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Abstract

Medical text classification, as a fundamental medical natural language processing task, aims to identify the categories to
which a short medical text belongs. Current research has focused on performing the medical text classification task
using a pre-training language model through fine-tuning. However, this paradigm introduces additional parameters
when training extra classifiers. Recent studies have shown that the “prompt-tuning” paradigm induces better performance
in many natural language processing tasks because it bridges the gap between pre-training goals and downstream tasks.
The main idea of prompt-tuning is to transform binary or multi-classification tasks into mask prediction tasks by fully exploit-
ing the features learned by pre-training language models. This study explores, for the first time, how to classify medical texts
using a discriminative pre-training language model called ERNIE-Health through prompt-tuning. Specifically, we attempt to
perform prompt-tuning based on the multi-token selection task, which is a pre-training task of ERNIE-Health. The raw text is
wrapped into a new sequence with a template in which the category label is replaced by a [UNK] token. The model is then
trained to calculate the probability distribution of the candidate categories. Our method is tested on the KUAKE-Question
Intention Classification and CHiP-Clinical Trial Criterion datasets and obtains the accuracy values of 0.866 and 0.861. In add-
ition, the loss values of our model decrease faster throughout the training period compared to the fine-tuning. The experi-
mental results provide valuable insights to the community and suggest that prompt-tuning can be a promising approach to
improve the performance of pre-training models in domain-specific tasks.
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results affect the performance of downstream tasks,
such as the detection of adverse medical events* or
the construction of a clinical decision support system
(CDSS).°

Introduction

Medical texts such as medical literature and electronic
medical records, contain valuable medical knowledge,
including the symptoms, diagnosis, and medications
of a particular disease.' Since learning such knowledge
by human experts can be labor-intensive, natural lan-
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guage processing (NLP) has increasingly influenced
the medical information research.”* Medical text clas-
sification (MTC), as a fundamental medical NLP task,
aims to identify the categories to which a short
medical text belongs, such as disease stage, allergy
intolerance, and organ status. The classification

Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei,
China

Corresponding author:

Fei Yang, School of Biomedical Engineering, Anhui Medical University,
Hefei, China.

Email: yangfei@ahmu.edu.cn

Creative Commons NonCommercial-NoDerivs CC BY-NC-ND: This article is distributed under the terms of the Creative Commons Attribution-

carmr®  NonCommercial-NoDerivs 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction
and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on
the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).


https://orcid.org/0000-0003-3096-2481
https://orcid.org/0000-0003-4551-0365
mailto:yangfei@ahmu.edu.cn
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/journals-permissions
https://journals.sagepub.com/home/dhj

DIGITAL HEALTH

For the MTC task, previous research has established that
the performance of machine learning® and statistical
approaches’ is highly dependent on the quality of feature
engineering. In contrast, deep learning models, such as
the convolutional neural network (CNN)® or the recurrent
neural network (RNN),” can provide improved performance
without additional manual feature selection. However,
regardless of the approach being used, its essence is still
to generate representations with abstract semantics and
predict the categories based on them. Thus, considering
that such models can only capture the semantic knowledge
within training sets, they are unsatisfactory since the degree
of improvement is still limited by the accessibility of
labeled training sets. Therefore, how to enrich the semantic
knowledge contained in the representations is the key to
improving the performance of MTC.

Much of the current literature in NLP pays special atten-
tion to pre-training language models (PLMs), such as bidir-
ectional encoder representations from transformers
(BERT), enhanced language representation with inform-
ative entities (ERNIE), and ELECTRA.'*'* Researchers
have conducted extensive studies and suggested that
PLMs have acquired rich prior semantic knowledge
during the pre-training process, such as the masked lan-
guage model (MLM) and next sentence prediction
(NSP)."*!* In the early stages of exploiting such knowledge
for the MTC, researchers added additional classifiers on the
top of PLMs and fine-tuned both of them using task-specific
objective functions.'>'® However, one major problem in
such a “fine-tuning” paradigm is that additional parameters
are introduced when tuning the extra classifiers. Therefore,
how to bridge the gap between pre-training objectives and
classification tasks has been considered as a critical factor
in making a PLM more suitable for MTC."”

Recently, a number of studies have demonstrated that
the “prompt-tuning” paradigm of PLMs induces better per-
formance on a variety of NLP tasks.'® The core concept of
prompt-tuning is to use a pre-training task from the pre-
training phase for a particular downstream task. For
example, given that BERT uses the masked language
model (MLM) during its pre-training phase, prompt-tuning
methods based on the BERT would be built around the
MLM task, which helps to reduce the difference between
the pre-training task and the downstream task. A typical
way to achieve such a paradigm is to wrap the input sen-
tence in a natural language template and have a PLM
perform the MLM. For instance, the sentence “The
patient has hypertension and diabetes.” shown in
Figure 1 can be wrapped into the new input sequence
with a template, and the probability of candidate words cor-
responding to the [MASK] token can be predicted by
MLM. Prompt-tuning can be divided into two types: hard
prompt-tuning and soft prompt-tuning. The former one is
relatively simple, has a lower training cost, and closely
resembles natural human language. However, a literature

search revealed that no previous study has attempted to
prove that prompt-tuning is also effective in classifying
medical text.

In addition, current research on prompt-tuning has
focused more on performing the downstream tasks based
on the BERT series PLMs, ignoring that the discriminative
PLMs, such as ELECTRA and ERNIE-Health'® are strong
alternatives. Inspired by the application of generative adver-
sarial networks (GANs) in the field of computer vision
(CV),20 the discriminative PLMs aim to design a discrimin-
ator to distinguish whether a generator replaces a single
token. It has been previously observed that the discrimina-
tive PLMs perform better in a variety of NLP tasks,”' but
their properties in the MTC remain unexplored.

The present research explores, for the first time, how to
classify medical texts leveraging a discriminative PLM in a
prompt-tuning paradigm. This study provides valuable
insights to the community and suggests that prompt-tuning,
can be a promising approach to improve the performance of
pre-training models in domain-specific tasks. Moreover,
this study mainly focuses on the fixed or hard prompt-
tuning, as these methods are more concise. The main con-
tributions of this study can be summarized as follows:

1. Firstly, this study provides new insights into MTC using
the ERNIE-Health, a discriminative PLM consisting of
a generator and a discriminator. ERNIE-Health is spe-
cifically designed for the medical domain, which
means that it may have a better understanding of
medical concepts and generate the representations
with more abstract prior semantic knowledge than
BERT, a more general-purpose model. This could
lead to better performance on tasks that require domain-
specific knowledge, such as the MTC task.

