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Toward a Hybrid Passive BCI for the
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Alexander J. Karran* , Théophile Demazure, Pierre-Majorique Leger,
Elise Labonte-LeMoyne, Sylvain Senecal, Marc Fredette and Gilbert Babin

HEC Montréal, Université de Montréal, Montréal, QC, Canada

We report results of a study that utilizes a BCI to drive an interactive interface
countermeasure that allows users to self-regulate sustained attention while performing
an ecologically valid, long-duration business logistics task. An engagement index
derived from EEG signals was used to drive the BCI while fNIRS measured
hemodynamic activity for the duration of the task. Participants (n = 30) were split into
three groups (1) no countermeasures (NOCM), (2) continuous countermeasures (CCM),
and (3) event synchronized, level-dependent countermeasures (ECM). We hypothesized
that the ability to self-regulate sustained attention through a neurofeedback mechanism
would result in greater task engagement, decreased error rate and improved task
performance. Data were analyzed by wavelet coherence analysis, statistical analysis,
performance metrics and self-assessed cognitive workload via RAW-TLX. We found that
when the BCI was used to deliver continuous interface countermeasures (CCM), task
performance was moderately enhanced in terms of total 14,785 (σ = 423) and estimated
missed sales 7.46% (σ = 1.76) when compared to the NOCM 14,529 (σ = 510), 9.79%
(σ = 2.75), and the ECM 14,180 (σ = 875), 9.62% (σ = 4.91) groups. An “actions
per minute” (APM) metric was used to determine interface interaction activity which
showed that overall the CCM and ECM groups had a higher APM of 3.460 (SE = 0.140)
and 3.317 (SE = 0.139) respectively when compared with the NOCM group 2.65
(SE = 0.097). Statistical analysis showed a significant difference between ECM - NOCM
and CCM - NOCM (p < 0.001) groups, but no significant difference between the
ECM – CCM groups. Analysis of the RAW-TLX scores showed that the CCM group
had lowest total score 7.27 (σ = 3.1) when compared with the ECM 9.7 (σ = 3.3) and
NOCM 9.2 (σ = 3.4) groups. No statistical difference was found between the RAW-TLX
or the subscales, except for self-perceived performance (p < 0.028) comparing the
CCM and ECM groups. The results suggest that providing a means to self-regulate
sustained attention has the potential to keep operators engaged over long periods, and
moderately increase on-task performance while decreasing on-task error.

Keywords: BCI (Brain Computer Interface), EEG, fNIRS (functional near infrared spectroscopy), HCI (human
computer interaction), sustained attention, wavelet coherence
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INTRODUCTION

The current and predicted pace of digital transformation,
through the application of artificial intelligence (AI) and robotic
process automation (RPA) is changing many of the characteristics
of work, leisure, travel, and other human activities. These
transformations have increased the capability and availability
of computer hardware and software to carry out physical and
cognitive labor in addition to reducing these costs. These factors
in combination with fiscal policy are now driving the acceleration
and adoption of automation within organizations and their
workplaces, replacing human labor and fundamentally changing
the way in which we interact with technology (Autor, 2015).

As a way of potentially combating the complete automation
of human labor, there is currently a growing interest in
industrial and research approaches which include “human in
the loop” technological augmentations and solutions. In the
area of physical capacity augmentation recent developments
by Ford Motors (Reid et al., 2017) presents a perfect
example of a human-in-the-loop solution in its rollout of
exoskeletons to augment the physical capabilities of their skilled
workforce, enhancing the strength, endurance, and mobility
of workers during overhead tasks. This innovative use of
human-machine technological augmentation in the domain of
physical labor represents a significant first step in human capacity
augmentation. However, the rapid adoption of RPA into many
business and enterprise models is now automating cognitive
tasks once thought of as traditionally human (van der Aalst
et al., 2018). These tasks, such as those requiring the need for
judgment, pattern recognition and the ability to communicate
effectively, are now amenable to RPA through the application
of machine learning (Wilson, 2005). Moreover, RPA, through
process efficiency gains, has created large subsets of tasks that
require human intervention only at key points in a process
operation. Thus, RPA is changing the position of the human-
in-the-loop (who formerly instigated and completed tasks) from
being a primary agent to a form of “middleman,” who monitors
complex processes and then provides process validation through
decision making (Lacity and Willcocks, 2018).

While automation has increased productivity through a
reduction in information-processing and cognitive load, it has
also lead to decreased on-task safety and increased incidents
during safety-critical operations due to monitoring error.
Incidents triggered by on-task monitoring surprise, are often the
result of a decrease in operator vigilance and sustained attention
(Parasuraman et al., 1996; Miller and Parasuraman, 2003; De Boer
and Dekker, 2017). In the new automated workplace, the ability
to maintain a vigilant state, characterized as a process of sustained
attention or tonic alertness, may become a valuable asset.
A vigilant state implies both a high degree of physiological arousal
and a high level of sustained cognitive performance. Research in
human factors has identified several characteristics necessary to
maintain a state of vigilance such as sustained attention, signal
detection, staying alert, target identification and maintaining
performance over time through task engagement (Donald, 2001;
Adams and Adams, 2002; Prinzel et al., 2002). However, the
terms vigilance, sustained attention, and mental workload are

used interchangeably within the literature, as facets of the same
phenomena. For the purposes of the research presented in this
manuscript, we utilize the term sustained attention (SA) to cover
tonic alertness, attention, and the vigilance decrement as defined
by Oken et al. (2006).

The Brain–Computer Interface (BCI): A
Tool to Augment Human Capacities
Within the past decade, BCIs have fast become tools
to augment cognitive capacities and overcome physical
impairments. Improvements in sensor technologies and
brain-activity classification have shown BCIs to be both a
useful assistive technology and a general interface technology
for human–machine systems (Zander and Kothe, 2011). BCIs,
defined as “a device that reads voluntary changes in brain
activity, then translates these signals into a message or command
in real-time” (Guger et al., 2015) are systems which utilize the
neurophysiological data of the user as an input to a computer
system, which then performs actions to assist or provide feedback
to the user. A BCI relies upon signals derived from the brain,
and commonly these signals are monitored or recorded using
electroencephalography (EEG), through the placement of
electrodes on the surface of the head.

