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Abstract: “Definitive” biopsy proven polyomavirus nephropathy (PyVN), usually caused by BK
polyomavirus (BKPyV), remains a significant infection of kidney transplants. Diagnosis depends
upon an allograft biopsy and outcome depends upon early intervention. Here, we report data on
a non-invasive biomarker for PyVN, the urinary PyV-Haufen test. Test results were compared to
those of conventional laboratory assays targeting PyV replication, i.e., BKPy-viremia, -viruria and
urinary decoy cell shedding. Of 809 kidney transplant recipients, 228 (28%) showed PyV replication
with decoy cell shedding and/or BKPy-viremia by quantitative PCR; only a subset of 81/228 (36%)
showed “definitive” PyVN. Sensitivity and specificity for identifying patients with PyVN was: 100%
and 98%, respectively, urinary PyV-Haufen test; 50% and 54%, respectively, urinary decoy cell
shedding; 97% and 32%, respectively, BKPy-viremia with cut-off of ≥250 viral copies/mL; 66% and
80%, respectively, for BKPy-viremia ≥104 viral copies/mL. The PyV-Haufen test showed a very
strong correlation with the severity of PyVN (Spearman’s ρ = 0.84) and the Banff PyVN disease classes
(p < 0.001). In comparison, BKPy-viremia and -viruria levels by PCR displayed modest correlations
with PyVN severity (Spearman’s ρ = 0.35 and 0.36, respectively) and were not significantly associated
with disease classes. No association was found between decoy cell shedding and PyVN severity or
disease classes. Pilot data demonstrated that PyVN resolution with decreasing Banff pvl-scores was
reflected by a gradual decrease in PyV-Haufen shedding; such a tight association was not noted for
BKPy-viremia. In conclusion, urinary PyV-Haufen testing is a highly specific, non-invasive method
to accurately diagnose patients with “definitive” PyVN and to optimize patient management. Assay
specifics are discussed.

Keywords: biomarker; biopsy; BK-virus; diagnosis; electron microscopy; histology; kidney transplantation;
disease classes; urine; viral load

1. Introduction

Polyomaviruses (PyV) are ubiquitous, small, double-stranded DNA viruses that
exist in symbiosis with man and animals. After a primary infection at a young age,
PyV generally resides in a latent stage in the uro-renal tract as well as other anatomic
sites of healthy asymptomatic individuals. Several human polyomavirus strains can
coexist in the same host organism, and even in the same organ, such as BKPyV and
JCPyV in the kidney or bladder [1]. Sero-prevalence depends on the viral strain and
the patient age; it ranges from 20% to greater than 90% [2]. Latent PyV strains, alone
or in combination, can undergo episodes of self-limiting asymptomatic reactivation with
viruria and, on occasion, also viremia. However, despite a high prevalence of latent PyV
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infections and despite transient asymptomatic activation of latent PyV, manifestation of
viral disease is rare. It typically develops in patients with a compromised immune status,
such as renal disease/polyomavirus nephropathy (PyVN) caused by BKPyV replication
in immunosuppressed kidney transplant recipients [3–5]. Increasing evidence also links
BKPyV to carcinogenesis in the uro-renal tract post renal transplantation [2,6–9], and to
hemorrhagic cystitis after bone marrow transplantation [10].

Here, we will focus on PyVN and diagnostic biomarkers with special emphasis on the
urinary PyV-Haufen test.

Renal disease with “definitive” biopsy-proven PyVN: PyVN is characterized by mor-
phologically apparent virally induced tubulo-interstitial injury [5,11,12]. It was first de-
scribed in a kidney transplant by Mackenzie in 1978 [13]. Frank renal disease, also referred
to as “definitive PyVN” [14], is defined by intra-renal PyV replication, mainly in tubular
epithelial cells that typically causes host cell lysis with the release of mature daughter
virions into tubular lumens (Figures 1 and 2).

Viruses 2021, 13, x FOR PEER REVIEW 2 of 20 
 

 

transient asymptomatic activation of latent PyV, manifestation of viral disease is rare. It 
typically develops in patients with a compromised immune status, such as renal dis-
ease/polyomavirus nephropathy (PyVN) caused by BKPyV replication in immunosup-
pressed kidney transplant recipients.[3–5] Increasing evidence also links BKPyV to car-
cinogenesis in the uro-renal tract post renal transplantation [2,6–9], and to hemorrhagic 
cystitis after bone marrow transplantation [10]. 

Here, we will focus on PyVN and diagnostic biomarkers with special emphasis on 
the urinary PyV-Haufen test. 

Renal disease with “definitive” biopsy-proven PyVN: PyVN is characterized by mor-
phologically apparent virally induced tubulo-interstitial injury.[5,11,12] It was first de-
scribed in a kidney transplant by Mackenzie in 1978 [13]. Frank renal disease, also referred 
to as “definitive PyVN” [14], is defined by intra-renal PyV replication, mainly in tubular 
epithelial cells that typically causes host cell lysis with the release of mature daughter 
virions into tubular lumens (Figures 1 and 2). 

. 

Figure 1. Renal injury in “definitive” PyVN. Renal biopsy: (A) low-power view of a representative case of PyVN demon-
strating many tubular cross sections with virally induced injury. (B) The circled tubular cross section in “A” is shown at 
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ular lumen; V, blood vessel; dashed circle outlines a virally injured tubule). (B) Trichrome stain, 400× magnification (ar-
rowheads, tubular basement membrane; TL, tubular lumen). 