2. Secondly, in contrast to the existing prompt-tuning
approaches based on MLM, this study attempts to
perform prompt-tuning based on the multi-token selec-
tion (MTS) task, which is a pre-training task of
ERNIE-Health. The rationale for choosing the MTS
task for prompt-tuning in our study is based on the
core concept of prompt-tuning, which is to use a pre-
training task from the pre-training phase to reduce the
discrepancy between the pre-training and downstream
tasks. Unlike other discriminative PLMs, the discrimin-
ator of ERNIE-Health performs the MTS task in add-
ition to the replaced token detection (RTD) task, that
is, when the generator replaces a token, the MTS aims
to predict the original token from a candidate word
set. Specifically, we wrap the raw text into the new
input sequence with a template, and use the [UNK] to
replace the [MASK], forcing ERNIE-Health to predict
the word replaced by [UNK] and achieving the prompt-
tuning. In this way, the gap between the pre-training
goals and classification tasks is bridged, and the cat-
egory of a medical text can be inferred from the
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Figure 1. The illustration of prompt-tuning. The category “Disease” can be obtained by predicting the candidate word through masked

language model (MLM).

predicted word without additional parameters or classi-
fiers. Because prompt-tuning is a flexible method that
allows for fine-grained control over the input to the
model, the proposed method could be beneficial for
the tasks that require specific or complex input
formats, such as natural language inference or question
answering.

Thirdly, we test our method on the KUAKE-
Question Intention Classification (KUAKE-QIC)
and CHiP-Clinical Trial Criterion (CHIP-CTC) data-
sets, which are sub-tasks in the Chinese Biomedical
Language Understanding Evaluation (CBLUE).?
The experimental results show that the accuracy
values of our approach are between 0.866 and
0.861, which outperform the benchmark and previ-
ous approaches. In addition, the loss values of our
model decrease faster throughout the training
period compared to the method based on the fine-
tuning paradigm.

In summary, our proposed prompt-tuning approach bridges
the gap between pre-training and downstream tasks,
leverages prior semantic knowledge, and leads to improved
performance on specific tasks. We believe that this
approach represents a promising direction for future
research on MTC or other NLP tasks using PLMs in the
medical domain.

The overall structure of this study takes the form of six
sections. A brief review of the related work is presented
in the “Related work” section. The “Methods” section
deals with the methodology used in this study. The experi-
mental results are presented in the “Experiments and
results” section, while the discussion is provided in the
“Discussion” section. Finally, the “Conclusions” section
concludes this study with a summary.

Related work

Given that the method we propose falls under the theory of
supervised learning, this section provides an overview of
related work on MTC in supervised learning. Research on
machine learning methods for MTC has a long history,
with early examples including support vector machine
(SVM) and hidden Markov model (HMM). For instance,
Sarker and Gonzalez® used an SVM-based classifier to
automatically detect adverse drug reactions from medical
text, while Koopman et al.>* trained SVM classifiers with
detailed features to identify cancer-related causes. Kocbek
et al.?* presented a text-mining system to detect positive
cancer admissions, while Yi and Beheshti’ tested the appli-
cation of HMM in medical text classification. However, the
manual selection of appropriate features remains a key chal-
lenge, as it is time-consuming and labor-intensive.
Therefore, the existing literature on MTC mainly focuses
on identifying the categories based on deep learning and
pre-training models.

Deep learning

Deep learning methods have become popular since 2012
with the improvement of computer hardware, especially
the graphics processing unit (GPU). Over the past decade,
most research in the field of MTC has emphasized the use
of two standard deep learning models: the CNNs® and
RNNs.”

Convolutional neural networks. The CNN, originally used in
CV,* consists of convolutional kernels and pooling layers.
In NLP, researchers have applied CNNs to generate word
embeddings, capturing local features through pooling.
Rios and Kavuluru?® showed that CNNs outperformed pre-
vious approaches in biomedical text classification for
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assigning medical subject headings. Hughes et al.*” applied
CNNs to sentence classification in the Merck Manual
dataset, the first study of its kind in medical texts. Nii
et al.”® used CNNs to classify nursing-care texts and
extract essential parts for classification. Yao et al.?’ com-
bined rule-based features with a knowledge-guided CNN
model trained with word and entity embeddings from
Unified Medical Language System.

Recurrent neural networks. RNNs are more suitable than
CNN s for sequence modeling, which is crucial for text clas-
sification with sequential data. In medical text classifica-
tion, the long short-term memory (LSTM) and gated
recurrent unit (GRU), both RNN variants with gated
units, are more widely used due to their better handling of
gradient vanishing and explosion. Oleynik et al.*” evaluated
machine learning and LSTM for multi-label binary text
classification. Venkataraman et al.*! trained an RNN to
automate clinical record assignment. Liang et al*?
improved LSTM with a dual-channel mechanism for
Chinese medical text classification. Bangyal et al.>*
applied RNN and LSTM to COVID-19 fake news detec-
tion, a medical text classification task.

Hybrid methods and attention. A number of studies have
also proposed methods that take advantage of both CNNs
and RNNs. Zhou et al.** used an integrated CNN—RNN
framework to extract semantic and sequential features
from patient queries. Li et al.*® proposed a three-stage
hybrid method using BiLSTM and a regular expression-
based classifier for medical text classification. Ibrahim
et al.*® used a CNN and LSTM in a deep generic learning-
based hybrid multi-label classification method. Shin et al.”’
combined the attention mechanism and CNN to classify
radiology head CT reports and generated a heat map of
attended terms.

As can be seen, the core of these deep learning
approaches is to generate representations with semantic
knowledge using CNNs or RNNs. However, the semantic
knowledge can only be abstracted from the training sets.
In other words, the performance of these methods is still
limited by the inaccessible labeled training sets.

Pre-training language models

Much of the current literature on medical text classification
pays special attention to pre-training models. Inspired by
the ImageNet™® in the field of Computer Version, research-
ers have proposed pre-training language models, such as
BERT, ERNIE, ELECTRA, and ERNIE-Health for NLP.
All PLMs adopt a hierarchical architecture consisting of
several layers of transformer blocks as shown in Figure 2.
Each transformer block contains a self-attention mechan-
ism® that allows the model to pay attention to the different
parts of the input sequence and to capture long-range

dependencies. These models are pre-trained on large-scale
text corpora using various pre-training tasks to learn con-
textual representations of words and sentences. For
example, BERT uses the MLM and the NSP task, while dis-
criminative PLMs such as ELECTRA and ERNIE-Health
have an additional discriminator to determine whether a
token is “Original” or “Replaced,” that is, the Replaced
Token Detection (RTD) task, which allows them to gener-
ate representations with more abstract semantics. In add-
ition, ERNIE-Health uses a multi-task learning approach
with tasks such as RTD and MTS to capture domain-
specific knowledge and semantics relevant to the medical
domain. As shown in Figure 3, ERNIE-Health consists of
a generator and a discriminator. The generator is used to
perform an MLM task that infers what the masked word
is in the original sentence. The discriminator determines
sequentially whether each token has been replaced, that
is, the same RTD task as in ELECTRA. However, based
on the RTD results, ERNIE-Health also selects the original
word of the replaced word from the candidate word set, that
is, the MTS task.