In the medical field BCIs have been applied to assist with the
control of various prosthesis (Hong and Khan, 2017), such as
robotic arm control for users with spinal cord injury (Nicolas-
Alonso and Gomez-Gil, 2012), or as additional input to the classic
controllers for wheelchair control (Carlson and del Millan, 2013).
In addition, BCIs are seeing significant application outside of
the medical domain, such as within information system research
to provide decision support (Mai et al., 2017) and in user
experience research and entertainment (Muñoz et al., 2017).
Another growing area for BCIs is mental workload estimation,
exploring the effects of mental workload and fatigue upon the
P300 response (used for word spell BCI) and the alpha-theta EEG
bands (Käthner et al., 2014). In this regard, there is currently a
movement within the BCI community to integrate other signal
types into “hybrid BCIs” (Pfurtscheller et al., 2010) to increase
the granularity of the monitored response.

Hybrid BCI for Cognitive State
Estimation
Foremost amongst these techniques is functional near-infrared
spectroscopy (fNIRS); an optical neuroimaging technique which
can distinguish concentration changes of oxygenated and
deoxygenated hemoglobin (HbO and HbR) on the outer cortical
layers of the brain (e.g., Derosière et al., 2013 for a review).
This technique has been used to measure changes in mental
workload (MWL) with regards to stress and anxiety when
performing imaging tasks (Alsuraykh et al., 2018). Boyer et al.
(2015) investigated changes in MWL using a long duration
supervisory monitoring control task. They found that fNIRS was
feasible for use in long-duration tasks; that the hemodynamic
response diminished toward the middle of the task; that fNIRS
was unable to detect changes in workload, but rather reflected
temporal changes in task event onsets, which could potentially
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be used to auto-adapt a system when operators are in a reduced
attentional state. In work exploring the combination of fNIRS and
EEG for MWL classification using machine learning approaches,
Hirshfield et al. (2009) found that there were several technical
issues that affect NIRS and EEG when used concurrently such
as sensor placement and the potential for fNIRS light sources
to introduce noise into the EEG signal. However, they did find
that fNIRS responses were classifiable with moderate levels of
accuracy for MWL states, showing that fNIRS signal has potential
when considering real-time detection and auto-adaptive systems.

In a study investigating the use of fNIRS as an objective
concurrent measure of MWL in usability testing, Lukanov et al.
(2016) found that fNIRS provided a reliable measure of MWL
in usability testing and that this reliability would translate from
psychology tasks to more ecologically valid tasks. The same
level of reliability and was reported in work concerned with
realistic human–computer interaction (HCI) contexts (Maior
et al., 2015) which found that fNIRS was able to distinguish
between cognitive and rest states in both verbal and spatial task.
In a study to determine if fNIRS could distinguish differences
in cognitive state associated with difference in visual design,
Peck et al. (2013) found that fNIRS provided a robust measure
of mental effort associated with visual design when measured
from the prefrontal cortex (PFC). They suggested that fNIRS may
prove most effective at measuring cognitive states when used in
more complex analytical interactions. In a similar HCI context,
Maior et al. (2014) utilized fNIRS to measure how different forms
of verbalizations affect cognitive workload, using a think-aloud
protocol (TAP) experiment to induce activity in cortical areas
associated with verbal working memory. Using a combination
of NASA-TLX and fNIRS, they found that verbalization did
not affect the fNIRS measure in terms of artifacts and that
fNIRS provided a clear indication of participants MWL while
completing the task and that fNIRS can be used to determine
MWL objectively during tasks if verbalizations are task-related.
Other work by Khan et al. (2014) explored hybrid NIRs-EEG
for decoding four movement directions, they induced changes in
HbO through mental arithmetic tasks as forward and backward
directional signals and changes induced in EEG through a hand
tapping task as left and right directional signals. They reported
classification accuracies using this method in excess of 80%. In
later work, Hong et al. (2018) investigated the use of a hybrid
BCI for by patients with locked in syndrome. They posited the
use of vector phase analysis as a classifier of brain behavior,
combining feature extraction and classification methods into a
single framework which may prove to be a promising solution
for brain therapies for those with locked in syndrome.

Generally, the benefit of integrating EEG and fNIRS signals
into a BCI is to take advantage of the strengths of each
measure to drive the feedback mechanism. EEG offers good
temporal resolution (∼5 ms), whereas fNIRS offers better
spatial resolution (2–3 cm) and has been reported to be more
robust to artifacts (Scholkmann et al., 2014). NIRS has been
used successfully to investigate mental workload assessment
and vigilance in ecologically valid contexts, such as with UAV
operators (Ayaz et al., 2012), driving vehicles (Yoshino et al.,
2013), outdoor navigation using wearable augmented reality

displays (McKendrick et al., 2016), investigating mental workload
in a long duration supervisory control task (Boyer et al., 2015)
and measuring workload in real-time during an n-back cognitive
and working memory task (Coffey et al., 2012). The combination
of fNIRS and EEG for BCI has been utilized in a number
of medical studies to enhance performance in sensory-motor
rhythm tasks (Fazli et al., 2012), detecting movement commands
(Khan and Hong, 2017) and for the classification of auditory and
visual perception processes (Putze et al., 2014).

Augmenting Sustained Attention Using
BCI
At present, there are few examples of a BCI that modulates a
user’s level of sustained attention. The first of these was created
by Pope et al. (1995), who developed a task engagement index
derived from brain activity to drive an adaptive system. The
goal of the system was to modulate the cognitive workload of
the user to maintain an optimal level of task engagement and
thus enhance task performance. The same approach was taken
by Parasuraman et al. (1996) to study the effect of adaptive
task allocation during a monitoring task. This “engagement
index” has been used in a number of more recent studies to
modulate signal event rates in real-time during a vigilance task
(Mikulka et al., 2002; Freeman et al., 2004) and adapt the difficulty
of a video game in real-time (Ewing et al., 2016). Findings
from these studies showed that the engagement index could
prove volatile when used in real-time without some form of
a computational classifier, which considers how a user’s level
of measured engagement evolves over time. Consequently, the
difficulty level of the game would shift too rapidly, inducing
phases where cognitive demand was overloaded.