 
Figure 2. PyV replication in “definitive” PyVN. Renal Biopsy: (A) An immunohistochemical stain for the SV40-T antigen 
shows PyV replication with many positive (brown) staining signals in tubular epithelial cell nuclei. This stain targets an 
early PyV gene product/an intra-nuclear protein associated with PyV replication. (B) An immunohistochemical stain for 
PyV capsid protein (VP1) demonstrates strong staining (brown) for late PyV gene products. Abundant staining is found not only 
in nuclei, but also in tubular lumens post release of daughter virions from lysed tubular cells, (compare to Figures 2A and 3). 
Immunohistochemistry on formalin fixed and paraffin embedded tissue sections, (A) antibody directed against the SV40 

Figure 1. Renal injury in “definitive” PyVN. Renal biopsy: (A) low-power view of a representative case of PyVN demon-
strating many tubular cross sections with virally induced injury. (B) The circled tubular cross section in “A” is shown at
higher magnification. PyV replication causes marked injury to tubular epithelial cells with cell sloughing into tubular
lumens (TL) and denudation of basement membranes. (A) Trichrome stain, 200× magnification. (G, glomerulus; TL, tubular
lumen; V, blood vessel; dashed circle outlines a virally injured tubule). (B) Trichrome stain, 400× magnification (arrowheads,
tubular basement membrane; TL, tubular lumen).
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Figure 2. PyV replication in “definitive” PyVN. Renal Biopsy: (A) An immunohistochemical stain for the SV40-T antigen
shows PyV replication with many positive (brown) staining signals in tubular epithelial cell nuclei. This stain targets an early
PyV gene product/an intra-nuclear protein associated with PyV replication. (B) An immunohistochemical stain for PyV
capsid protein (VP1) demonstrates strong staining (brown) for late PyV gene products. Abundant staining is found not only
in nuclei, but also in tubular lumens post release of daughter virions from lysed tubular cells, (compare to Figures 2A and 3).
Immunohistochemistry on formalin fixed and paraffin embedded tissue sections, (A) antibody directed against the SV40 T
antigen, 200× magnification. (B) antibody directed against the polyomavirus VP1 capsid protein, 100× magnification; (G,
glomerulus).
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Figure 3. PyVN, intra tubular viral aggregation and urinary PyV-Haufen. Renal Biopsy (A) and Voided Urine Specimen (B).
(A) Immunohistochemistry with an antibody directed against the PyV-VP1 capsid protein showing intra tubular viruses
(brown) released into an injured tubule post host cell lysis. Note: denudation of tubular basement membranes. It is here
that viruses form dense three-dimensional aggregates, seen as granules of varying sizes by light microscopy (LM). PyV
aggregates are subsequently flushed out of the kidney and can be found in the urine as PyV-Haufen by negative staining
EM. (B) EM showing characteristic PyV Haufen in a voided urine sample. These PyV Haufen can be easily identified based
on the uniform size of the virions and the capsid surface structure (inset). Note the three-dimensional cast-like shape of the
PyV Haufen (compare to Figure 4). (A) Immunohistochemistry on formalin fixed and paraffin embedded tissue sections
with an antibody directed against PyV-VP1 capsid protein, 400× magnification; (arrowheads, tubular basement membrane;
arrows, pointing from the “birthplace” of PyV aggregates to a typical PyV Haufen seen by EM in a voided urine sample in
(B). (B) EM with negative staining/uranyl acetate stain, 80,000× magnification, transmission electron microscopy; inset
with 120,000× magnification (CF, cell fragment).
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Figure 4. Voided urine sample with individual virions. Voided urine specimen (A,B), EM: (A) Four individual poly-
omaviruses can be seen clinging to the surface of a cell fragment (CF). Note the typical viral capsid structure and the uniform
size of the viral particles measuring approximately 40 nanometers in diameter. (B) A flat sheet of polyomaviruses can be
seen covered by a thin layer of cell membrane material (arrowheads). The characteristic viral capsid structure is visible on
each virion. Since tight three-dimensional PyV aggregates are not present, the illustrated findings in (A,B) do not represent
PyV-Haufen (compare to Figure 3B). (A) EM with negative staining/uranyl acetate stain, 100,000× magnification, (CF, cell
fragment). (B) EM with negative staining/uranyl acetate stain, 80,000× magnification, (CF, cell fragment).
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Thus, PyVN is a form of virally induced tubular injury that can range from minimal,
i.e., PyV replication in rare tubules only, to marked, i.e., PyV replication in many tubules
with marked tubular cell lysis and even interstitial fibrosis [15]. The different phenotypes
of PyVN are subtyped into three disease classes reflecting the degree of viral replication
and the degree of chronic injury [16–18]. PyVN, most commonly found in renal allografts
and only seldom found in native kidneys [19], is mainly caused by the replication of
BKPyV (in >98% of cases), rarely by JCPyV and hardly ever by SV40PyV [20–23]. Diseased
renal allograft recipients are usually immunosuppressed with a tacrolimus-based drug
regimen that seems to provide a window of opportunity for PyV replication [12,24–27].
The incidence of PyVN varies among transplant centers; it usually ranges between 4% and
6% in western countries. Viral nephropathy can lead to allograft dysfunction and graft
loss, the latter seen in 8% to 30% of PyVN patients within 24 months (dependent upon the
era of transplantation) [16,17]. Targeted and effective anti-PyV/PyVN therapy is currently
not available. Outcome depends on an early diagnosis when virally induced renal injury
is limited, and intervention with a reduction in the immunosuppressive therapy is most
effective. The overall prognosis is best in early stages of disease and worst in late stages
with chronic kidney injury [16,17].

Patients with PyVN do not show symptoms of a generalized infection or an active
urine sediment, and allograft dysfunction may be absent. More than 50% of transplant
recipients in disease class 1 and over 25% in disease class 2 present with stable serum
creatinine levels at time of diagnosis [16], Thus, the clinical timing and indication of a
diagnostic renal biopsy can be challenging.