There are two paradigms for transferring prior knowl-
edge to a specific downstream task: fine-tuning and prompt-
tuning. For the first one, extra classifiers are added on the
top of PLMs, and both are tuned using task-specific object-
ive functions. Almost all current work on MTC based on the
PLMs follows this paradigm. As an example, Qasim et al.'”
detected the fake news of COVID-19 by tuning BERT,
ROBERTa, and XLNet. Guo et al.'® evaluated six types
of PLMs on social media health-related text classification
tasks. An elaborate experiment conducted by Lu et al.**
verified that BERT performed best in all scenarios for clas-
sifying the presence or the absence of 16 diseases from
patient discharge summaries. Peng et al.*' found that the
BERT model pre-trained on PubMed abstracts and
MIMIC-II clinical notes performed best when tested on
the biomedical language understanding evaluation
(BLUE) benchmark. However, Gao et al.** showed that
BERT often fails to outperform these simpler benchmarks
when classifying MIMIC-III discharge summaries and
cancer pathology reports, limiting the application of trans-
formers for document classification on long clinical texts.

The disadvantage of fine-tuning is that it introduces add-
itional parameters and tunes extra classifiers. Recently, a
number of studies have demonstrated that prompt-tuning
induces better performance for NLP tasks. In such a para-
digm, the input sentence is wrapped into a natural language
template in order to bridge the gap between pre-training
goals and downstream tasks. For example, Jiang et al.*?
proposed a knowledgeable prompt-tuning method for the
fake news detection task. Li et al.** proposed a knowledge-
injected prompt-tuning model to detect events from the text
by identifying and classifying event triggers. To address the
problem that the number of labeled texts is small due to the
lack of specialized expertise, a prompt-tuning method for
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[SEP]
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multi-label text classification was introduced by Wei et al.*®

However, a literature search revealed that no previous study
has attempted to prove that prompt-tuning is also effective
in classifying the medical text.

Methods

This section first defines the MTC task, and then the pro-
posed model is introduced in detail.

Problem definition

For the MTC task, the input is a medical related sentence,
while the output is the category to which the sentence
belongs. Give a dataset D = {X, Y}, where X denotes the
set of training sentences, and Y denotes the set of labels cor-
responding to the training set. For any x; € X, and y; € Y, if
there exists a “belong-to” relation between x; and y;, then it
is denoted as d;; € D. The mapping function f(x;)y; is cal-
culated through the dataset D. For another dataset D' =
{X’, Y’} with the same distribution of labels as D, there
exists d;; = {x;, y;} and d;; € D". The J; = f(x}) should
be as close as possible to the true value yj’.. Therefore, the
key of the MTC task is to find an optimal model to deter-
mine the mapping function f(x;)y;.

Model architecture

The proposed model is shown in Figure 4, and the selected
pre-training model is the discriminator of ERNIE-Health, as
it is pre-trained on medical corpora. In contrast to the most
common paradigm fine-tuning, we utilize prompt-tuning to
formalize the classification task into a multi-token selection
problem, which is identical to the pre-training process.

(1) Input part

Give a text sequence X = {xo, X1, X2, X, }, @ mapping
function f(-) is used to wrap this sentence into X, with a
template, which is a piece of natural language text. As an
example, the raw text X in Figure 4 is “What is the best
therapy plan for diabetes.”, and the intent of this statement
should be classified as “treatment.” Then, we wrap X into
X, according to the following mapping function f(-):

f(X) = [CLS] A [UNK] intent : X [SEP]. (1)
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Figure &. The architecture of the proposed model.

We use the [UNK] token as a placeholder for the category
label in the language template. This token will be marked as
“replaced” in the output of the discriminator manually, and
the true word will be predicted during the MTS process. In
other words, in this case, the model is trained to predict
“treatment” at the position corresponding to the [UNK]
token in X),.

(2) Output part

Then, X,, is fed into the discriminator of ERNIE-Health to
obtain the representations H = {hjc1s), M1, Mo, hsgp} Of
input tokens. As mentioned above, ERNIE-Health conducts
two kinds of token-level pre-training tasks on the part of the
discriminator: RTD and MTS. The RTD aims to detect
whether a token is original or replaced, and once the token
is replaced, the MTS aims to select the original word from
a candidate set S.. In our model, the [UNK] token is
marked as “replaced” manually, and an MTS task is con-
ducted to predict the original word. Expressly, the candidate
set S, consists of category words, and the model will calcu-
late the probability P(JUNK] = w|X),, S.) of each word w in
the candidate S, according to the following equation:

€Xp [e(W)Th[UNK]]
Zw’eSL exXp [e(w/)Th[UNK]] ’

where e( . .. ) is the embedding lookup operation. Given that
the MTS operation is essentially a multi-classification
problem, the loss function is identical to the cross-entropy
error as the following equation:

P([UNK] = w) = @

N
loss = — Z pw")log [g(w™)], (3)
n=1

where p(w") denotes the probability distribution of the correct
word (i.e. the original word) to replace [UNK] and g(w")

denotes the probability distribution of the predicted word.
The training goal is minimizing the loss function above.

Experiments and results

This section introduces the dataset used in the experiment
and shows the performance of the proposed model. The
goal of this experiment is to validate the effectiveness of
the proposed method by evaluating the classification accur-
acy of all models listed in Tables 1 to 4 for the MTC task,
using the “KUAKE-QIC” and “CHIP-CTC” datasets. Since
previous models were based on fine-tuning, we first tested
the performance of fine-tuning with ERNIE-Health, and
then evaluated its performance with prompt-tuning. The
software environment for this experiment is the
Paddlepaddle' , an end-to-end open-source deep learning
platform developed by Baidu. In our experiments, we
used a server equipped with an 8-core CPU and a
NVIDIA Tesla V100 GPU, and 16 GB of RAM.