In this study, we investigate the effects of a BCI developed to
allow users to modulate their level of sustained attention over
a long duration task (Demazure et al., 2019). We developed
an ecologically valid long-duration business task designed to
induce a decrement in sustained attention and vigilance, which
employs an information dashboard that requires long monitoring
and short decision cycles. To monitor sustained attention,
we developed a BCI using measures of EEG to create an
engagement index, which runs in real-time and drives a simple
interface countermeasure based upon the current estimated level
of sustained attention. In addition, we recorded fNIRS data
concurrently to observe the effect of the BCI upon cerebral blood
flow and make a one to many inference between the level of
sustained attention and measures of task engagement. Previous
research has shown that measures of task engagement and
cerebral blood flow velocity can provide a meaningful diagnostic
when monitoring sustained attention (Matthews et al., 2010).
Furthermore, evidence for this inferential link has been shown in
fMRI studies using a sustained attention task (Forster et al., 2015).
However, for this study we are not seeking to integrate measures
of cerebral blood flow as features within the BCI architecture, but
rather to use fNIRS as a measure to monitor behavioral changes
for users of the BCI. Future research will utilize the fNIRS data to
derive features for a full hybrid BCI that integrates both EEG and
fNIRS to monitor and drive behavioral changes.
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In this work, we use the engagement index proposed by
Pope and colleagues to provide both a proxy for the level of
sustained attention during task completion and as input for
the BCI. The BCI integrates a novel computational classifier
which is trained initially during a brief calibration task, and
then continuously adapts to changes in threshold values as
the task is performed in order to reduce the previously
reported volitivity of the measure. Brain activity was recorded
continuously using fNIRS from frontal and occipital areas and
utilized in the analysis to determine significant brain activity
during each task cycle. This data was then coupled with the
engagement index data to produce a wavelet coherence analysis
(Verdière et al., 2018), to provide analysis and visualizations
of coherence activity between the BCI and measured fNIRS
response. Furthermore, we position the observed effect(s) within
the theoretical compensatory control, cognitive-energetical
framework proposed by Hockey (1997).

MATERIALS AND METHODS

Participants
Thirty participants (11 female; ages 18–43, µ 24) taken from
our institution’s panel of Business School participants took
part. Participants were screened on the basis of good health,
average hair density, and normal or corrected to normal vision.
All participants had some familiarity with the type of task
used for the experiment, having completed business courses
presenting tasks of a similar nature during their program of
study. Participants were provided with a mouse and keyboard
and sat approximately 80 cm in front of a 24′′ computer screen
within a room with an integrated Faraday cage and asked to
keep any unnecessary head movements to a minimum. The
typical total duration of a participant’s session (informed consent,
sensor application, calibration, business task, questionnaire, and
de-briefing) was 3 h. All participants provided signed consent
in line with the University’s research ethics committee and
compensated $50 CAD. Due to the variable ergonomic factors
related to the wearing of fNIRS sensor technology for long
durations, all participants were informed that they could leave the
experiment if at any time levels of physical discomfort exceeded
bearable levels.

Experimental Design
The experiment used a between-subjects design with three
groups. The task was split into two phases: Calibration and
Simulated Business Task. Phase 1 consisted of a 15-min task used
to calibrate the BCI for real-time operation. Phase 2 consisted of
a 90-min business logistics task performed in real-time, utilizing
the BCI. Figure 1 illustrates the experimental schema. Our
experimental task was adapted from Pattyn et al. (2008) who used
a similar task and timing protocol for investigating the effects of
the vigilance decrement upon task performance. However, our
goal here was to utilize participant vigilance behavior to derive a
number of initial threshold values ranging from low-to-high to
calibrate the BCI before real-time operation.

Phase One: Calibration Task
The calibration phase (15 min) was composed of a 30 s baseline;
i.e., passive observation of a still image, followed by two active
tasks lasting 7.5 min (Figure 2). The first task (monitoring)
involved participants visually monitoring nine squares displayed
upon a computer screen. Within 1 square, a cross is presented
every 5s, the appearance of the cross is preceded by a preamble
image lasting 2 s, followed by the presentation of the cross itself
displayed for 3 s. Thus, every 5 s the cross appears to move in
a clockwise direction. Participants were required to signal they
observed the change in position by pressing the number 1 on the
keypad provided.

Task 2 (decision) was preceded by another 30 s baseline, after
which the second task began. In this task, three simple shapes
were displayed, with the appearance of the shapes preceded by
a preamble image lasting 2 s with the shapes displayed for 3 s.
Each shape is outlined in one of three colors (red, amber, green)
of which red was the target. With the exception of the red outline,
the shapes and outlines are displayed in random order for five
iterations. On the 6th iteration, the target outline is displayed
upon one shape at random. Participants were asked to press the
number two key on a keyboard number pad when the target
outline (in red) was displayed, otherwise to press the one key.

Phase 2 Simulated Business Task
The simulated business task is a continuous task that lasted
90 min and consisted of a 10-min practice period in
which participants became familiar with the task environment
(Figure 3) followed by an 80-min simulated business logistics
task. The business logistics task was made up of 2 distinct task
types – decision tasks and monitoring tasks.

• A decision task requires the participant to interact with
the user interface to create and input a stock transfer plan
consisting of the number of consumables for sale within
each business zone.
• The monitoring task requires the participant to observe

the effect of the stock transfer plan upon sales for three
business zones in order to create a strategy -mentally- for
the next stock transfer plan. This plan is then input during
the next decision task.
• Task completion follows a scripted order based upon a

timeline of events with 4 min to complete a decision task
and 16 min to complete a monitoring task.