Clinical patient management: Over the last two decades, adjunct urine and plasma-
based laboratory assays have been developed to identify patients at increased risk for
PyVN and to guide patient management post kidney transplantation [14,28]. Testing is
based on the paradigm that “practically” all patients with PyVN present with signs of
PyV replication/activation, including viremia and viruria. Conversely, only a subgroup
of patients with viral replication are, indeed, diseased, or will develop disease [29]. Thus,
while the negative predictive value of “PyV-replication-based laboratory tests” to exclude
PyVN from the list of differential diagnoses is generally high, the overall positive predictive
values are relatively low, and the diagnosis of “definitive” PyVN with kidney injury
requires an invasive renal biopsy. In the context of patient screening, quantitative plasma
PCR tests to evaluate BKPy-viremia/BKPyV-DNAemia levels are routinely utilized and
widely accepted; urine cytology for the detection of PyV inclusion bearing decoy cells or
urine-based PCR testing for BKPy-viruria is less commonly used [11,20,28,30–33].

Viremia levels with a cut-off of 104 BKPyV copies (DNA gene equivalents)/mL plasma
or greater have a higher positive predictive value for underlying “definitive” PyVN [20].
Conventionally, such viremia levels are considered “high risk” and classified as “presump-
tive” PyVN if additional confirmatory renal biopsy findings are lacking [14,28,34]. Often
without further confirmation by biopsy, immunosuppression in viremic patients is preemp-
tively lowered in order to prevent disease progression and the (potential) development of
“definitive” PyVN: one laboratory parameter, i.e., plasma PCR data, guides therapeutic
intervention, i.e., the lowering of immunosuppression.

This clinical practice is intriguing since it aims to prevent PyVN/disease and to avoid
costly and invasive renal biopsies, [35,36], yet the caveat is that preemptive lowering of
immunosuppression is not standardized and does not reliably prevent the subsequent
development of “definitive” PyVN [37–39]. Furthermore, potential suboptimal baseline
immunosuppression in kidney transplant recipients might increase the risk of rejection,
including the development of de-novo donor-specific antibodies [39–41]. BKPy-viremia
testing by quantitative PCR, the mainstay laboratory assay to guide preemptive clinical
intervention, has limitations: (1) PCR assays and units are not standardized and inter-
laboratory quantitative test results can vary significantly; (2) the PCR assays target BKPyV,
whereas PyVN due to JCPyV or other PyV strains typically remains undetected; (3) BKPy-
viremia can originate from extra renal tissue sites, e.g., the urinary bladder or salivary
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glands, and, therefore, it may not be an accurate marker of intra-renal viral disease; (4)
in pediatric patients, BKPy-viremia may reflect a primary infection not associated with
kidney injury or disease; (5) less than 50% of patients with viremia develop “definitive”
PyVN; (6) “definitive” PyVN can be seen with low viremia of <500 BKPyV copies/mL, and
conversely no PyVN may be encountered with high titers >104 copies/mL.

Thus, conventional clinical decision making and preemptive therapeutic strategies with
lowering baseline immunosuppression in patients with signs of PyV replication/activation
are based on variables and assumptions that may or may not be best practice on an individual
case basis. Is there an alternative to this “one-size-fits-all-approach”, a personalized strategy
for patient management? The specific identification of diseased patients in PyVN classes 1 or
2, that typically have a favorable long-term prognosis, would be optimal [16,17]. However,
such approach is hampered by the need for invasive renal biopsies.

The urinary PyV-Haufen test: The PyV-Haufen test differs fundamentally from PCR-
based assays and the detection of decoy cells, in that this test is renal-disease-specific.
Haufen (Haufen is a German term for heap or pile) are three-dimensional, cast-like PyV ag-
gregates that form within the kidney, that is, within tubules. Subsequent to PyV replication
and assembly in tubular cell nuclei, virions are released from lysed host cells into injured
tubules with low flow of primary urine and high concentrations of uromodulin/Tamm–
Horsfall protein (Figure 2B). The aggregation of PyV depends upon high concentrations of
uromodulin that serve as an “adhesive glue-like substance”, and it is very similar to the
formation of other intra-tubular casts, such as red blood cell casts. Once the PyV aggregates
are flushed out of the kidney, they can be identified as so-called PyV-Haufen in voided
urine samples by electron microscopy (EM) and serve as specific biomarkers for “definitive”
PyVN (Figure 3).

This article provides details on how to use the urinary PyV-Haufen test, when to use it,
and how it compares to common PCR-based assays. In what way can patient management,
including costly and invasive renal biopsies, be optimized and paradigms of PyVN be
adjusted?

2. Main Body
2.1. PyV-Haufen—Definition and Characteristics

PyV-Haufen are detected in voided urine samples by negative staining EM; they are too
small in size to be detectable by LM. PyV-Haufen are defined as discrete, tightly clustered,
three-dimensional, cast-like aggregates of at least six distinct virions (Figure 3B) [42–44].

The ultrastructural morphology of PyV seen by negative staining EM is illustrated in
Figures 3B and 4. Individual virions are highly uniform, with a diameter of approximately
40–50 nanometers (in fixed urine samples) and a typical surface structure composed of
72 VP1 pentons. Based on morphology and ultrastructural appearance, different PyV
strains cannot be distinguished.

On average, PyV-Haufen contain between 10–20 individual polyomaviruses but can
occasionally be composed of more than 100 virions. Large PyV-Haufen resemble casts
(Figure 3B). By definition Haufen must not contain other core components such as de-
bris, cell membrane fragments or vesicles. However, debris including remnants of cell
membranes can occasionally adhere to the outer edges of Haufen. Single virions and two-
dimensional flat sheets of PyV are not classified as Haufen (Figure 4). Note: the individual
size of a PyV-Haufen does not carry any diagnostic significance; in contrast, the number of
PyV-Haufen per ml urine tightly correlates with the degree of virally induced intra-renal
injury (see below in Section 2.2.2).