Dataset

The datasets used for our experiment are the “KUAKE-QIC”
and “CHIP-CTC,” which are sub-tasks of the CBLUE*
dataset.> The KUAKE-QIC contains short Chinese texts
related to patient inquiries and has proven to be a valuable
resource for the development and evaluation of natural
language processing techniques. Each sample in the dataset
is assigned a label indicating one of the following inten-
tions: “Diagnosis,” “Cause,” “Method,” “Advice,” “Metric
explain,” “Disease express,” “Result,” “Attention,” “Effect,”
or “Price.” If the intent of a sample does not fall into one
of these categories, it is labeled as“Other.” The dataset pro-
vides a diverse range of intentions that a patient may have
when seeking medical advice. This diversity allows for a
more comprehensive evaluation of the performance about
the proposed method on various patient inquiries. The
train set contains a total of 6931 samples, and the distri-
bution of the text labels is presented in Table 2. The
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Table 1. The distribution of labels in the CHiP-clinical trial criterion
(CHIP-CTC) dataset.

Disease 5127 1693
Symptom 154 52
Sign 286 91
Pregnancy-related activity 1026 342
Neoplasm status 131 49
Non-Neoplasm disease stage 103 34
Allergy intolerance 668 227
Organ or tissue status 358 120
Life expectancy 166 56
Oral-related 51 18
Pharmaceutical substance or drug 877 298
Therapy or surgery 1504 487
Device 129 39
Nursing 22 12
Diagnostic 1233 412
Laboratory examinations 1142 374
Risk assessment 708 233
Receptor status 28 10
Age 917 304
Special patient characteristic 104 33
Literacy 52 18
Gender 30 10
Education 19 8
Address 31 11
Ethnicity 13 5
Consent 1319 448
Enrollment in other studies 514 172

(continued)

Table 1. Continued.

Researcher decision 464 152
Capacity 168 50
Ethical audit 12 11
Compliance with protocol 370 130
Addictive behavior 272 90
Bed time 14 11
Exercise 21 7
Diet 61 20
Alcohol consumer 17 6
Sexual related 17 13
Smoking status 54 19
Blood donation 31 9
Encounter 66 28
Disabilities 17 8
Healthy 39 12
Data accessible 71 24
Multiple 4556 1536
Total 22,962 7682

distribution of labels in the dataset indicates that the most
common intention is “Query for method,” which accounts
for 25% of the total samples.

The CHIP-CTC dataset contains 44 pre-defined seman-
tic categories for filtering criteria and a set of descriptive
sentences for Chinese clinical trial screening criteria. The
goal of this task is to determine the specific category for
each screening criterion. It can be seen from Table 1 that
the training sample size of CHIP-CTC is three times
larger than that of KUAKE-QIC, and the number of cat-
egories is four times larger.

Hyper-parameters

The hyper-parameters involved in this experiment are listed
in Table 3. We used Adam as the optimizer and trained our
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Table 2. The distribution of labels in the KUAKE-question intention
classification (KUAKE-QIC) dataset.

Diagnosis 877 288
Cause 153 29
Method 1750 676
Advice 371 134
Metric explain 137 32
Disease express 594 158
Result 235 45
Attention 650 120
Effect 370 28
Price 177 50
Other 1617 395
Total 6931 1955

Table 3. Hyper-parameters.

Epoch 3 5
Learning rate 6x1073 5%10°
Input max length 64 128
Batch size 16 32

KUAKE-QIC: KUAKE-question intention classification; CHIP-CTC: CHiP-clinical
trial criterion.

model for three epochs with a batch size of 16 with
KUAKE-QIC, and for five epochs with a batch size of 32
with CHIP-CTC.

Evaluation metrics

We introduce the accuracy to evaluate the performance of
the models listed in Table 4. This metric is calculated
according to the following formulation where n denotes
the number of samples that predict correctly, and N

denotes the total number of samples.
n

A =— 4

ccuracy N “4)

Results of different models

First, we tested the performance of some popular PLMs on the
KUAKE-QIC dataset, and the experimental results are shown
in Table 4, where the BERT-base is the baseline model. As
mentioned before, BERT'? is a PLM that encodes the represen-
tations with prior semantic and syntactic knowledge through
pre-training tasks MLM and NSP. It is selected as the baseline
model in our experiment, and the baseline accuracy is 0.843
with fine-tuning. BERT-wwm-ext-base is an extended
version of BERT-base. This PLM is retrained based on the
initial checkpoint of the BERT-base and performs the pre-
training task on an extended corpus with Whole Word Mask
(WWM). Given that the WWM is more suitable for a
Chinese MTC because there is no separator between Chinese
words, BERT-wwm-ext-base improves the accuracy to 0.845
with fine-tuning. Furthermore, the base and large versions of
MacBERT" are all extended PLMs of BERT-base. The differ-
ence between these two kinds of versions lies in the number of
whole parameters and the dimensional size of the hidden
layers. The MacBERT optimized the WWM of
BERT-wwm-ext-base with N-gram masking strategies, and
the two types of versions of MacBERT gets the accuracy of
0.849 and 0.827 with fine-tuning, respectively. Moreover, the
RoBERT-large™® utilizes a random masking strategy and
obtains the representations with richer semantics compared to
the static masking strategy of BERT. The RoBERTa-
wwm-ext-large improved RoBERT-large using WWM, and
this PLM obtained the highest accuracy of 0.853 among the

PLMs listed in Table 4 except ERNIE-Health.
Given that the ERNIE-Health is pre-trained on medical

corpora, it gets an accuracy of 0.844 when fine-tuning,
slightly higher than the baseline. The approach we proposed
is to classify the medical texts with prompt-tuning using
ERNIE-Health, and this model obtains an accuracy of
0.866, which is higher than the result of RoOBERTa-wwm-
ext-large. Moreover, the architecture of the latter one is
more complex than it of our model. The number of trans-
former block layers and hidden layer sizes are 12 and 768
in our model, while these two indices are 16 and 1024 in
RoBERTa-wwm-ext-large, respectively. That means the
RoBERTa-wwm-ext-large may need more training time
but obtain a lower accuracy value than our model.

Second, we also tested the performance of the PLMs on
the CHIP-CTC dataset, and the experimental results are
shown in Table 4, where the BERT-base is also the baseline
model. The baseline accuracy is 0.854 with fine-tuning.
BERT-wwm-ext-base, as an extended version of
BERT-base, improves the accuracy to 0.856 with fine-
tuning. Furthermore, for the base-version and large-version
of MacBERT,"’ the two types of versions of MacBERT get
the accuracy of 0.854 and 0.855 with fine-tuning,
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Table &. The results of different models on the test set.