The simulated business task was created using a simulated
enterprise system called ERPsim (Léger, 2006), ERPsim simulates
a real-life organization and allows for complete control of all
the elements within the task. The task interface is organized
to represent a standard business “dashboard” (see Figure 3),
consisting of areas to monitor sales and a decision console
(marked in red) which allows participants to make logistics
decisions by directing stock levels to each of the “areas” requiring
replenishment through direct interaction with the console.
Participants interact with this interface using a mouse and
keyboard number pad to input their purchasing and sales strategy
during decision tasks. Values to be monitored are updated in
real-time and displayed on the monitor in the interface elements.
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FIGURE 1 | The complete experimental schema and neurofeedback loop visualization.

FIGURE 2 | Phase 1 calibration task.

The two types of task are presented in cycles. Such that there
are four task cycles, and each cycle consists of one decision task
lasting 4 min and four monitoring tasks lasting 16 min in total.
As each task cycle is completed, a new cycle of tasks is then
scripted to begin (Figure 4) giving four complete cycles of tasks
lasting 20 min each (see section NIRS Processing Pipeline for
issues). Thus, the task involved maintaining stock levels in three
locations, and participants were asked to make logistical decisions
concerning stock allocation in order to maximize sales. Stock
depletion rates were non-uniform and dependent on different
demand functions. A maximum stock capacity was provided to
force decisions as soon as new stock was received, and all correct,
incorrect, and missed decisions were logged for later analysis.

In order to increase demand upon a participant’s level of
sustained attention and task engagement, time moved at a

slower pace within the simulation; this creates a monitoring task
requiring a high level of sustained attention broken by brief
control periods where decisions were required.

Experimental Conditions
For the business task, participants were randomly assigned
to one of three conditions. Conditions, in this case, refer to
the type and frequency of interface feedback (countermeasure)
each participant received. The interface shown in Figure 3 is
the default interface presented to all groups. For participants
assigned to the control condition, referred to as no interface
countermeasures (NOCM), the interface remained the same
color for the duration of the task. Thus, the control group
received no feedback from the interface as to their current
level of sustained attention. The second condition, referred
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FIGURE 3 | The decision-monitoring business task interface with task interface countermeasure, (Left) arrow denotes interactive decision console; (Right) the color
gradient feedback schema, red to amber = very low to low sustained attention, white = moderate to high level of sustained attention; interface background changes
color in accordance with level of sustained attention.

FIGURE 4 | Simulated business task timeline.

to as continuous countermeasures (CCM), received continuous
feedback from the interface using a gradient color scheme to
represent sustained attention (Figure 3). The color gradient
represents a visual form of a user’s current level of sustained
attention and is determined in real-time using the engagement
index data, and displayed as a finely stepped, color-change
surrounding the task interface. To give the user a reference, they
are instructed that they will receive alerts from the interface
based upon their level of sustained attention. The final condition,
event only countermeasures (ECM), received interface feedback
only when a task required interaction with the interface and if
sustained attention was low; otherwise, no countermeasure was

presented. Countermeasures were controlled by the engagement
index (Pope et al., 1995; Mikulka et al., 2002), and were derived
from EEG signals in real-time (see section Engagement Index).

Model of Adaptivity
We utilized an engagement index calculated in real-time to infer
the current level of sustained attention of the operator and drive
the interface countermeasures as part of the BCI. Furthermore,
we sought to create a model of adaptation (Figure 5), which
encourages a graceful elevation and degradation of a user’s level
of sustained attention (SA). This model of adaptivity was based
upon work by Hockey (1997, 2011) concerning the motivational
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FIGURE 5 | Visualized model of adaptivity, utilizing engagement index values and adaptive thresholds.

control theory of cognitive fatigue, and the cognitive energetical
framework for compensatory control in the regulation of human
performance under stress and high workload. The goal was not
to promote and sustain a maximal level of SA within the user, but
rather to promote a more fluid and dynamic “Goldilocks zone”
in which SA is neither too high, nor too low to interfere with
task performance. We reasoned that a low level of SA would lead
to a certainty of failure through signal detection errors and that
maintaining a high level of SA over a long duration would lead to
an increased chance of failure due to cognitive fatigue.

With the definition of the upper and lower bounds within our
model of adaptivity and with the goal of reducing the volatility
of the engagement index (Ewing et al., 2016), we decided upon
a series of thresholds that can be recomputed in real-time (see
section Engagement Index) as the user performed the task. In
Figure 5, these thresholds represent a dynamic spectrum of
values ranging from the lowest–low, average–low, the mean,
average–high and highest–high of the engagement index. These
thresholds dynamically adjust in real-time to take into account
any psychophysiological habituation that may occur over time,
and then become hinge points suitable for classification, driving
the interface countermeasure to adapt in real-time to promote
an altered state of sustained attention. In their work, Hockey
(2011) highlighted that, in general, when cognitive activities are
self-motivated, and particularly when they are regarded as ‘play’,
cognition does not appear to give rise to high levels of fatigue.
Given the interactive and adaptive nature of the visual feedback
of the interface countermeasure, we posit that any changes in
sustained attention which remain within the Goldilocks zone
will be due to self-directed motivational control of cognitive
resources, through a ‘play’ aspect. That is, when subjects enjoy
what they are doing it is no longer “workload.”

Engagement Index
We utilized an engagement index (Pope et al., 1995; Mikulka
et al., 2002) to provide real-time assessment of a user’s level of
sustained attention and to drive the neurofeedback mechanism

(countermeasure) of the simulation task interface. EEG signals
were recorded and utilized in real-time using NeuroRT (Mensia
Technologies, Paris). Band power in the α, β and θ bands
for all sites (see section Data Acquisition) was derived and
divided by the total power across all electrodes to create a
ratio value for each frequency band. The engagement index was
then calculated as the ratio β/(α + θ). The index value was
then passed to a custom controller to adapt the interface as
described above, where the gradient color change is tied to both
the current value of the engagement index and the adaptive
thresholds; this allows the gradient to “breath”; slowly increasing
and decreasing with the current level of sustained attention
without changing colors sharply.