Detailed technical guidelines on PyV-Haufen testing are provided in Section 2.4 and
in the Supplementary Material.

2.2. Urinary PyV-Haufen Assays: A Qualitative, Quantitative and Comparative Test Analysis

All patient-based data collection and analyses were approved by the UNC institutional
review board (IRB).
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2.2.1. PyV-Haufen Testing: Qualitative Assay

We analyzed the predictive value of PyV-Haufen testing for the diagnosis of “definitive”
PyVN in 809 adult renal allograft recipients transplanted at UNC between 2009 and 2019.
Dependent upon the date of transplantation, patients were followed according to local stan-
dard of care guidelines for various timespans ranging from 6 months to 10 years. During
the post-transplantation course, the activation/replication of PyV was assessed using urine
cytology/decoy cell counts, PCR-based assays, to quantitatively screen for BKPy-viremia
or -viruria and PyV-Haufen tests following local clinical assessment and published guide-
lines [14,45]. Allograft biopsies were collected in cases of graft dysfunction or BKPy-viremia
of ≥250 viral copies (gene eqivalents)/mL plasma. “Definitive” PyVN was diagnosed in
biopsies according to published criteria [15–18]. For the current study purposes, patients were
sub-grouped based on their PyV activation/replication status, as assessed for each patient
over the entire available individual post transplantation follow-up period:

1. Group 1, no PyV activation: 581/809 patients (72%):

a. Decoy cell analysis negative or with no more than one positive decoy-test
(cut-off for positive test ≥10 decoy cells per ThinPrep cytology preparation);

b. BKPy-viremia undetectable or always less than 250 viral copies/mL plasma;
c. No “definitive” PyVN in all available biopsies.

2. Group 2, PyV activation with positive decoy-cell tests: 37/809 patients (5%):

a. Decoy cell analysis positive with two or more positive decoy-tests (cut-off for
positive test ≥10 decoy cells per ThinPrep cytology preparation);

b. BKPy-viremia undetectable or always less than 250 viral copies/mL plasma;
c. No “definitive” PyVN in all available biopsies.

3. Group 3, PyV activation with low level BKPy-viremia: 78/809 patients (10%):

a. Decoy cell test positive or negative;
b. BKPy-viremia between 250 and 9999 viral copies/mL plasma in one or more

tests, and no test ≥104 viral copies/mL plasma;
c. No “definitive” PyVN in all available biopsies.

4. Group 4, PyV activation with high level BKPy-viremia: 32/809 patients (4%):

a. Decoy cell tests positive or negative;
b. BKPy-viremia variable with at least one test ≥104 viral copies/mL plasma;
c. No “definitive” PyVN in all available biopsies.

5. Group 5, biopsy proven “definitive” PyVN: 81/809 patients (10%):

a. Decoy cell tests positive or negative;
b. BKPy-viremia variable;
c. Biopsy diagnosis of PyVN in all patients.

Post transplantation, 228/809 (28%) patients presented with some form of PyV/BKPyV
activation/replication (groups 2–5) and 81/809 (10%) with “definitive” PyVN (group 5).
A total of 98% of patients in group 5 had detectable BKPy-viremia ≥250 viral copies/mL
plasma (in two patients, plasma PCR tests were falsely negative due to presumed mutations in
the VP1 region targeted by the assay). In the five groups, 210 patients were tested for urinary
PyV-Haufen shedding, with emphasis on those presenting clinically with signs of PyV/BKPyV
replication (Table 1). A total of 82/210 patients tested PyV-Haufen positive, 80/82 (98%) in
group 5 with biopsy-proven PyVN. In contrast, 128/210 patients tested PyV-Haufen negative,
127/128 (99%) in groups 1–4, lacking a diagnosis of “definitive” PyVN.
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Table 1. Urinary PyV-Haufen test results in cohorts of kidney transplant recipients with varying clinical signs of PyV
replication/activation.

Groups
N (Patients in Group)

PyV-Haufen Positive
N (%)

PyV Haufen Negative
N (%)

N Patients
Tested for PyV-Haufen

Group 1 N = 581
No PyV activation 1 (6) 16 (94) 17

Group 2 N = 37
PyV activation with

positive decoy-cell tests
0 (0) 24 (100) 24

Group 3 N = 78
PyV activation with

low level BKPy-viremia
1 (2) 56 (98) 57

Group 4 N = 32
PyV activation with

high level BKPy-viremia
0 (0) 31 (100) 31

Group 5 N = 81
Biopsy proven

“definitive” PyVN
80 (99) 1 (1) 81

N Patients tested 82 128 210

Group definitions are provided above. N refers to the number of patients.

In the cohort of 81 patients with “definitive” PyVN, the diagnosis was established by
biopsy, on average, 47 weeks post grafting (range: 3–320 weeks), with 64/81 (80%) of PyVN
diagnoses established within the first 74 weeks. For this time window of 74 weeks after
transplantation, Kaplan–Meier estimates are presented in Figure 5, with probabilities for
overall PyV activation/replication, BKPy-viremia, and “definitive” biopsy-proven PyVN:
probability of PyVN 9% (95% CI: 6.8–10.8%), probability of BKPy-viremia 19% (95% CI:
16.3–22.0%), and overall probability of any form of PyV activation/replication (decoy cell
shedding and/or BKPy-viremia and/or “definitive” PyVN) 21% (95% CI: 18.2–24.1%).