BERT-base (baseline)®® 0.843 0.848
BERT-wwm-ext-base™® 0.845 0.846
MacBERT-base"’ 0.849 0.851
MacBERT-large"’ 0.827 0.846
RoBERTa-wwm-ext-large*® 0.853 0.858
ERNIE-Health 0.844 0.866
Average = _

+0.05 0.854 0.855 +0.01
+0.01 0.856 0.858 +0.02
+0.02 0.855 0.854 —0.01
+0.19 0.856 0.855 —0.01
+0.05 0.857 0.858 +0.01
+0.22 0.857 0.861 +0.04
+0.09 = = +0.01

KUAKE-QIC: KUAKE-question intention classification; CHIP-CTC: CHiP-clinical trial criterion; BERT: bidirectional encoder representations from transformers;

ERNIE: enhanced language representation with informative entities.

Table 5. The results of T-tests. The hypothesis of the T-test is that
there is no significant difference in the means between the two
groups of random experiments.

BERT-base (baseline) 1.967x10~* 0.06125

ERNIE-Health 1.465x107 % 4.078x10~7

KUAKE-QIC: KUAKE-question intention classification; CHIP-CTC: CHiP-clinical
trial criterion; BERT: bidirectional encoder representations from
transformers; ERNIE: enhanced language representation with informative
entities.

respectively. Furthermore, the RoOBERTa-wwm-ext-large,
which is the improved version of the RoBERT-large*®
obtains the highest accuracy of 0.858 among the PLMs
listed in Table 4 except ERNIE-Health.

The ERNIE-Health obtains an accuracy of 0.857 when fine-
tuning, which is slightly higher than the baseline. The approach
we proposed achieves an accuracy of 0.861, which is higher than
the result of ROBERTa-wwm-ext-large, but the improvement is
modest. Similarly, given that the architecture of the latter one is
more complex than that of our model, the RoBERTa-wwm-
ext-large may need more training time but obtain a lower accur-
acy value than our model on the CHIP-CTC dataset, too.

Results of fine-tuning and prompt-tuning

Moreover, the performance of two types of paradigms: fine-
tuning and prompt-tuning based on the PLMs listed in

Table 4 are tested on both the KUAKE-QIC and
CHIP-CTC datasets. The experimental results are shown
in Table 4, where all the models based on the prompt-tuning
outperform those based on the fine-tuning when testing on
KUAKE-QIC, increasing the accuracy with an average
value of 0.09. However, the performance of the proposed
method on CHIP-CTC is not significant when compared
with KUAKE-QIC. Although the prompt-tuning based on
ERNIE-Health can still improve the accuracy by 0.04, the
average accuracy is only increased by 0.01, and even the
accuracy of the MacBERT series models is decreased.
Based on the findings presented in Table 4, it is evident
that the performance improvement of prompt-tuning is rela-
tively small for some PLMs. Consequently, we conduct
additional experiments to validate the statistical signifi-
cance of this accuracy improvement. Specifically, we
conduct random experiments based on fine-tuning and
prompt-tuning, respectively, and the seeds are randomly
assigned. Subsequently, a paired 7-test is performed to
compare the accuracy values obtained from two random
experimental groups. Given the limited sample size (the
number of each random experiments group is 10), a
Shapiro-Wilk test is performed to assess the normality of
the data prior to conducting the 7-test. The p-values of
the T-tests conducted on the fine-tuning and prompt-tuning,
utilizing both BERT-base and ERNIE-Health models, are
presented in Table 5. Notably, for the KUAKE-QIC
dataset, all p-values are found to be less than the signifi-
cance level of 0.05, indicating the statistical significance
for the improvement of prompt-tuning. For the
CHIP-CTC dataset, when we utilize ERNIE-Health, a sig-
nificant difference is observed between the fine-tuning
and prompt-tuning paradigms, with a p-value from the
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T-test below the significance level of 0.05. However, when
we use BERT, the p-value is slightly larger than 0.05. The
details of the random experiments are presented in the
Appendix.

In addition, we also record the loss-values at each train-
ing batch for fine-tuning and prompt-tuning based on the
ERNIE-Health. As shown in Figure 5(a), the red line repre-
sents the loss-values of fine-tuning and the blue line repre-
sents those of prompt-tuning. It is clear from this figure that
the prompt-tuning curve decreases more rapidly than the
fine-tuning curve, especially in the early stages of training.
However, since the loss-values are oscillating and decreas-
ing, we also provide the smooth version of the loss curves to
compare the two types of paradigms more clearly, which
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Figure 5. (a) The loss curves of fine-tuning and prompt-tuning, (b)
the smoothing curves of loss curves, and (c) the smoothing curves
of loss curves under logarithm.

can be found in Figure 5(b) and (c). The loss curves, as
shown in Figure 5(b), show more obvious that the loss-
values of prompt-tuning fall faster in the early stages.
Furthermore, Figure 5(c) illustrates the results when the
loss-values are taken logarithmically and shows that
the loss-values of prompt-tuning also decrease faster at
the later stage.

Results of different templates

Considering that the templates used in prompt-tuning may
affect the performance of text classification, we conducted
experiments to test the impact of different templates on
the accuracy of text classification, as shown in Table 6.
We differentiate these templates based on whether they
are closer to the natural language used by humans. From
Table 6, we can see that the closer the template is to the
natural language used by humans, the higher the accuracy
obtained by prompt-tuning.

Discussion

We tested our method on the KUAKE-QIC and CHIP-CTC
datasets and compared the results with those obtained by
some popular PLMs. It can be seen from Table 4 that our
method, for example, ERNIE-Health with prompt-tuning,
achieves the highest accuracy on both datasets. It can
increase the accuracy by 0.08 and 0.03 compared to the
RoBERTa-wwme-ext-large. In addition, the total parameters
and the hidden layers of our method are smaller than those
of ROBERTa-wwm-ext-large. Therefore, our model spends
less time on training and is less likely to overfit, which
makes it more competitive.

The results presented in Table 4 provide strong evidence
that prompt-tuning is an effective method for improving the
performance of PLMs. Essentially, the prompt-tuning para-
digm still performs a classification task, that is, calculating
the probability of the output word corresponding to the
[MASK] token in the template. The process still involves
computing each word in the entire word list and updating
the weights of the PLM which may still be downstream
task oriented. However, unlike the fine-tuning paradigm

Table 6. The results of different templates.

The [MASK]: [RAW] 0.8556
A [MASK] intent: [RAW] 0.8616
The intent is [MASK]: [RAW] 0.8621
The intent of [RAW] is [MASK] 0.8661
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Table 7. The results of random experiments on KUAKE-QIC.