Classification
The task engagement metric is not without its drawbacks
as a driver of real-time adaptive behaviors within a closed
biocybernetic loop or BCI, having proven unstable when used
within adaptive games (Ewing et al., 2016; Labonte-Lemoyne
et al., 2018). To address these drawbacks a framework was
developed (Demazure et al., 2019) which utilizes the engagement
index within a computational classifier using a series of adaptive
dynamic thresholds derived during the calibration phase of
the experimental protocol. The index value thresholds (high
maximum, high average, total average, low average and the low
minimum values of the index values, see Figure 6) are computed
as several cumulative averages directly after the calibration task
to create a personalized spectrum of values representing task
engagement. This produces a cumulative average:

CAn+1 =
xn+1 +

∑n
i=1 xi

n+ 1

And for the lower/upper bound:

LowAveragen+1 = CAn+1.

 l̄

(
∑n

i=1(hi+li)
(nh+nl)

)
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FIGURE 6 | (Upper Right) EEG electrode and fNIRs optode placement; (Upper Left) real-time BCI input showing, engagement index values and adaptive
thresholds; (Bottom) example fNIRs signal acquired from Source 1 Detector 1 Frontal Region.

Where CAnis the current cumulative average of the engagement
index calculated during calibration, xn is a new real-time index
value, and l and h are the low and high engagement index value
samples gathered during calibration.

Once defined these thresholds are recomputed in real-
time using a sliding window of 5 s every 1 s. Classification
decisions are made based upon 5 s of historical index values
compared to the current threshold values allowing the classifier
to respond correctly to changes in the engagement index due
to psychophysiological factors over time. Two levels of attention
are classified (with a logic switched third state) – low and high
sustained attention – which drives the neurofeedback mechanism
and thus the interface countermeasure (see Figure 6), such that
low sustained attention are shown as critical (red), losing focus
(amber), and focused (white). These levels are computed as ratios
(see following equations) in real-time and multiplied by the
current cumulative average:

level1 =
1
2

[
l̄+

∑n
i=1(hi + li)
(nh + nl)

]
level2 =

1
2

(
l̄−min(l)

)

Where l is the sample collected during calibration representing
low sustained attention and h the equivalent for high
sustained attention.

Data Acquisition
A 32-electrode EEG montage (Brainvision, Morrisville, NC,
United States) was utilized to measure variations in brainwave
activity in the θ (4–7 Hz), α (8–12 Hz) and β (13–21 Hz)
frequency bands, from frontal and occipital cortical regions at the
F3, F4, O1, O2 sites on the international 10–20 system (Jasper,
1958). These data were captured at 500 Hz and down sampled
to 250 Hz in real-time. Data were filtered in real-time using a
low pass filter of 1 hz, a high pass filter of 50 z, notch filter
set to 60 hz. Artifacts were detected utilizing a Riemannian
Potato (Barachant et al., 2013) automatic and adaptive detection
method, and artifacts were flagged within the BCI architecture;
if long-duration artifacts were detected the BCI shut down, data
segments for short-duration artifacts were imputed to allow the
BCI to continue operation. After signal down-sampling, the
power bands (θ, α, β) and the engagement index were computed
using a 0.5 s moving window with no overlap. A vector was
created consisting of the power band values, ratio, and artifact
flag, then pushed to BCI. A moving average is calculated for
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the previous 5 s; every second, and a classification decision is
then made based on the current ratio compared to the adaptive
thresholds every 5 s or every 10 data points.

NIRs data were recorded concurrently at 15 Hz using an 8× 8
channel NIRSport device (NIRx, Berlin) from sites adjacent to F3,
F4, O1, O2 (see Figure 6) using a custom six-channel montage.
Channels covering the frontal positions F3-F4 consisted of
1 source and 2 detectors, and channels covering occipital regions
O1-O2 channel consisted of 1 source and 1 detector. The
coordinates for the NIRS sensors were chosen to both capture
the effect at the primary sites and to correspond with the average
path length of the emitted near infra-red light which has been
reported to follow a “banana-shaped” or ellipsoid path with an
approximate head penetration of 2–3 cm (Haeussinger et al.,
2011). Using the extended 10–20 system as a reference for
optode placement to estimate the cortical regions underlying
those optodes was demonstrated by Singh et al. (2005).

Subjective Workload Assessment
We used a short version of the NASA-TLX (Hart, 2006), the
RAW-TLX, without the additional weighting questions, for
quickly assessing the perceived aspects of mental workload
post hoc versus the full NASA-TLX. This questionnaire combines
six factors: mental demand, physical demand, temporal demand,
task performance, frustration level, and effort, to create a measure
of overall perceived task workload.

Analysis
NIRS Processing Pipeline
NIRS data were analyzed and processed using the NIRS AnalyzIR
Toolbox (Santosa et al., 2018). The data were downsampled
to 5Hz and then filtered using a wavelet filter with a sym8
basis function to remove motion artifacts and low-frequency
characteristics (Molavi and Dumont, 2012). Data were then
converted to optical density using the modified beer-lambert
law (Jacques, 2013) applied with a partial path length factor
of 0.1 (3 cm), giving values for oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR). A statistical model was
generated via a mixed-effects general linear model, implementing
an iteratively reweighted least-squares approach (GLM AR-IRLS)
as described in Barker et al. (2013) and Santosa et al. (2018).
This model outputs statistically significant effects associated with
the region of interest (ROI) covered by the NIRS probe, effect
type (Response) as oxygenated (HbO) or deoxygenated (HbR)
hemoglobin (see section General Linear Model fNIRS Analysis),
and type of task being performed, such as decision or monitoring
by block, i.e., cycle 1, decision 1, monitoring 1. Some data were
lost due to signal acquisition failure, unrecoverable artifacts or
participants departing the experiment due to discomfort. Thus,
the final monitoring cycle consists of only 9 min of data rather
than 16 min in order to generate a consistent statistical model.