A comparative analysis of binary classification tests was conducted in a sub-cohort of
182 patients, with available test results for PyV-Haufen and decoy cell shedding and/or
BKPy-viremia collected in a time window of 74 weeks post transplantation (Table 2). For
patients with or without “definitive” PyVN, the PyV-Haufen test had a sensitivity of
100% and a specificity of 98%. In comparison BKPy-viremia with a cut-off of ≥250 viral
copies/mL by PCR had a high sensitivity of 97%, but a low specificity of 32%. Raising
the cut-off in the viremia test to ≥104 viral copies/mL increased the specificity to 80% but
decreased the sensitivity to 66%.

2.2.2. PyV-Haufen Testing: Quantitative Assay

Quantitative urinary PyV-Haufen test results were analyzed in a group of 73 adult
renal allograft recipients with an established biopsy-proven diagnosis of “definitive” PyVN,
who were transplanted at UNC between 2001 and 2016 (these patients were also included
in previous studies [16,17]). Index biopsies collected at time of initial diagnosis were
considered. Histologic findings were recorded according to Banff criteria. They included
scoring results of the percentage of tubules with morphologic evidence of PyV replication
(the Banff pv load/pvl-score), and the PyVN-disease classes [16–18,46,47]. All biopsies
fulfilled Banff adequacy criteria [47,48]. Data on BKPy-viremia, BKPy-viruria (both by
PCR), urinary decoy-cell shedding (urine cytology) and urinary PyV-Haufen shedding
were collected within a time window of +/− two weeks of index biopsy. The aim was to
correlate the degree of PyV-Haufen shedding with the severity of PyVN, i.e., the Banff pv
load, and the PyVN disease classes. For comparative purposes, the same correlations were
made using test results of viremia, viruria and decoy cell shedding. How accurately do
tests reflect the severity of “definitive” PyVN?
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Table 2. Comparative Analysis of Binary Classification Tests 1.

Test

Patients with
“Definitive”

PyVN
N 2

Patients with
“Definitive” PyVN

-and-
Positive Test 3

N

Sensitivity
(%)

Patients without
“Definitive”

PyVN
N

Patients without
“Definitive” PyVN

-and-
Negative Test 4

N

Specificity
(%)

Urine cytology/Decoys

≥2 tests with ≥10 cells 60 30 50 114 62 54

BKPy-viremia by PCR

≥104 viral copies/mL 61 40 66 102 82 80

≥250 viral copies/mL 61 59 97 102 33 32

Urinary PyV-Haufen 64 64 100 118 116 98

1 Cohort is limited to 182 patients with available PyV-Haufen test results -plus- either additional test results for decoy cell shedding and/or
BKPy-viremia. The overall prevalence of PyVN in this cohort is 35%. 2 A patient is listed as “positive” if ≥ two samples tested positive for
decoy cell shedding above threshold or ≥ one sample tested positive for BKPy-viremia above threshold or ≥ one sample tested positive
for PyV-Haufen shedding. All test results collected between transplantation and index biopsy were considered in the group of 64 PyVN
patients. 3 A patient is listed as “negative” if all available test results were negative or below threshold. 4 All test results collected within
74 weeks post transplantation were considered in the group of 118 patients without “definitive” PyVN.

The overall significance testing was conducted using the Kruskal–Wallis test. Correla-
tions were calculated using the Spearman Rank procedure. Due to the skewed nature of
the PyV-Haufen and PCR data, ranks were determined for these values and used in the
plots so that linear regression lines could be calculated. For the three PyVN disease classes,
test marker results are shown as medians and interquartile ranges (IQRs).

Scatter plots reflecting the relationship between quantitative test results of viremia,
viruria, PyV-Haufen shedding and the Banff pv load (percentage of virally injured tubules)
in corresponding biopsy tissue are illustrated in Figure 6A–C.
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Figure 6. (A–C): Scatter Plots. Illustrated are quantitative marker test results (y-axis) and PyVN
disease severity (percentage of virally injured tubules/Banff pv load based on SV40-T expression
by immunohistochemistry) in index biopsy (x-axis). For clarity, the x-axis is truncated at the 16%
mark since >98% of index biopsies showed a pv load ≤16%. (A) PyV-Haufen shedding (green);
(B) BKPy-viremia (red); (C) BKPy-viruria (blue).
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While PCR-based viremia and viruria test results varied broadly when plotted against
the pv load, that correlation was much tighter for quantitative PyV-Haufen testing. Spear-
man rank correlations between test markers and percentage of virally injured tubules/pv
load showed coefficients of 0.84 for PyV-Haufen testing, 0.36 for BKPy-viruria and 0.35 for
BKPy-viremia (Figure 7). When quantitative PyV-Haufen test results were correlated with
BKPy-viremia, the Spearman correlation coefficient was ρ = 0.36 (n = 64 patients, p = 0.004);
a slightly stronger association was found for BKPy-viruria, ρ = 0.42 (n = 69 patients,
p < 0.001).
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Figure 7. Severity of PyVN and corresponding test marker expression. Rank linear regression
modelling the relationship between quantitative marker test results (y-axis) and PyVN disease
severity (x-axis). Y-axis: PyV-Haufen: # per mL urine; BKPy-viremia: quantitative PCR test with
viral gene copy equivalents/mL plasma; BKPy-viruria: quantitative PCR test with viral gene copy
equivalents/mL urine. For individual test results, ranks were used in place of actual test values. X-
axis: percentage of virally injured tubules/Banff-pv load in index biopsy based on SV40-T expression
by immunohistochemistry. For clarity, the x-axis is truncated at the 16% mark, since >98% of index
biopsies showed a pv load <16%. N lists the number of samples available for testing in each of the
three marker categories. Green: PyV-Haufen shedding; blue: BKPy-viruria; Red: BKPy-viremia.

A quantitative PyV-Haufen test result also proved to be highly predictive for the PyVN
disease class (p-value < 0.001; Table 3). In contrast, the PyVN disease class could not be
reliably predicted by viremia and viruria levels (p-values between 0.09 and 0.1, respectively,
Table 3). Urine cytology and quantitation of decoy cell shedding did not correlate with the
severity of PyVN or with the disease classes.