BERT-base Fine-tuning 0.842131 0.843151 0.839061 0.843671 0.842641 0.1716 1.967x10~"
0.843151 0.846221 0.842641 0.844181 0.843151
Prompt-tuning 0.848207 0.846157 0.848207 0.848717 0.851787 0.6121
0.843087 0.849737 0.845137 0.849737 0.849227
ERNIE-Health Fine-tuning 0.842719 0.844769 0.844259 0.845279 0.844769 0.3743 1.465x107%0

Prompt-tuning

0.845279 0.843749 0.841699 0.844259 0.843229

0.863696 0.867796 0.867276 0.865746 0.865236 0.9924
0.862676 0.864716 0.866256 0.869326 0.867276

KUAKE-QIC: KUAKE-question intention classification; BERT: bidirectional encoder representations from transformers; ERNIE: enhanced language

representation with informative entities.

Table 8. The results of random experiments on CHIP-CTC.

BERT-base Fine-tuning 0.855690 0.855040 0.853610 0.852180 0.852180 0.4304 0.06125
0.855560 0.853610 0.854000 0.854780 0.853350
Prompt-tuning 0.858264 0.853974 0.854104 0.856834 0.852924 0.2444
0.857744 0.852674 0.853584 0.854364 0.855534
ERNIE-Health Fine-tuning 0.858248 0.857208 0.857988 0.856948 0.857468 0.358 4.078e-07

Prompt-tuning

0.855908 0.858248 0.855778 0.855518 0.856688

0.860800 0.862230 0.861060 0.861580 0.861190 0.8976
0.860150 0.860800 0.861580 0.860020 0.860600

CHIP-CTC: CHiP-clinical trial criterion; BERT: bidirectional encoder representations from transformers; ERNIE: enhanced language representation with

informative entities.

that uses the [CLS] token, prompt-tuning constructs a tem-
plate with the [MASK] token based on the raw input and
then allows the PLM to predict the output. The prompt-
tuning paradigm helps bridge the gap between pre-training
and downstream tasks, resulting in improved performance
on specific tasks. In contrast to the fine-tuning approach
adopted by other PLMs listed in Table 4, where additional
classifiers are added to the PLMs and both are fine-tuned
using task-specific objective functions, our proposed
model performs prompt-tuning leveraging the pre-training
task: MTS. This approach can be thought of as a kind of
MLM, where we wrap the raw text into a new input
sequence with a template and train the model to predict
the correct token to be replaced by [UNK] in the template.
The reason we use [UNK] to replace [MASK] is to force the
ERNIE-Health discriminator to select a word from the can-
didate word set to replace [UNK], thus achieving
prompt-tuning.

Importantly, our model is trained based on the initial
parameters that are the same as those of the pre-trained
ERNIE-Health, allowing us to fully exploit the prior seman-
tic knowledge encoded in ERNIE-Health. Moreover,
ERNIE-Health is pre-trained on medical corpora, and its
representations contain semantic knowledge relevant to
the medical domain. Therefore, our proposed method is par-
ticularly well-suited for tasks in the medical domain. We
note that the fine-tuning paradigm introduces additional
parameters, and the training process starts from scratch,
making it computationally expensive and time-consuming.
In contrast, our prompt-tuning approach is more efficient
and does not require additional parameters to be added to
the model. However, we found that the performance
improvement of our proposed method on the CHIP-CTC
dataset is limited, and in some cases, it is even inferior to
fine-tuning. We believe that the reason for this is related
to the size of the training set. The number of training
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samples of CHIP-CTC is four times higher than that of
KUAKE-QIC. At this point, the advantage of prompt-
tuning in bridging the gap between pre-training tasks and
specific downstream tasks may no longer be significant.

Furthermore, the experimental results presented in
Table 4 show that the accuracy of ERNIE-Health is slightly
higher than that of BERT-base when performing fine-
tuning. This observation highlights the importance of pre-
training on domain-specific corpora and leveraging prior
semantic knowledge when training PLMs for specific
downstream tasks.

In addition, we also show the loss curves for
ERNIE-Health based on fine-tuning and prompt-tuning.
As shown in Figure 5, the loss-values of prompt-tuning
decrease faster than those of fine-tuning, especially in
the early stages of training. Moreover, when plotting the
smooth version of the loss curve and illustrating the loga-
rithmical loss value, another important finding is that the
loss-values of prompt-tuning are lower than those of fine-
tuning not only in the early stage but also in the later
stage. This result can be explained by the fact that our
model (ERNIE-Health with prompt-tuning) is trained
based on the initial parameters that are the same as
those of a trained ERNIE-Health. Therefore, the model
can converge faster considering that the fine-tuning para-
digm requires additional classifiers to be trained from
scratch.

We also conduct random experiments to validate the
statistical significance of the accuracy improvement pre-
sented in Table 4. The p-values of four paired T-tests
listed in Table 5 provide the evidence that for the
KUAKE-QIC  dataset, irrespective of  whether
BERT-base or ERNIE-Health is employed, the p-values
derived from the T-test are below the significance level
of 0.05. Thus, it can be concluded that prompt-tuning
demonstrates significantly improvement relative to fine-
tuning on this particular dataset. For the CHIP-CTC
dataset, when ERNIE-Health is utilized, the p-value
derived from the T-test falls below the significance level
of 0.05. However, when BERT-base is employed, the
p-value marginally surpasses 0.05. Consequently, given
that the training sample size of the CHIP-CTC dataset is
three times greater than that of the KUAKE-QIC dataset,
it can be suggested that prompt-tuning may exhibit more
favorable performance on datasets with smaller-scale
training samples. This is consistent with the conclusions
we obtained from Table 4.

Finally, we also tested the performance of different tem-
plates on prompt-tuning. As shown in Table 6, the closer
the template is to natural language, the higher the accuracy
obtained. This is again due to the nature of prompt-tuning.
The closer the template is to natural language, the more
likely the PLM has “seen” it during pre-training.
Therefore, the probability of predicting the correct replace-
ment word is higher.

Conclusions

This study provides new insights into classifying medical
text using a discriminative PLM with prompt-tuning. The
discriminative PLM selected for this study is ERNIE-
Health, which is pre-trained on medical corpora. The MTC
task is performed following a pre-training task MTS
instead of adding additional classifiers as previous methods
did. Specifically, we wrap the raw text into a new input
sequence with a template and calculate the probability distri-
bution of candidate words corresponding to the [UNK]. The
category of a medical text can be inferred by the predicted
word without using extra parameters or classifiers. Finally,
the experimental results show that our method outperforms
the benchmark and previous approaches on both
KUAKE-QIC and CHIP-CTC datasets.