Wavelet Coherence
Wavelet coherence analysis also referred to as wavelet transform
coherence (WTC), is a tool for analyzing localized variations
of power within a time series, or deriving the cross-correlation
between two time series signals as a function of frequency

and time, potentially uncovering phase-locked behavior (see
Torrence and Compo, 1998 for a practical guide). WTC has been
used successfully in several studies in a wide variety of fields
(Murphy et al., 2009), including assessing prefrontal connectivity
using NIRS (Han et al., 2014), investigating dynamic cerebral
autoregulation in neonatal hypoxic-ischemic encephalopathy
(Tian et al., 2016), and for hyperscanning to reveal increased
interpersonal coherence in the superior frontal cortex during
cooperative tasks (Cui et al., 2012).

For the current study, WTC is used to assess the relationship
(as significant coherent activity) between the NIRS signal
and engagement index generated by each participant in each
group (CCM, ECM, NOCM). That is, do changes in the
engagement index driven by the feedback mechanism - as
part of a closed-loop - show concomitant changes in the
hemodynamic response indicative of increased brain activity
for a given period? Wavelet coherence was performed in
MATLAB (2017) (Wavelet Toolbox 4.1.9, MathWorks Inc,
Natick, MA, United States) using custom scripts to derive data
sets for each participant and group. Each dataset consisted of
the per-one-second engagement index value and the channel
aggregate average per one second of NIRS (HbO) data for
each participant for the duration of phase 2 of the experiment,
to obtain the wavelet coherence as a function of time and
frequency. This form of analysis allows an observation of
how the BCI, which utilizes the engagement index to drive
interface interactions and user behavior, affects brain activity as
measured by fNIRS.

Typically a wavelet coherence analysis outputs a magnitude
squared coherence graph, which displays the frequency of
the coherent activity in Hz on the y-axis and time on
the x-axis. Coherent activity between the two signals is
then plotted according to its confidence interval, where
brighter shading represents higher confidence. Thus, larger,
brighter areas represent more significant coherent activity
in both the time and frequency domain. This form of
analysis output is used in the pairwise comparisons in the
following sections (Pairwise Comparisons CCM Coherence
Results, Pairwise Comparisons ECM Coherence Results, Pairwise
Comparisons NOCM Coherence Results) as both a narrative
form and quantitatively.

To further increase the rigor of the wavelet coherence
analysis, further statistical tests were performed to these data.
To perform the wavelet coherence analysis, the first 10 min
(600 s) of business task (phase 2) data -corresponding to
the task preamble- was removed. Then for each participant
within each group, NIRs data and the EEG data (consisting of
engagement index values) were aggregated to create a dataset and
a wavelet coherence analysis performed for each participant. The
result from this analysis is 133 frequency bands of magnitude-
squared coherence data every second between the two signal
types for a total of 4500 s, which corresponds to the length
of the task. Coherence data were then averaged for every
15 s of data to coincide with a typical hemodynamic response
function (Scholkmann et al., 2014). To reduce the number of
frequency bands for analysis, data were then separated into task
types (decision and monitoring), and the 133 frequency bands
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averaged every 22 bands to produce a total of 6 frequency
intervals: I: 0 – 0.06, II: 0.06 – 0.13, III: 0.13 – 0.4, IV: 0.2 –
0.26, V: 0.26 – 0.33, VI: 0.33 – 0.4 Hz which represents the
mean magnitude squared coherence between the two signal
types EEG and fNIRS.

Typically, coherence analysis is performed between two
signals of the same type; i.e., NIRS signal data, which would
then indicate the level of coherence as the similarity between the
two signals in both the frequency and time domain. However, in
this case, WTC is used to indicate how changes in one signal
(EEG) drive changes in the other (fNIRS) - i.e., how the BCI
and interface countermeasure influences EEG signal, which in
turn influences changes in the NIRS signal, which in this case
is the proxy for brain activity and energy utilization as HbO
and HbR. Data were analyzed using a generalized linear mixed
model (GLMM) with two-tailed p-values adjusted for multiple
tests using the Holm-Sidak method (SAS, 2013).

RESULTS

Wavelet Coherence
The results (Figure 7) show significant differences between
the three groups with respect to the coherent activity within
the defined frequency intervals, for the duration of the
business task. However, this analysis does not reflect any
significant differences between task cycles and removes the
temporal aspect from the WTC. Due to the density of the

reported results and the high number of interactions, the
results report in tabular form are listed in their entirety in
Supplementary Dataset S1.

Within interval I, significant differences were found in
coherent activity between the three groups. The NOCM
group was shown to have the highest coherent activity
(p < 0.001) when compared to both the CCM and ECM
groups. This is followed by the CCM group who had
significantly more coherent activity compared with the ECM
group (p < 0.001). Significant differences were found in interval
II between both active condition groups CCM (p = 0.028)
and ECM (p < 0.0073) when compared to coherent activity
in the NOCM control group. No significant difference was
found between the two active condition groups for this
frequency interval.

Within interval III, significant differences were found between
the CCM (p < 0.001) and the NOCM (p < 0.001) groups
when compared with the ECM group. Additionally, while no
significant difference was identified between the CCM and
NOCM groups, the data points to higher activity within this
frequency interval for the CCM group, possibly indicative
of a trend that did not reach significance. For interval IV
significant differences in coherent activity were found between
the CCM group and both the ECM (p < 0.0001) and
NOCM groups (p < 0.0064). No significant difference in
coherence was found between the ECM and NOCM groups.
Within interval V, no significant difference in coherent activity
were found between any of the groups after corrections.

FIGURE 7 | Comparison of the mean magnitude-squared coherence in the six frequency intervals between the three groups (CCM, ECM, NOCM), frequency
intervals represent an equal distribution of wavelet coherence between EEG and NIRs signal data as six frequency intervals I: 0 – 0.06, II: 0.06 – 0.13, III: 0.13 – 0.4,
IV: 0.2 – 0.26, V: 0.26 – 0.33, VI: 0.33 – 0.4 Hz; significant differences between the groups are marked ∗p < 0.05, ∗∗p < 0.001.
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However, before correction a difference was noted between
the CCM and ECM groups [pre-correction (p = 0.00363);
post-correction (p = 0.0699)]. This could potentially indicate a
trend toward greater coherent activity in this frequency interval
for the CCM group.

