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Chemical genetic-based phenotypic screen reveals novel
regulators of gluconeogenesis in human primary hepatocytes
Haixia Zou1, Qian Liu1, Li Meng1, Jingye Zhou1, Chenxiao Da1, Xikun Wu1, Lichun Jiang1, Jianyong Shou1 and Haiqing Hua 1

Insulin resistance is a pathophysiological hallmark of type 2 diabetes and nonalcoholic fatty liver disease. Under the condition of fat
accumulation in the liver, suppression of hepatic glucose production by insulin is diminished. In order to gain deeper
understanding of dysregulation of glucose production in metabolic diseases, in the present study, we performed an unbiased
phenotypic screening in primary human hepatocytes to discover novel mechanisms that regulate gluconeogenesis in the presence
of insulin. To optimize phenotypic screening process, we used a chemical genetic screening approach by building a small-molecule
library with prior knowledge of activity-based protein profiling. The “positive hits” result from the screen will be small molecules
with known protein targets. This makes downstream deconvolution process (i.e., determining the relevant biological targets) less
time-consuming. To unbiasedly decipher the molecular targets, we developed a novel statistical method and discovered a set of
genes, including DDR3 and CACNA1E that suppressed gluconeogenesis in human hepatocytes. Further investigation, including
transcriptional profiling and gene network analysis, was performed to understand the molecular functions of DRD3 and CACNA1E in
human hepatocytes.
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INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a multifactorial disease,
represented by heterogeneous patient populations with various
degrees of obesity, insulin resistance, and beta cell dysfunction.1

Among these factors, insulin resistance is an independent risk
factor of progressive deterioration from glucose intolerance to
diabetes.2 Liver steatosis induces hepatic insulin resistance and
strongly correlates with prediabetes and T2DM.3 Hepatic insulin
resistance leads to uncontrolled hepatic gluconeogenesis. There-
fore, therapeutics that improve hepatic insulin sensitivity and/or
suppress gluconeogenesis may be beneficial for the treatment of
T2DM. Phenotypic screen has been demonstrated to be a
powerful approach to discover novel drug targets and molecules.
For instance, FGF-21 was discovered to be a potent regulator of
glucose uptake phenotype in mouse 3T3-L1.4 One challenge of
small-molecule library-based phenotypic screening is the difficulty
to decipher the targets of effective small molecules, though
modern technologies including mRNA, protein, or image-based
profiling greatly facilitate and accelerate the deconvolution
process.5 On the other hand, functional genetics approaches
(e.g., siRNA and CRISPR) are used to identify potential drug
targets,6 but large amount of effort and time-consuming
processes are required to select the appropriate targets and
develop specific molecules for those targets.
In recent years, with the advance of human genome sequen-

cing technology and accumulated knowledge of small-molecule
libraries, chemical genetics has emerged as a powerful approach
to discover potential drug targets.7 Traditional genetics approach
uses gene knockout or RNAi technology to manipulate gene
function and screens for correlations between gene function and a
particular phenotype. Chemical genetics uses small molecules to

manipulate protein function and screen for correlations between
protein function and a particular phenotype. In the present study,
we used chemical genetics approach to seek for
protein–phenotype correlations that could relate insulin’s action
on human hepatocytes with a set of biological targets (regulators
of gluconeogenesis). Then, we used “specific modulators” (small
molecules that well validated to specifically inhibit or activate our
target proteins of interest) of the targets to further confirm the
function of identified biological targets. Among the confirmed
target genes, the functions of DRD3 and CACNA1E in hepatocytes
have not been extensively elucidated before. Therefore, we
performed a gene array study to further understand the
mechanisms by which they manipulate glucose homeostasis in
human hepatocytes. In the gene array study, we have chosen 84
genes whose function is related to insulin signaling and
gluconeogenesis. We used quantitative PCR to detect the mRNA
levels of these 84 genes before and after treatment of the “specific
modulators”. Our data demonstrated that both DRD3 and
CACNA1E regulate multiple genes in the pathway of glucose
metabolism. For instance, glucokinase, IRS4, and/or IRS2 are
upregulated more than twofold when the activity of DRD3 or
CACNA1E are inhibited. Therefore, DRD3 and CACNA1E are
potential therapeutic targets for the treatment of T2DM.