However, there are still potential challenges and oppor-
tunities for future research. Firstly, our method still relies on
the quality and quantity of training data. Insufficient or
noisy training data may negatively affect the performance.
Secondly, our method may not be robust to noise and
errors in the input. In the real world, the input text may
contain errors or noise, which may affect the performance.
Lastly, the generalizability of our model to other languages
and domains is an open research question. In our experi-
ments, we focused on the Chinese language and the
medical domain. However, the effectiveness of our model
in other languages and domains remains to be explored.
For the future work, we can further explore the importance
of domain-specific pre-training and prompt engineering for
other NLP tasks based on the proposed method, or explore
the generalizability of our method to other languages and
domains.

Acknowledgements: This research was supported by the
Medical Big Data Supercomputing Center System of Anhui
Medical University.

Contributorship: YW (Yu Wang) was the lead in
conceptualization, methodology, and initial manuscript draft
writing. YW (Yuan Wang) conducted the literature review. ZP
and FZ prepared the dataset. ZY contributed to code
implementation. FY was the lead in funding acquisition and
supervision. The manuscript was reviewed and edited by all
authors, and the final version was approved.

Declaration of conflicting interests: The author(s) declared no
potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

Ethical approval: This study not involve primary data collection,
and formal ethics approval will therefore not be required.

Funding: The author(s) disclosed receipt of the following
financial support for the research, authorship, and/or publication




Wang et al.

13

of this article: This research was supported by the Natural Science
Foundation of Anhui Province of China (Nos. 2108085MH303
and 2108085QF274) and the Initiation Fund of Anhui Medical
University (No. 1401039201).

Guarantor: FY.

Informed consent: Patient consent is not required because the
research does not involve primary data collection and we are
using publicly available medical text datasets that do not contain
private information.

ORCID iDs: Yu Wang () https:/orcid.org/0000-0003-3096-2481
Feifan Zhang https:/orcid.org/0000-0003-4551-0365

Notes

1. https:/github.com/paddlepaddle/paddle
2. This study utilized publicly available datasets without any
private information and no data collection was conducted.

References

1. Richter-Pechanski P, Geis NA, Kiriakou C et al. Automatic
extraction of 12 cardiovascular concepts from German dis-
charge letters using pre-trained language models. Digital
Health 2021; 7: 20552076211057662.

2. Altman R. Artificial intelligence (Al) systems for interpreting
complex medical datasets. Clin Pharmacol Ther 2017; 101:
585-586.

3. Névéol A, Dalianis H, Velupillai S et al. Clinical natural language
processing in languages other than English: Opportunities and
challenges. J Biomed Semantics 2018; 9: 1-13.

4. Saad E, Sadiq S, Jamil R et al. Predicting death risk analysis in
fully vaccinated people using novel extreme regression-voting
classifier. Digital Health 2022; 8: 20552076221109530.

5. Mujtaba G, Shuib L, Idris N et al. Clinical text classification
research trends: systematic literature review and open
issues. Expert Syst Appl 2019; 116: 494-520.

6. Sarker A and Gonzalez G. Portable automatic text classifica-
tion for adverse drug reaction detection via multi-corpus train-
ing. J Biomed Inform 2015; 53: 196-207.

7. YiK and Beheshti J. A hidden Markov model-based text clas-
sification of medical documents. J Inform Sci 2009; 35: 67-81.

8. Yahia HS, Abdulazeez AM et al. Medical text classification
based on convolutional neural network: a review. Int J Sci
Bus 2021; 5: 27-41.

9. Lavanya P and Sasikala E. Deep learning techniques on text
classification using natural language processing (NLP) in
social healthcare network: a comprehensive survey. In: 2021
3rd International Conference on Signal Processing and
Communication (ICPSC). IEEE, pp.603-609.

10. JDM W C Kenton and Toutanova LK. Bert: pre-training of
deep bidirectional transformers for language understanding.
In: Proceedings of NAACL-HLT. pp.4171-4186.

11. Sun'Y, Wang S, Li Y et al. Ernie 2.0: a continual pre-training
framework for language understanding. In: Proceedings of the
AAAI Conference on Artificial Intelligence, pp.8968—8975.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Clark K, Luong MT, Le QV et al. ELECTRA: pre-training
text encoders as discriminators rather than generators. In:
Proceedings of ICLR, pp.1-18.

Petroni F, Rocktischel T, Riedel S et al. Language models as
knowledge bases? In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pp.2463-2473.

Davison J, Feldman J and Rush AM. Commonsense knowl-
edge mining from pretrained models. In: Proceedings of the
2019 conference on empirical methods in natural language
processing and the 9th international joint conference on
natural language processing (EMNLP-IJCNLP), pp.1173—
1178.

Qasim R, Bangyal WH, Alqarni MA et al. A fine-tuned bert-
based transfer learning approach for text classification. J
Healthc Eng 2022; 2022.

Guo Y, Ge Y, Yang YC et al. Comparison of pretraining
models and strategies for health-related social media text clas-
sification. Healthcare 2022; 10: 1478.

Hu S, Ding N, Wang H et al. Knowledgeable prompt-tuning:
Incorporating knowledge into prompt verbalizer for text clas-
sification. In: Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), pp.2225-2240.

Schick T and Schiitze H. Exploiting cloze-questions for
few-shot text classification and natural language inference.
In: Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics:
Main Volume, pp.255-269.

Wang Q, Dai S, Xu B et al. Building chinese biomedical lan-
guage models via multi-level text discrimination. arXiv pre-
print arXiv:211007244 2021.

Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative
adversarial networks. Commun ACM 2020; 63: 139-144.
Minaee S, Kalchbrenner N, Cambria E et al. Deep learning—
based text classification: a comprehensive review. ACM
Computing Surveys (CSUR) 2021; 54: 1-40.

Zhang N, Chen M, Bi Z et al. Cblue: A chinese biomedical
language understanding evaluation benchmark. In:
Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp.7888-7915.

Koopman B, Zuccon G, Nguyen A et al. Automatic ICD-10
classification of cancers from free-text death certificates. Int
J Med Inform 2015; 84: 956-965.

Kocbek S, Cavedon L, Martinez D et al. Text mining elec-
tronic hospital records to automatically classify admissions
against disease: measuring the impact of linking data
sources. J Biomed Inform 2016; 64: 158—167.

Krizhevsky A, Sutskever I and Hinton GE. Imagenet classifi-
cation with deep convolutional neural networks. Commun
ACM 2017; 60: 84-90.