For interval VI a weak but significant difference in coherent
activity between the ECM (p = 0.038) and the NOCM
(p < 0.0001) when compared with the CCM group was noted.
No significant difference in coherent activity between the NOCM
and ECM groups was detected. Overall, this appears to indicate
that both the NOCM and ECM groups displayed greater
coherent activity in this lower frequency interval when compared
to the CCM group.

Considering these results in the context of how the BCI
potentially drives changes in both the engagement index (as
a measure of sustained attention) and hemodynamic activity,
which in this case is indicative of sustained attention and
“on-task” engagement. Greater levels of coherent activity within
intervals I – IV can be considered to indicate higher levels
of brain activity and thus, greater levels of sustained attention
and task engagement. Conversely, greater levels of coherent
activity in frequency intervals V – VI could be considered
to indicate lesser sustained attention and task engagement.
Overall the results indicate, that both the continuous and
control interface countermeasures groups displayed greater
levels of coherent activity than the group that received
interface feedback only during event phases of the task.
Furthermore, the CCM group showed significantly more activity
in the II, III, and IV frequency intervals when compared to
the other groups.

This between-group comparison analysis has some associated
limitations, utilizing mean magnitude squared coherence has

smoothed the overall responses in each frequency interval for
each group, reducing the peak magnitude response and removing
the temporal aspects of wavelet coherence analysis.

Pairwise Comparisons CCM Coherence
Results
To characterize the relationship of coherence between the
BCI and NIRS response on a within-task, between-group
basis, pairwise comparisons were performed as part of
the GLMM. As previously described, the experimental
timeline was partitioned into decision and monitoring
cycles lasting 4 and 16 min, respectively, such that there
are four decision and four monitoring cycles. The full
tabulated results of the pairwise comparisons are supplied
in Supplementary Dataset S1.

Figure 8 shows the level of magnitude-squared coherence
in both the frequency and time domain for the duration of
the experimental session. In this figure, there can be seen a
high degree of magnitude-squared coherence for significant
portions of the experimental task (shown as lighter shading
within the figure). This coherence manifests in the 0.001 –
0.008 frequencies, with additional bursts of activity between
the 0.008 – 0.031 frequencies for the entire duration of the
experiment. These frequency zones correspond with frequency
intervals I – IV from the statistical analysis described above.
In this case, the lower the interval, the higher the frequency,
which then indicates potentially higher brain activity during
those task cycles.

Results for the CCM group show that during the first decision
task cycle, significantly higher coherence activity was present
in frequency interval IV when compared to both the ECM

FIGURE 8 | Magnitude-squared coherence plot for the CCM group. The left axis is the frequency of coherent activity in Hz; the bottom axis is time (s). Straight lines
denote task cycles with decision (triangle) – monitoring (star), shaded contours represent areas of coherent activity of greater than 95% confidence.
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(p < 0.0001) and the NOCM (p < 0.0001) groups. As the
experimental timeline progressed, significant coherent activity
was seen during the first monitoring cycle in frequency interval
I (p < 0.0001) compared with the ECM group, and in interval
II compared to both the ECM (p = 0.0138) and NOCM
(p = 0.0178) groups, respectively. In the second decision cycle,
significant activity is seen in frequency interval I (p = 0.032)
compared with the ECM group, and in interval V compared
with both the ECM (p < 0.001) and NOCM (p = 0.0428) groups
respectively. During the second monitoring cycle, significant
coherent activity was found in intervals I (p < 0.000), III
(p = 0.012), and IV (p = 0.02) when compared with the ECM
group. During the third decision cycle, significant coherent
activity was found in interval I (p = 0.0168) compared with the
ECM group, interval II (p = 0.044) compared with the NOCM
group and intervals IV (p = 0.0043) and V (p = 0.0011) compared
with the ECM group.

Pairwise Comparisons ECM Coherence
Results
For the event synchronized countermeasures group,
pairwise comparisons showed no significant coherence
activity when compared to either the CCM or NOCM
groups. The previously reported significant activity within
interval II does not present within any specific task cycle
event in these comparisons. Figure 9 shows sporadic
coherent activity, in decision cycles 1 and 2 and during all
monitoring cycles within the 0.002 – 0.004 Hz frequencies.
However, this activity failed to reach significance when
compared to either the CCM or NOCM groups in these
tests. A tentative conclusion could be drawn that the
activity of the BCI.

Pairwise Comparisons NOCM
Coherence Results
Finally, the no-countermeasures control group showed
significantly higher coherent activity in interval II (p < 0.0001)
when compared with the ECM group during the first decision
cycle. During the first monitoring cycle, significant coherent
activity was seen in interval III (p < 0.001) and interval V
(p = 0.0119) when compared with the CCM and ECM groups
respectively. During the second decision cycle, significant activity
was identified in interval II (p = 0.005) when compared to the
CCM group. During the third decision and monitoring cycles of
the task, significant activity was seen in intervals I (p = 0.001)
and VI (p = 0.006). For the final decision cycle, significant
activity was seen in interval I (p = 0.01) and III (p < 0.0001)
when compared to the CCM and ECM groups respectively and
in intervals V (p = 0.001) and VI (p = 0.02) when compared to
the CCM group. Significant activity was also seen in the final
monitoring cycle in intervals I (p = 0.003) and V (p = 0.019)
compared with the CCM group.

Figure 10 shows no consistent long duration coherent activity
in the 0.001 – 0.004 frequency range, but rather bursts of
coherent activity throughout. Perhaps significant for this group
is the sporadic high-intensity short duration bursts of activity
in the 0.004 – 0.031 frequency range. This is consistent with
the pairwise comparisons, which showed predominant activity
in intervals III–VI, and these bursts appear higher in number
than either of the groups that received some form of interface
countermeasure. Task activity, in this case, appears reduced
overall when compared to the other two groups, perhaps showing
evidence of a decrease in sustained attention. However, it should
be noted that while activity appears to be of lesser intensity, there
is still significant activity during each task cycle.