RESULTS
Establish a chemical genetic screening approach in human
primary hepatocytes
In order to identify genes that are involved in gluconeogenesis in
the presence of insulin, we first optimized glucose production
assay for primary human hepatocytes. We tested glucose
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production at different time points following starvation and
gluconeogenic substrates treatment to identify a study condition
with the best signal-to-noise ratio (Fig. 1a). We found that 6-h
starvation and 24-h substrates treatment was the optimal time
window for the detection of glucose production from human
primary hepatocytes. In addition to the commonly used gluco-
neogenesis substrates (pyruvate, lactate, and glycerol), we found
that addition of lysine significantly increased signal window (Fig.
1b). With the optimized assay format, we screened hepatocytes
from various human donors for their sensitivity to insulin and
glucose. A batch of hepatocytes from a single donor that showed
response to physiological levels of insulin (Fig. 1c) and glucagon
(Fig. 1d) was identified and used for this study.
We performed a validation experiment to assess the variability

of the assay in high-throughput mode. Among the 12 plates
tested, the range of coefficient of variation (CV) for MAX signal was
between 2.4 and 7.26, the CV of MIN signal was between 2.89 and
8.95, and range of Z′ (indicator of plate uniformity) was between
0.44 and 0.78 (Fig. 2). All parameters met industrial standard for
high-throughput screen. For phenotypic screen, a chemical library
of 1523 small molecules was compiled and each small molecule
had predefined molecular targets and selectivity profile based on
prior knowledge. The effect of each compound on gluconeogen-
esis was tested on the human hepatocytes with or without the
treatment of 1 nM insulin (Fig. 3a). An overview of compounds
showing inhibitory activity (Fig. 3b) and cytotoxicity (Fig. 3c) is

provided. We found that about 25% of compounds showed
cytotoxicity (<60% cell viability) and these compounds were
excluded from further investigation.

Statistical analysis for target deconvolution and ranking
After primary screening, 58 compounds with ≥60% inhibitory
activity on glucose production and ≥60% cell viability were found
to be active. In order to take both active and inactive compounds
into consideration, we developed a method to statistically rank
the molecular targets of the compounds in an unbiased manner
(refer to “Materials and methods” section for detailed description
of the method). Take HTR2A as an example to demonstrate the
scenario that AUC ranking can reduce the bias of neutral balance
factor ranking (Fig. 4). HTR2A ranked as 65 by neutral balance
factor. As shown in the AUC plot, neutral balance factor locates
near to the right plateau region of the curve. The first half of curve,
e.g., b1 < 0.5, suggests this target ranked very low when
contribution from active assay is low and its ranking rapidly
increases with b1 in 0.25–0.5 range. In other words, its ranking is
very sensitive to balance factor or less robust. Only using neutral
balance factor to rank will overestimate insulin sensitization
potential of HTR2A. The AUC takes the whole curve into
consideration and thus ranks HTR2A as 88. Other scenarios of
target deconvolution and ranking are also shown (Fig. 4).

Fig. 1 Optimize glucose production assay for primary human hepatocytes. a Ratio of MAX and MIN raw signal at indicated time points. Min:
basal glucose signal without gluconeogenic substrates treatment; Max: glucose signal with gluconeogenic substrates treatment. 6–3 h/6–24 h:
starve cells for 6 h and treat cells with gluconeogenic substrates for 3 or 24 h, respectively; 24–3h: starve cells for 24 h and treat cells with
gluconeogenic substrates for 3 h. (n= 3). b Absorbance at 570 nm when treating human primary hepatocytes with pyruvate, lactate, glycine
with or without lysine. (n= 3). c Dose response of gluconeogenesis inhibition by insulin. (n= 3). d Dose response of gluconeogenesis
stimulation by glucagon. (n= 3)
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Identification and validation of targets involved in glucose
metabolism
After statistical analysis, top 50 targets that are potentially
involved in gluconeogenesis were identified (S1 Fig). To test
whether these gene targets were indeed involved in glucose
homeostasis in human hepatocytes and also to test the interaction
of these genes with insulin, we selected a “specific modulator” for
each target protein. Based on the availability of specific
modulators to us, we tested the effects of 18 modulators among
the top 50 targets in gluconeogenesis with and without the
presence of insulin (Table 1). The effect of CXCR2 was not
confirmed due to the fact that the antagonist molecule MK7123
interfered with glucose detection method and the effects of
TRPM8 and TRPV1 were not confirmed due to cytotoxicities of
these molecules to primary hepatocytes. Among the rest of the 15
gene targets, we selected 5 genes (CACNA1E, DRD3, HTR1A, LXR,
and SCD) to perform detailed analysis. We found that modulation
of these five genes all led to suppression of gluconeogenesis (Fig.
5a). We also could confirm that modulation of all five genes clearly
suppressed gluconeogenesis in the presence of insulin (Fig. 5b).