Rios A and Kavuluru R. Convolutional neural networks for
biomedical text classification: application in indexing bio-
medical articles. In: Proceedings of the 6th ACM
Conference on Bioinformatics, Computational Biology and
Health Informatics, pp.258-267.

Hughes M, Li I, Kotoulas S et al. Medical text classification
using convolutional neural networks. In: Informatics for



https://orcid.org/0000-0003-3096-2481
https://orcid.org/0000-0003-3096-2481
https://orcid.org/0000-0003-4551-0365
https://orcid.org/0000-0003-4551-0365
https://github.com/paddlepaddle/paddle
https://github.com/paddlepaddle/paddle

14

DIGITAL HEALTH

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Health: Connected Citizen-Led Wellness and Population
Health, 10S Press, 2017, pp.246-250.

Nii M, Tsuchida Y, Kato Y et al. Analysis of classification
results for the nursing-care text evaluation using convolu-
tional neural networks. In: 2017 6th International
Conference on Informatics, Electronics and Vision & 2017
7th International Symposium in Computational Medical and
Health Technology (ICIEV-ISCMHT), IEEE, pp.1-6.

Yao L, Mao C and Luo Y. Clinical text classification with rule-
based features and knowledge-guided convolutional neural net-
works. BMC Med Inform Decis Mak 2019; 19: 31-39.
Oleynik M, Kugic A, Kasa¢ Z et al. Evaluating shallow and
deep learning strategies for the 2018 n2c2 shared task on clin-
ical text classification. J Am Med Inform Assoc 2019; 26:
1247-1254.

Venkataraman GR, Pineda AL, Bear Don’t Walk IVO] et al.
Fastag: automatic text classification of unstructured medical
narratives. PLoS ONE 2020; 15: e0234647.

Liang S, Chen X, Ma J et al. An improved double channel
long short-term memory model for medical text classification.
J Healthc Eng 2021; 2021.

Bangyal WH, Qasim R, Ahmad Z et al. Detection of fake
news text classification on COVID-19 using deep learning
approaches. Comput Math Method Med 2021; 2021.

Zhou X, Li Y and Liang W. CNN-RNN based intelligent rec-
ommendation for online medical pre-diagnosis support. IEEE/
ACM Trans Comput Biol Bioinform 2020; 18: 912-921.

Li X, Cui M, Li J et al. A hybrid medical text classification
framework: integrating attentive rule construction and
neural network. Neurocomputing 2021; 443: 345-355.
Ibrahim MA, Khan MUG, Mehmood F et al. GHS-net a generic
hybridized shallow neural network for multi-label biomedical
text classification. J Biomed Inform 2021; 116: 103699.

Shin B, Chokshi FH, Lee T et al. Classification of radiology
reports using neural attention models. In: 2017 international
joint conference on neural networks (IJCNN), IEEE,
pp.4363—4370.

Deng J, Dong W, Socher R et al. Imagenet: a large-scale hier-
archical image database. In: 2009 IEEE conference on com-
puter vision and pattern recognition, leee, pp.248-255.
Vaswani A, Shazeer N, Parmar N et al. Attention is all you
need. Adv Neural Inf Process Syst 2017; 30: 6000-6010.

Lu H, Ehwerhemuepha L and Rakovski C. A comparative
study on deep learning models for text classification of
unstructured medical notes with various levels of class imbal-
ance. BMC Med Res Methodol 2022; 22: 1-12.

Peng Y, Yan S and Lu Z. Transfer learning in biomedical
natural language processing: an evaluation of BERT and
ELMo on ten benchmarking datasets. In: Proceedings of the
18th BioNLP Workshop and Shared Task. Florence, Italy:
Association for Computational Linguistics, pp.58-65.

Gao S, Alawad M, Young MT et al. Limitations of transfor-
mers on clinical text classification. IEEE J Biomed Health
Inform 2021; 25: 3596-3607.

43. Jiang G, Liu S, Zhao Y et al. Fake news detection via knowledge-
able prompt learning. Inf Process Manag 2022; 59: 103029.

44. LiH, Mo T, Fan H et al. Kipt: knowledge-injected prompt tuning
for event detection. In: Proceedings of the 29th International
Conference on Computational Linguistics. pp.1943—-1952.

45. Wei L, Li Y, Zhu Y et al. Prompt tuning for multi-label text
classification: How to link exercises to knowledge concepts?
Appl Sci 2022; 12: 10363.

46. Cui Y, Che W, Liu T et al. Pre-training with whole word
masking for Chinese BERT. IEEE Transactions on Audio,
Speech and Language Processing, 2021.

47. Cui Y, Che W, Liu T et al. Revisiting pre-trained models for
Chinese natural language processing. In Findings of the
Association for Computational Linguistics: EMNLP 2020,
pp-657-668.

48. Zhuang L, Wayne L, Ya S et al. A robustly optimized BERT
pre-training approach with post-training. In: Proceedings of
the 20th Chinese National Conference on Computational
Linguistics, pp.1218-1227.

Appendix

The appendix provides the details of the random experiments
mentioned in the “Results of fine-tuning and prompt-tuning”
section. Table 7 displays the results of fine-tuning and prompt-
tuning using BERT and ERNIE-Health on the KUAKE-QIC
dataset, including the accuracy values, p-values of Shapiro—
Wilk tests and 7-tests. Additionally, Table 8 presents the
experimental results on the CHIP-CTC dataset.

Based on the experimental findings, it can be observed that
the results obtained from eight random experiments satisfy the
normality assumption, as evidenced by the p-values of
Shapiro—Wilk tests exceeding the significance level of 0.05.
Consequently, paired 7-tests are conducted to examine
whether the prompt-tuning yields significantly improvement
compared to fine-tuning. From the findings presented in
Table 7, it is evident that for the KUAKE-QIC dataset, irre-
spective of whether BERT-base or ERNIE-Health is
employed, the p-values derived from the 7-test are below
the significance level of 0.05. Thus, it can be concluded that
prompt-tuning demonstrates significantly improvement rela-
tive to fine-tuning on this particular dataset. Conversely, as
illustrated in Table &, for the CHIP-CTC dataset, when
ERNIE-Health is utilized, the p-value derived from the
T-test falls below the significance level of 0.05. However,
when BERT-base is employed, the p-value marginally sur-
passes 0.05. Consequently, given that the training sample
size of the CHIP-CTC dataset is three times greater than that
of the KUAKE-QIC dataset, it can be suggested that prompt-
tuning may exhibit more favorable performance on datasets
with smaller-scale training samples.
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