Quantitative PyV-Haufen testing is also suited for monitoring PyVN progression
or regression during follow-up. Figure 8 illustrates test data from one seminal patient
post-diagnostic index biopsy. PyV-Haufen shedding gradually decreased, along with
biopsy-proven viral nephropathy, and ultimately ceased 9.5 months post index biopsy
when PyVN healed. All subsequent PyV-Haufen tests over months remained negative.
In contrast, BKPy-viremia initially decreased but subsequently remained positive beyond
PyVN healing (at levels ranging from 412 to 5625 BKPyV gene equivalents/mL plasma;
manuscript in preparation).
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Table 3. Test marker expression by PyVN disease class (at time of index biopsy).

PyVN Disease Class
(In Index Biopsy)Test Marker

(At Time of Index Biopsy) Statistic
Class 1 Class 2 Class 3 p-Value *

PyV Haufen Median 416.5 1411 7881 <0.001

(number/mL urine) IQR 282–451 903–3104 6732–9030

N 32 39 2

BKPy-viremia Median 1.39 2.74 11.83 0.098

(×104 viral copies/mL) IQR 0.31–3.48 0.59–10.02 2.52–21.13

N 27 35 2

BKPy-viruria Median 0.82 5.70 3.84 0.086

(×108 viral copies/mL) IQR 0.28–14.90 0.80–20.70 3.60–4.08

N 29 38 2

* Kruskal-Wallis test for Class 1 versus Class 2 (Class 3 excluded due to small case number) PyVN disease classes defined according to the
Banff classification [16–18].

2.3. Urinary PyV-Haufen Testing: Clinical Indications

Although the PyV-Haufen test was primarily validated for detecting PyVN in renal
allografts, the test works equally well for viral nephropathy in native kidneys since prereq-
uisites for Haufen formation, that is, high-intra-tubular uromodulin concentrations, are
universal kidney-specific characteristics independent of transplantation, gender, ethnicity
or age [49,50]. Since different PyV strains share structural characteristics, such as size and
surface composition, all cases of PyVN, whether caused by BKPyV, JCPyV, or possibly
SV40PyV replication [22,23], can be identified. Thus, in a case of JCPyV-induced PyVN,
PCR assays targeting BKPyV can be negative while a urinary PyV-Haufen test renders
positive results. Pilot studies also suggest that monitoring for disease evolution during
persistent PyVN can be optimized, since longitudinal quantitative PyV-Haufen test results
can provide data on changes in the severity of intra-renal viral disease. Of note: the Haufen
test is not suited to diagnose BKPyV associated hemorrhagic cystitis post bone marrow
transplantation (since PyV aggregates do not form in the bladder that contains low uro-
modulin concentrations) or to diagnose BKPyV-induced uro-renal carcinomas (due to the
lack of intra-neoplastic PyV replication) [6–8,51]. If urinary PyV-Haufen are found in the
latter patient cohorts, then an additional diagnosis of concurrent “definitive” PyVN with
intra-renal lytic PyV replication has to be made [49].

Due to the nature of the PyV-Haufen test requiring an EM, it is not suited as a
mass-screening assay (see below). Rather, it should be used as a targeted diagnostic
tool in patients at increased risk for “definitive” PyVN, i.e., those presenting with BKPy-
viremia or viruria or urinary decoy-cell shedding. The PyV-Haufen test is especially
beneficial for individuals who cannot easily undergo diagnostic renal biopsy, including
pediatric patients or those at risk of bleeding post hematopoietic stem cell transplantation.
Furthermore, the PyV-Haufen test can be used to confirm and diagnostically validate a
“PyVN negative biopsy result” (when tissue samples are small and limited) or to monitor
patients longitudinally including disease progression or regression.
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Figure 8. PyV-Haufen and BKPy-viremia test results during follow-up post diagnostic index biopsy. The degree of
“definitive” PyVN decreased with a reduced percentage of tubules expressing SV40-T antigen (follow-up biopsy 1), and
disease healed 9.5 months post diagnosis (follow-up biopsy 2). In parallel PyV-Haufen shedding decreased, ceased at time
of healing and remained negative thereafter. Conversely, after an initial decrease, BKPy-viremia remained detectable at
various levels over an extended period of time; BKPy-viremia levels did not mark PyVN healing.
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2.4. Urinary PyV-Haufen Testing: Technical Guidelines and Recommendations

Detailed protocols can be found in the Supplementary Material.

2.4.1. Urine Collection and Storage

Voided urine is collected following standard protocols for cytology evaluations. The
second morning, mid-stream urine is ideal. Diluted samples (post large fluid consumption)
or samples collected after extended bed rest (e.g., first morning urine) should be avoided.
Urine samples can be transiently kept at room temperature for approximately 30 min,
but should be fixed expeditiously with freshly made 4% paraformaldehyde (ratio 1:1). In
our experience, fixed urine samples are stable when stored at ambient temperature for
72 h, and for years at 4–8 ◦C with excellent PyV preservation. Of note, only fresh 4%
paraformaldehyde should be used for preservation of PyV capsid proteins, essential for
the proper ultrastructural identification of PyV-Haufen. Formalin should not be used for
fixation, as the PyV capsid proteins are degraded rendering the proper recognition of
virions impossible. Unfixed urine samples can be frozen at −80 ◦C and stored long term
with good viral preservation (in our experience, from months to years).