Gene network analysis to understand molecular mechanisms of
DRD3 and CACNA1E
To further understand the mechanisms by which the five genes
regulate gluconeogenesis in human hepatocytes, we performed a
qPCR array study and monitored gene expression of a list of genes
involved in glucose production and insulin sensitivity (S2 Fig and
S3 Fig). Genes that were significantly (P < 0.000001) up or
downregulated (fold change > 2) are presented in a heat map or
a table (Fig. 6a and Table 2). Among these genes, we found
upregulation of IRS2 and/or IRS4 and GCK (glucokinase), which are
regulators of insulin sensitivity and glucose homeostasis in
hepatocytes (Fig 6a and Table 2). Since the connection between
CACNA1E and hepatocyte gluconeogenesis is a novel finding, we
performed gene network analysis for CACNA1E to better under-
stand which genes’ expression levels correlate with the expression
of CACNA1E, and IRS4 and GCK were indeed within the co-
expression gene network (Fig. 6b).

DISCUSSION
Here, we carried out a chemical genomics study aiming to identify
genes involved in the regulation of gluconeogenesis in human
primary hepatocytes. With a stepwise screening approach, we
identified genes that are highly relevant to gluconeogenesis
process in response to insulin. Limitations of this study include the
limit of the chemical library, experimental design, and lack of
validation in animal. Although, we used physiological levels of
substrates and insulin, the in vitro cellular system cannot fully
recapitulate the in vivo system. Therefore, we are not certain that
the mechanism we identified will translate from human cells to
human body. Nevertheless, these data suggest several mechan-
isms that are involved in gluconeogenesis. Both LXR and SCD have
been demonstrated to be downstream effectors of insulin action
and glucose metabolism in hepatocytes through regulation of
lipid metabolism,8–10 thus identification of these targets increases
our confidence about the relevance of this approach. Of note,
some mechanisms that we identified have not been considered to
be involved in hepatocyte glucose homeostasis. Modulation of
serotonin signaling pathway has been demonstrated to be
efficacious in the treatment of obesity, mostly through regulation
of its functions in central nerve system.11 The function of
serotonin in peripheral system, especially in liver, has not been
extensively reported. Moore et al. showed that serotonin enhances
net glucose uptake when infused into fasted dogs through portal
vein.12 More recently, it has been reported that serotonin acts
synergistically with insulin to modulate hepatic 6-phosphofructo-
1-kinase and glycolysis in hepatocytes through HTR2A receptor.13

Our results suggest that blocking HTR1A on hepatocytes affects
gluconeogenesis, possibly also in synergy with insulin. Taken
together, serotonin pathway acts on glucose uptake, glycolysis,
and gluconeogenesis process in hepatocytes.
DRD3 (dopamine receptor D3) is a subtype of dopamine

receptor that is primarily expressed in the brain and is suggested
to play a role in cognition and emotional function. Although there
is a report indicating that DRD3 is associated with diabetes in
human,14 the exact mechanism has not been elucidated so far.
Here, we found that antagonism of DRD3 has a strong effect in
suppressing gluconeogenesis in human hepatocytes. Further

Fig. 2 Validation of high-throughput glucose production assay. The glucose production assay of primary hepatocytes was validated in 12 96-
well plates (1152 wells in total) to assess assay variability. Concentrations of insulin were titrated as indicated in the figure. The X-axis indicates
well number and the Y-axis indicates raw signal value of absorbance at 570 nm
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investigation is required to identify downstream signaling events
that mediate its effects in hepatocytes.
Of particular interest, the function of CACNA1E in hepatocyte

has not been extensively studied previously. CACNA1E is the
major subunit of the voltage-dependent CaV2.3 Ca2+ channel,
which is a non-L-type high-voltage-activated calcium channel that
mediates calcium entry into cells upon membrane depolarization.
CaV2.3 is found to be highly expressed in neuronal cells and
pancreatic beta cells. So far, three studies in different ethnic

