and Au60Pt40/carbon black as anode and cathode, respectively, were
demonstrated to produce a power output of 104 µW with human blood serum at normal
glucose levels (5.4 mM) [67]. The power produced from the NBFCs was amplified with
an energy harvesting circuit and successfully applied to a pace-maker over 10 h, showing
the promising potential of NBFC-based implantable devices.
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Overall, noble metal-based nanozymes have been intensively applied to construct
an anode to oxidize glucose as well as a cathode to accept electrons in glucose-based NBFCs,
which show a promising level of power generation. Nevertheless, their shortcomings, such
as high cost and toxicity, have hampered their practical applications. In addition, when
glucose-based NBFCs were operated with the real physiological fluids, many critical
problems could happen, including biofouling, interfering effects from diverse biological
substances, relatively low glucose level, and limited reaction environments, all of which
reduce the biofuel cell performance and durability. Hence, the development of facile
synthesis at low cost with engineered high biocompatibility and substrate specificity is
required for widespread utilization.

3.2. Metal Oxide-Based Nanozymes for Glucose-Based NBFCs

The high synthesis cost of noble metal-type nanozymes can be surpassed by metal
oxide-type nanozymes, which can be easily synthesized at a low cost. An interesting metal
oxide-based NBFC was presented by Ho et al. [68], where CoMn2O4/carbon was employed
as a GOx-like anode catalyst in a biofuel cell system. The NBFC showed a power output of
2.372 mW/cm2, which is comparable to that of a commercial Pt/carbon-based biofuel cell
system. Another NBFC utilized Co3O4 grown on graphene oxide as a GOx-like nanozyme
to prepare the anode, and N and Fe co-doped biowaste-derived activated carbon to prepare
the cathode [52]. The biofuel cell showed a maximum power output of 12.81 µW/cm2 and
OCV of 0.442 V, with 10 mM glucose. Interestingly, as the glucose concentration increased to
10 mM, the power output increased gradually and dramatically dropped at approximately
30 mM. This was ascribed to the effect of high glucose concentration, which might prevent
the hydroxyl radical from approaching the electrode anode. According to the study by
Slaughter et al. [69], ZnO nanosol was deposited on an Al/Au substrate to construct
an anode, and Pt was used to prepare the cathode. This NBFC showed a power output of
16.2 µW/cm2 with an OCV of 0.84 V. The electricity-generating mechanism from glucose
could be interpreted by the unique electronic structure of the anode, where Zn and O
within ZnO served as the electron acceptor and donor, respectively, owing to the special
valence band of ZnO.

Likewise, although the glucose oxidizing activity of metal oxide-based nanozymes
is relatively lower than that of noble metal-based nanozymes, there have been many
approaches for their unique utilization in the construction of glucose-based NBFCs.

4. Conclusions, Current Challenges, and Prospects

Recently, enzyme-mimicking nanozymes have attracted intense interest as promising
alternatives to natural enzymes. In particular, diverse types of noble metal and metal
oxide-based nanozymes can mimic natural GOx and catalase to efficiently oxidize glucose
without accumulating harmful H2O2, as well as laccase to accept electrons, both of which
are essential for constructing the anode and cathode, respectively, in glucose biofuel cells.
Compared with EBFCs, NBFCs have distinct advantages such as high operational stability
and robustness with extended lifetime, sufficient power output by high catalytic activity for
glucose oxidation, low production cost by facile large-scale synthesis and manufacturing,
and further tailored functionalities derived from the uniqueness of nanozymes. In this
regard, the use of nanozymes in the glucose biofuel cell system significantly enhanced
power generation performance (Table 1).
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Table 1. Diverse studies on nanozyme-based glucose biofuel cell.

Nanozymes Anode Cathode Lifetime OCV (V) Pmax
(mW/cm2) Ref

Au film Au film Pt 90% retention after
60-day storage 0.916 0.307 [54]

Au nanowires Au nanowires Pt/carbon 93% retention after
30-day storage 0.425 0.126 [55]

Nano/micro hybrid structured
Au, graphene

Nano/micro hybrid
structured Au Graphene 85% retention after

90-day storage 8.2 10.7 [56]

Pt/Au nano-alloy, graphene Pt/Au Graphene NA i 0.42 0.32 [61]

PtBi decorated nanoporous gold
and Pt/carbon

PtBi decorated
nanoporous gold Pt/carbon NA 0.95 8 [50]

Au80Pt20 nanoparticles/carbon
black and Pt/carbon

Au80Pt20
nanoparticles/carbon Pt/carbon NA 0.34 95.7 [51]

PdPtAu/carbon, PdPt/carbon
and Pt

PdPtAu/carbon,
PdPt/carbon Pt NA 0.92 0.52 [58]

PtNi alloy and Pd PtNi alloy Pd NA ~0.35 ~0.00283 [63]

Ni foam and CoMn2O4/NC
nanocomposites ii Ni foam CoMn2O4/NC air

cathode
~80% retention after

~7 h running 0.77 2.372 [68]

Graphene-cobalt oxide
nanocomposite on Ni foam

substrate and N, Fe-codoped
biomass carbon

Graphene-cobalt oxide
nanocomposite on Ni

foam substrate

N, Fe-codoped
biomass carbon

~80% retention after
10 h running 0.442 0.01281 [52]

Bimetallic Ni-Co composite
anchored on reduced graphene

oxide and Cu2O

Bimetallic Ni-Co
composite anchored on
reduced graphene oxide

Cu2O-Cu NA NA 2.8807 [64]

Pt/rGO and FeCo/Ketjen Black Pt/rGO Fe-Co/Ketjen
Black

~77% retention after
15 h running 0.388 NA [53]

Pt and Pd graphene and
nitrogen doped graphene oxide

nanoribbons
Pt and Pd graphene N-doped GO

nanoribbons
~92% retention after

7-day storage 0.216 0.0249 [65]

ZnO seed deposited
on the Al/Au and single rod Pt

ZnO seed deposited
on the Al/Au Single rod Pt 100% retention for

9 h running 0.840 0.0162 [69]

i NA: not available; ii NC: Nitrogen-doped carbon.

Nowadays, wearable or implantable technology is becoming increasingly important
since it allows people to track their body conditions as well as manage them, particularly
through monitoring health risk factors. To this, efficient and sustainable power supply is
highly necessary, and thus, glucose-based NBFCs have a crucial importance. For extensive
practical applications of NBFCs, we believe the following technical issues should be ad-
dressed: (1) Until now, relatively limited types of nanozymes, primarily noble metal-based
ones, have been utilized in NBFCs. Therefore, further advancement in the development
of novel nanozymes composed of other elemental compositions or structures to possess
higher catalytic activity and specificity toward target glucose would be highly desirable.
Notably, the recent development of novel nanozymes includes many unique strategies,
including single-atom nanozymes yielding significantly enhanced catalytic activity [70],
active site-resembling nanozyme yielding both high activity and substrate specificity [25],
and molecule-imprinted nanozyme yielding enhanced substrate specificity [71]. The ratio-
nal design of nanozymes through the calculation of Gibbs free energy during the target
catalytic reaction by density functional theory has also been introduced [72]. With these
new and advanced methodologies to synthesize nanozymes, advanced NBFCs can be
realized. (2) For practical usage of NBFCs to generate electricity from physiological glucose,
the biocompatibility or safety of NBFC should be confirmed, particularly for devices im-
plantable in the human body. (3) In addition, it is important to efficiently control electron
transfer within NBFCs, which is an important factor in determining the power generating
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performance of NBFCs. With the above-mentioned studies, we expect that the utilization
of NBFC will increase in the near future.
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