2.4.2. Grid Preparation for EM and Negative Staining Protocols

In urine samples, the number of PyV-Haufen varies from none (no PyVN) to abundant
(PyVN with histologic Banff pvl-score of 3). Fixed urine samples are prepared using a 4-step
method to significantly enhance EM analyses by generating cleaner and more concentrated
specimens. Step 1: Sample aliquots are first cleared of large impurities such as cellular
debris and membrane fragments by spinning the samples at low centrifugation to pellet out
the debris. Step 2: The supernatant is subsequently filtered through a 5 µm filter. Of note,
sample clarification does not lead to any appreciable loss of PyV-Haufen since their average
diameter is approximately 160–700 nm (thus, much smaller than the filter-pore size of 5 µm).
Furthermore, the overall low mass prevents PyV-Haufen from being pelleted/eliminated
in the clarification centrifugation step 1. Step 3: Critical to the success of negative staining
EM and for the detection of PyV-Haufen is sample concentration. Although PyV-Haufen
can be identified in fresh untreated urine samples, the possibility of false negative readings
increases if sample concentration steps are omitted. This is of particular importance in
patients with limited PyVN in disease class 1/with a pvl-score of 1, in whom intra-renal
disease is focal [16,17]. A number of techniques have previously been described in order
to effectively concentrate viruses for EM analyses, including sucrose and cesium chloride
gradient ultra-centrifugation. For routine clinical purposes, however, we concentrate the
clarified urine samples by ultra-centrifugation at 20,000 g (12,500 rpm) for 35 min. This
approach works very well since PyV-Haufen, in contrast to single virions, have a higher
overall mass and are, therefore, more easily pelleted. Step 4: After ultra-centrifugation,
150 µL of the pellet (containing concentrated PyV/PyV-Haufen) is kept and used for
subsequent EM grid preparation. The supernatant is discarded. Of note, in our experience,
analyzing over 1000 urine samples from both “man and mice”, there is no evidence that
the ultra-centrifugation step results in artificial PyV aggregation and erroneous in-vitro
PyV-Haufen formation, skewing test results.

For EM analysis, formvar/silicone dioxide coated copper grids are used. To ensure a
smooth, even spread of the sample and stain, grids must be rendered hydrophilic by glow
discharge immediately prior to use. The grid is then incubated at ambient temperature on
30 µL (of the 150 µL) pelleted sample collected in step 4, followed by two quick dips of
the grid in deionized water. Subsequently, the grid is stained with 2% uranyl acetate and
allowed to air dry. Grids are ready for immediate ultrastructural evaluation. Alternatively,
they can be archived for future batch evaluation in an EM grid storage box and kept in a
dessicator chamber in the dark for a period ranging from days to months. Of note, this
approach was developed with help from the Centers for Disease Control (CDC), using and
adapting CDC technical protocols for viral identification.
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2.4.3. PyV-Haufen Detection by EM: Best Practice Recommendations

EM grids are examined on a standard transmission electron microscope. We recommend
the systematic scanning of 25 grid squares at 50,000× magnification to screen for the pos-
sible presence of PyV-Haufen. Their definitive identification requires higher magnification
(80,000–100,000×) and the unequivocal detection of three-dimensional cast-like aggregated
polyomaviruses displaying the characteristic viral capsid substructure (see Section 2.1. above
for PyV-Haufen definition). PyV-Haufen are typically found along with varying numbers of
single virions and occasional flat, two-dimensional sheets of virions (Figure 4B). For clinical
purposes, specimens are generally qualitatively categorized as either “PyV-Haufen-positive
or negative” (since Haufen originate in virally injured renal tubules, even one characteristic
PyV-Haufen marks renal disease). Positive urine samples usually contain several Haufen of
various sizes, and these are commonly identified within the first 5–10 min of grid examination.
In PyVN disease class 1/in cases with a pvl-score of 1, however, urinary PyV-Haufen are less
abundant. We, therefore, recommend a total EM evaluation of 30 min per grid in order to
confidently render a diagnosis of “PyV-Haufen negative”.

When examining EM grids, the detection of individual virions or flat sheets of viruses
serves as a valuable indicator of viral activation. They also serve as an important internal
quality control for an adequate undilute urine sample [52]. The probability of PyV-Haufen
positivity rises to approximately 20% if individual free virions are noted in the background.

A quantitative analysis is performed by counting the total number of PyV-Haufen
in 25 randomly selected grid squares, requiring, on average, approximately 30 min of
scoping [43,53] The number of PyV-Haufen per ml urine is then calculated using a standard
formula for the quantitation of viruses in body fluids

Number of PyV–Haufen per mL urine =

total number PyV–Hau f en
25 EM grid squares

× whole EM f rid area
area o f 25 EM grid squarea

×
150µl1

30µl2

53 (1)

Formula for quantitation of viruses from body fluids (also see Supplementary Material
for details). 1 Volume of urine/pellet after ultracentrifugation (step 4 in Section 2.4.2).
2 Volume used for EM grid preparation from pellet in (1). 3 Volume of starting urine sample
at clarification step 2 (see Supplementary Materials; note that number is calculated by the
subtraction of 5mL of the added fixative from the total starting volume of 10 mL).

The total time from receipt of a voided urine specimen to a completed EM grid
examination is approximately 2–3 h. Multiple samples and multiple grids (in our experience
up to six) can be prepared in parallel and subsequently analyzed in batches. EM scope
time per grid varies, ranging from approximately 10 min for a qualitative assessment of
PyV-Haufen positivity to 30 min for a quantitative assessment or assessment of a PyV-
Haufen-negative sample. Of note, degenerated urine samples with abundant debris or
blood in the background (such as those seen with first morning urine collection or in
patients with hematuria) or highly diluted samples (such as those seen after large fluid
intake) are unsuited for proper PyV-Haufen analysis. These samples should be clearly
marked as “inadequate” and a new urine sample obtained for evaluation.