groups reported association of CACNA1E variants with type 2
diabetes15–17 and investigation of molecular functions of the gene
has been focused on pancreatic beta cells.18,19 Our data for the
first time suggest that CaV2.3 also plays a role in hepatocytes.
Intracellular-free Ca2+ is a highly versatile second messenger that
regulates a wide range of functions in every type of tissue,
including liver. Many of the metabolism-related functions of the
liver, including vesicular trafficking, bile secretion, glucose and
lipid metabolism, and mitochondria functions, are regulated by
raising intracellular Ca2+ in hepatocytes. Further understanding of
the role of CaV2.3 may provide insight into the association
between calcium signaling and hepatic gluconeogenesis.
An interesting phenomenon is that among the selected 18

modulators, there is a high frequency of nuclear receptor,
including LXR, RARA, and RXRA. On the other hand, the compound
library is diverse to start with and is not biased toward nuclear
receptors. Therefore, our finding implies the importance of nuclear
receptors in the regulation of gluconeogenesis.
In conclusion, this study demonstrated a viable approach

combining chemical genetics and phenotypic screening to
efficiently identify molecular mechanisms in particular pathophy-
siology of interest. Through this approach, we identified DRD3 and
CACNA1E to be potential targets for the treatment of type 2
diabetes.

METHODS
Reagents
Human primary hepatocytes and plating media were purchased from In
Vitro Technologies (Baltimore, MD; product no. M00995-P; lot no. FOS).
Recombinant human insulin and glucagon, fetal bovine serum (FBS), and
sodium pyruvate were from ThermoFisher Scientific (Waltham, MA). Bovine
serum albumin (BSA) was from EMD Millipore (Billerica, MA). Sodium
lactate, glycerol, lysine, GW3965, SB277011-A, BMS753, AZD1152HQPA,
A740003, and A841720 were from Sigma-Aldrich (St. Louis, MO). SB-

Fig. 3 Chemical genetic approach to identification targets involved in hepatic glucose metabolism. a Illustration of work flow for the chemical
genetic screening. b Overview of number of compounds with indicated inhibitory activity in the primary screen. c Overview of compound-
caused cytotoxicity by showing cell viability test (x-axis) with a total of 80 compounds

Fig. 4 AUC of target ranking using series of balance factors.
Representative targets were used to depict different scenarios
resulting from balanced factors analysis. Each color line represents a
target. Target names as well as their AUC rankings are shown in the
figure. Neutral set of balance factor is b1= 0.5 and b2= 0.5, e.g.,
active and inactive assay both contributes half in the final ranking.
Rankings of this balance factor are also displayed in the middle of
each line. Overall, this neutral balance factor ranking correlates very
well with the AUC ranking as we expected (Kendall’s rank correlation
τ= 0.865)
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742457, WAY100635, Ab142089, and MK7123 were from Nanjing Norris
Pharm Technology Co., Ltd (Nanjing, China). SNX482, A 784168, CD3254,
SB205607, AMTB, and ICI182,780 were from R&D Systems (Minneapolis,
MN). SL0101 and SB269970 were from Merck Chemicals (Shanghai, China).

Phenotypic screen
Phenotypic screen described in the current study refers to a method for
scientific experimentation performed in a high throughput and statistically
meaningful manner. The readout of the method is a cellular response,
represented by particular phenotype. A target refers to proteins or nucleic
acids that chemical compounds bind and cause a change in its behavior or
function. A compound with a desired size of effects in the phenotypic
screen is defined as active. In the present investigation, the phenotype was
glucose production from primary hepatocytes. The phenotypic screen in
the study was composed of robotics, liquid handling devices, detectors,
and data analysis process. In the present study, phenotypic screen allowed
efficient test of thousands of chemical compounds. Through the process,
compounds that modulate gluconeogenesis were identified. The chemical

library used in the study contains a set of small molecules that inhibit or
activate “druggable proteins” (proteins with potential to be modulated by
a drug-like small molecule). The druggable proteins are predicted on the
basis of sequence and structural similarity to the targets of existing drugs.
For detailed information about druggable proteins, please refer to the
knowledge portal build by Illuminating the Druggable Genome (IDG)
consortium (https://druggablegenome.net/).

Glucose production assay
Human primary hepatocytes were recovered in plating media supple-
mented with 10% FBS, then seeded into collagen I-coated 96-well plates
(ThermoFisher Scientific, Waltham, MA) and incubated at 37 °C in a 5% CO2

in air atmosphere for overnight. Then, cells were starved in GOM buffer
(118mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 25 mM
NaHCO3, 1.2 mM CaCl2, pH= 7.4) plus 0.1% BSA for 6 h. After starvation,
cells were further treated with different stimulants including insulin,
glucagon, or compound (10 µM) ± insulin (1 nM) in the presence of
gluconeogenic substrates (0.15mM pyruvate, 1.5 mM lactate, 0.25mM

Table 1. Summary of 18 selected modulators

Target Specific modulator Type of modulation Suppression of gluconeogenesis (%) Suppression on top of insulin (%)

AURKB AZD1152HQPA Inhibitor 4 1

CACNA1E SNX482 Blocker 25 26

CXCR2 MK7123a Antagonist NA NA

DRD3 SB277011-A Antagonist 84 51

ESR1 ICI182,780 Antagonist 19 7

GRM1 A841720 Antagonist 2 3

HTR1A WAY100635 Antagonist 29 33

HTR6 SB-742457 Antagonist 15 4

HTR7 SB269970 Antagonist 12 7

LXR GW3965 Agonist 72 38

OPRD1 SB205607 Agonist 20 4

P2RX7 A740003 Antagonist −6 1

RARA BMS753 Agonist −28 −19

RPS6KB2 SL0101 Inhibitor 1 3

RXRA CD3254 Agonist 11 3

SCD Ab142089 Inhibitor 31 26

TRPM8 AMTBb Blocker NA NA

TRPV1 A 784168b Antagonist NA NA

The effects on gluconeogenesis in combination with insulin (ainterference with detection method, bcytotoxicity). The values in the table represent three
replicated experiments

Fig. 5 Validation of five target proteins with well-characterized specific modulators. a Inhibition of gluconeogenesis by indicated modulators
(expressed as % of inhibition) (n= 3). b Additional inhibition of gluconeogenesis by indicated modulators on top of 1 nM insulin (n= 3)
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glycerol, and 2mM lysine) for 16 h. Glucose concentration in cell culture
media was determined by Amplex Red Glucose/Glucose Oxidase Assay Kit
(ThermoFisher Scientific, Waltham, MA). Absorbance at 570 nm was
recorded by SpectraMax® M5 Microplate Reader (Molecular Devices LLC,
Sunnyvale, California). All compounds were tested at 10 µM, except
SNX482 was used at 220 nM. Min control was defined by glucose
production with vehicle (1% DMSO or buffer) without gluconeogenic
substrates, while Max control was defined by glucose output in the
presence of vehicle (1% DMSO or buffer) and gluconeogenic substrates.
Final data were expressed as %Control or %Suppression of glucose

production calculated by the following equations.

%Control ¼ 100� Test�Minð Þ= Max�Minð Þ;

%Suppression ¼ 100� 100� Test�Minð Þ= Max�Minð Þ
Cell viability was determined by assessing ATP level in compound-

treated cells by CellTiter Glo Luminescent Cell Viability Assay (Promega,
Madison, WI).
A counter assay to assess compounds’ interference with glucose assay

kit was carried out by mixing compounds with 37.5 μM glucose before
proceeding glucose detection by kit. Compounds with ≥60% inhibition of
gluconeogenesis were defined as “active” and compounds with <60%
inhibition of gluconeogenesis were defined as “inactive”.

Statistical analysis
We developed a two-step approach to evaluate the insulin sensitization
potential of each target based on glucose production assay data. Step one
was to analyze active and inactive potential separately and they were
combined in step two.
As described in previous section, both active and inactive glucose

production assays were performed. For a particular target, total number of
compounds having been tested and number of compounds having
positive results were counted. We limited the statistics analysis to 178
targets, which had at least one positive result in active assay.
In step one, data from these two types of assays were used separately to

calculate the active and inactive score (S) for each target:

Si;j ¼ pi;j
a ´wi;j

;

i ¼ 1; 2 for active and inactive assays; j ¼ 1; ¼ ; 178 for targets

(1)

where p was proportion of compounds that had positive results in all
compounds tested in glucose production assay, w was the width of p’s
Wilson intervals,19 a was adjustment factor.