3. Conclusions

Viral infections with latency establishing double-stranded DNA viruses are relatively
common and generally remain clinically insignificant. In healthy individuals, they occa-
sionally undergo self-limiting asymptomatic cycles of replication, while “frank disease” is
rare and limited to immune compromised patients. Polyomaviruses fall into this category,
with the BKPyV strain causing PyVN in immunosuppressed kidney transplant recipients.
Patient management and clinical work-up for diseases caused by latency establishing
viruses, such as PyVN, are challenging. Which laboratory test reflects an asymptomatic
viral infection, and, on the other hand, what test result indicates disease with organ injury?
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The backstay for risk assessment of PyVN has been assays targeting PyV activa-
tion/replication. This approach is governed by the paradigm that viral disease requires
viral replication. Thus, negative predictive values for such tests are high: no evidence
of PyV replication, very low probability of PyVN [5,14,42]. However, the specificity and
positive predictive values of tests are diagnostically challenging. Generally, biopsies are
required to diagnose “definitive” PyVN with renal injury, and diagnostic hurdles are high.

Here, we describe a different approach using urinary PyV-Haufen testing to diagnose
“definitive” PyVN. In a 10-year observational time window, we followed 809 kidney trans-
plant recipients, 28% of whom presented with some evidence of PyV replication/activation,
i.e., urinary decoy cell shedding, and/or various levels of BKPy-viremia. Renal disease with
“definitive” PyVN, however, was only diagnosed in a subset of 36% of “PyV-replicators”.
The sub-cohort of patients with viral nephropathy was accurately identified by urinary
PyV-Haufen testing, with a sensitivity and specificity of ≥98%. In comparison PCR assays
targeting BKPy-viremia at cut-off levels of 104 viral copies/mL plasma, commonly used as
a laboratory test indicator for “presumptive” PyVN, showed sensitivity and specificity of
66% and 80%, respectively. Lowest sensitivity was noted for urinary decoy cell shedding.
In addition to accurately identifying diseased patients with “definitive” PyVN, quantitative
PyV-Haufen test results tightly reflected the severity of renal disease with a correlation
coefficient of 0.84. Quantitative test results were also predictive of the recently defined three
Banff PyVN disease classes. Such predictions could not be made based on BKPY-viremia
levels, showing only a modest correlation with PyVN disease severity, and no correlation
with the disease classes, or based on the quantification of decoy cell shedding. These results
further support our previously made observations [29,42,43].

Little is known about marker expression during persistent PyVN, and how accurate
test results might reflect disease progression, regression and healing. Previously, we
showed that patients with biopsy-proven clearance of PyVN ceased to shed PyV-Haufen,
while BKPy-viremia remained detectable in some individuals [42]. Here, we provide
quantitative PyV-Haufen “pilot data” from one patient, followed longitudinally over many
months. Under a reduction in immunosuppression, the degree of BKPyV induced tubular
injury decreased, and, finally, PyVN healed after 9.5 months. PyV-Haufen shedding
gradually decreased in parallel and turned negative at time of healing. Subsequently, PyV-
Haufen test results remained negative. Conversely, BKPy-viremia remained positive after
PyVN healing at intermittently high levels of >1000 BKPyV gene equivalents/mL plasma.
Further detailed prospective studies are underway to better characterize test results during
persistent and healing PyVN.

The accuracy of the PyV-Haufen test for identifying or excluding “definitive” PyVN
from the list of differential diagnoses seems to be astonishing. The explanation for this is
found in the very nature of the test, i.e., it is based on disease-specific intra-renal structural
changes with uromodulin modulated intra-tubular PyV aggregation [50]. Such changes
only occur in PyVN. The PyV aggregates are flushed into the urine, where they can be
detected as so-called PyV-Haufen. Thus, the genesis of Haufen is very similar to that of
other casts, such as red blood cells casts, carrying high predictive values for intra-renal
injury and disease.

The PyV-Haufen test offers new venues for patient management. First and foremost,
it allows for a non-invasive accurate distinction between patients with renal disease from
those without. This includes patient cohorts presenting with high viremia, conventionally
classified as “presumptive” PyVN [14]. Consequently, “presumptive” and “definitive”
PyVN, that have often been lumped and treated as one disease entity, can be accurately
separated, and the term “presumptive” possibly even avoided. How do patients with
renal disease and “definitive” PyVN differ from those only presenting with PyV replication
and high viremia? How can treatment modalities be adjusted? The PyV-Haufen test will
facilitate targeted future studies. Furthermore, the test optimizes clinical management
during persistent PyVN and longitudinal follow-up, since pilot data suggest that disease
severity and response to therapy can be monitored accurately. In the past, such patient
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monitoring has been difficult using conventional PCR-based assays since viremia and
viruria levels wax and wane, clouding diagnostic decision making. The PyV-Haufen test
will also reduce the need for invasive renal biopsies in certain circumstances. Compared
to invasive biopsies, the PyV-Haufen test is cheaper, less burdensome on patients, easily
repeated on new urine samples, and it does not carry any patient risk. Since urine represents
a “secretion-product” of the entire kidney, false negative test results, as encountered with
small renal biopsies, are uncommon in our experience.

However, the PyV-Haufen test does have some limitations, mainly arising from the
need for a transmission electron microscope, the time commitment and the level of EM
expertise required for the proper test evaluation. Thus, the test is unsuited for mass
screening, but rather serves as a targeted second-line assay in patients with evidence of
PyV replication and increased risk for PyVN, and first and foremost, in those with high
BKPy-viremia.

In summary, we describe clinical and technical specifics of the urinary PyV-Haufen test.
We compare test results with those of other conventional laboratory assays and highlight
its strength in diagnosing PyV induced renal disease, also referred to as “definitive” PyVN.
The test will allow for an improved diagnosis and, thereby, further our understanding of
biological and clinical differences between patients presenting with replicative cycles of
PyV versus those with organ injury and viral nephropathy.
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