Fig. 6 Downstream effector genes of CACNA1E and gene network analysis. a Genes with their expression levels differentially changed by the
treatment of five compounds (SNX482, SB277011-A, WAY100635, GW3965, and Ab142089) were presented with heat map visualization using R
package gplots, with color indicating fold change under treatment (cutoff at fold change more than twofold and P value less than 0.05). The
values used to generate the heat map represent three replicas. b Gene interaction network built based on SNX482-targeted gene CACNA1E

together with genes that were differentially expressed under SNX482
treatment

Table 2. Gene upregulated by DRD3 antagonist on top of insulin

Gene symbol Fold regulation P value

TG 12.31 <0.000001

PRKCG 4.45 <0.000001

IRS4 4.45 <0.000001

GCK 4.45 <0.000001

PRL 4.45 <0.000001

RETN 4.45 <0.000001

PCK2 2.42 <0.000001

IGF1R 2.35 <0.000001

IRS2 2.04 <0.000001

IGFBP1 2.02 <0.000001

Fold change (2(−ΔΔCT)) is the normalized gene expression (2(−ΔCT)) in the
test sample divided by the normalized gene expression (2(−ΔCT)) in the
control sample. Fold regulation represents fold change results in a
biologically meaningful way. The p values are calculated based on a
Student’s t test of the replicate 2(−ΔCT) values for each gene in the control
group and treatment groups. Each group contains three arrays
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In this calculation, targets with higher proportion of positive results will
have higher score. For targets that have the same proportion, the ones
with more evidence, e.g., more compounds being tested, will have higher
score since more sample size leads to smaller confidence interval. The
adjustment factor a was introduced to balance impacts of proportion and
evidence. We found a= 1 worked well in this study.
Since total number of compounds tested in active and inactive assays

were very different, e.g., on average a target had 35-folds more
compounds tested in inactive assay than active assay, we standardized
S1 and S2 separately before combining them in step two:

Zi;j ¼ Si;j�μi
σi

;

i ¼ 1; 2 for active and inactive assays; j ¼ 1; ¼ ; 178 for targets

(2)

whereas µ and σ were mean and standard deviation of Si calculated from
all compounds for active and inactive assay.
In step two, standardized scores Zi,j were combined to obtain the

combined insulin sensitization score (Ib,j). Balance factor (b) was applied to
control contributions from active and inactive scores.

Ib;j ¼
P

i¼1;2
bi ´ Zi;j ;

i ¼ 1; 2 for active and inactive assays; j ¼ 1; ¼ ; 178 for targets
(3)

where bi is the balance factor that satisfies b1+ b2= 1.
For a particular set of balance factor b, for example, b1= 0.5 and b2=

0.5, rank of insulin sensitization score of each target was obtained.

Rb;j ¼ rank Ib;j
� �

;

b is set of balance factor b1 þ b2 ¼ 1; j ¼ 1; ¼ ; 178 for targets

(4)

We calculated ranks for 99 sets of balance factors (b1= 0.01–0.99 with
0.01 increment) to cover the whole range and derived the area under
curve (AUCj) for each target j from the b1 vs. Rb,j plot. Finally, insulin
sensitization potential of targets were ranked by AUCj.
AUC of a few targets were shown in Fig. 4 and the full ranking table can

be found in supplementary.

Metabolic qPCR array and gene network analysis
Human primary hepatocytes in plating media with 10% FBS were seeded
into collagen-coated 6-well plates (ThermoFisher Scientific, Waltham, MA)
and incubated at 37 °C in a 5% CO2 in air atmosphere for overnight. Cells
were then starved in Medium 199 (ThermoFisher Scientific, Waltham, MA)
with 0.1% BSA for 4 h before treating with 1 nM insulin ± 10 µM
compounds (220 nM for SNX482) for another 16 h. mRNA were collected
using RNeasy plus mini kit, and then reverse transcribed by RT2 HT first
strand kit and finally analyzed by human insulin signaling pathway PCR
array according to their handbooks (Qiagen, Chatsworth, CA). Real-time
PCR results were collected by ABI 7900HT instrument (Applied Biosystems,
Foster City, CA). Genes with their expression levels differentially changed
were presented with heat map visualization using R package. CACNA1E-
associated gene changes were filled into Genemania and gene interaction
network was generated with default parameters.
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