FIGURE 9 | Magnitude-squared coherence plot for the ECM group. The left axis is the frequency of coherent activity in Hz; the bottom axis is time (s). Straight lines
denote task cycles with decision (triangle) – monitoring (star), shaded contours represent areas of coherent activity of greater than 95% confidence.
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FIGURE 10 | Magnitude-squared coherence plot for the NOCM group. The left axis is the frequency of coherent activity in Hz; the bottom axis is time (s). Straight
lines denote task cycles with decision (triangle) – monitoring (star), shaded contours represent areas of coherent activity of greater than 95% confidence.

The results from the wavelet coherence analysis indicate
that there are significant interactions between the BCI and
potential modulation of the user’s level of sustained attention
as expressed by the magnitude-squared coherence between both
the EEG signal and fNIRS response. Both the CCM who
received interface feedback continuously and the NOCM control
group that received no interface feedback display similar levels
of significant activity overall. However, activity for the CCM
group is concentrated in the higher frequency intervals I – IV,
which indicate greater brain activity, compared to the NOCM
group, which showed greater activity in the lower frequency
intervals III–VI.

General Linear Model fNIRS Analysis
Hemodynamic activity was recorded concurrently throughout
the experiment with a twofold purpose, firstly to ascertain if
fNIRS would prove a suitable measure as input for a hybrid BCI
and secondly to allow a more direct measurement of brain activity
during the completion of the task. As the recording of fNIRS is
decoupled from the operation of BCI, in that its output is not
used as input for the BCI, the data remains unaffected except as a
measure of “driven” brain activity from which energy utilization
can be inferred.

As discussed previously, the GLM analysis was performed
using the NIRS AnalyzIR Toolbox on a per task block basis
comparing group by task type. Data were partitioned into
one decision cycle followed by one monitoring cycle for each
task block. The results, Benjamini–Hochberg FDR-corrected
(Benjamini and Hochberg, 1995) for the first task block (see
Table 1), indicate that for the first decision cycle, both the ECM
and NOCM groups display the most significant hemodynamic
activity (HbO), and that this activity was located in the left
and right frontal regions. Although the data indicate higher

activity in frontal regions for the ECM group, the effect did
not reach significance and contrasting the ECM, and NOCM
results showed no significant difference in activity. Contrasting
the ECM and CCM results showed significant activity [β = 25.248,
SE = 12.779, df(105), t = (1.9757), p < 0.05] and [β = 41.184,
SE = 18.837, df (105), t = 2.1863, p < 0.03] for left and
right in frontal regions respectively for the ECM group. During
the monitoring cycle, significant activity was observed in the
left occipital region for the CCM group; when this activity
was contrasted with the NOCM group the activity remained
significant [β = −46.736, SE = 22.76, df (105), t = −2.0534,
p < 0.04]. However, when contrasted with the ECM group
no significant difference was observed, indicating similar levels
of hemodynamic activity. The general model indicated further
significant activity during the monitoring cycle for both the ECM
and NOCM groups, located in both the left- and right-frontal
and occipital regions for the ECM group and in the left-
and right-frontal regions for the NOCM group. When the
frontal activity for these groups was contrasted, the general
activity model became non-significant for the ECM group but
remained significant for the NOCM group. Contrasting the
occipital activity for these groups showed that the effect remained
strong for the ECM group [β = 68.995, SE = 17.349, df (105),
t = 3.9769 p < 0.001].

Overall for this decision-monitoring cycle, it would appear
that the CCM and NOCM groups displayed similar levels of
hemodynamic activity, with the ECM group displaying the
greatest level of hemodynamic activity. This potentially indicates
that this group expended more effort to stay task-orientated, or
an effect of the interface intervention for this group. Moving
forward in time (first 20 min) to the monitoring cycle, it appears
that the CCM group is more highly task-engaged. Extrapolating
from the contrasts and the general model, it appears that by the
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TABLE 1 | General linear model results for entire NIRS probe for the first task block.

ROI Response Contrast Beta SE DF t p

F3 HbO Decision 1 Group ECM 35.2668 8.133786 105 4.335841 < 0.0001

F4 HbO Decision 1 Group ECM 28.27645 6.631214 105 4.264144 < 0.0001

O1 HbO Decision 1 Group NOCM 34.2609 13.35627 105 2.565155 0.011726

O1 HbO Monitoring 1 Group CCM 44.47294 17.54123 105 2.535338 0.012708

O1 HbO Monitoring 1 Group ECM −38.1025 12.93245 105 −2.94627 0.003962

O2 HbO Monitoring 1 Group ECM −66.4483 16.30014 105 −4.07655 < 0.0001

F3 HbO Monitoring 1 Group ECM −25.3084 8.109508 105 −3.12083 0.002329

F4 HbO Monitoring 1 Group ECM −28.7054 6.614271 105 −4.33992 < 0.0001

F3 HbO Monitoring 1 Group NOCM −26.0549 7.138458 105 −3.64994 0.000411

F4 HbO Monitoring 1 Group NOCM −14.8185 4.903691 105 −3.0219 0.003156

TABLE 2 | General linear model results for entire NIRS probe for the second task block.

ROI Response Contrast Beta SE DF t p

O2 HbR Decision 2 Group CCM −12.8867 6.098971 84 −2.11293 0.037575

O2 HbO Decision 2 Group NOCM 20.57677 9.101398 84 2.260837 0.026355

O2 HbR Decision 2 Group NOCM −13.0064 3.574234 84 −3.63893 < 0.0001

F4 HbO Monitoring 2 Group NOCM −10.3252 3.727819 84 −2.76977 0.006903

F3 HbR Monitoring 2 Group CCM −7.45334 2.998012 84 −2.4861 0.014896

O2 HbO Monitoring 2 Group NOCM 18.42991 9.101392 84 2.024955 0.046048

end of the task block the NOCM group are expending more
effort to maintain a state of sustained attention conducive to
completing the task.

In the second task block, the overall hemodynamic activity
(Table 2) showed that the CCM and NOCM groups displayed
significant activity (both HbO and HbR) in both frontal and
occipital regions during the decision and monitoring cycles.
However, this activity was predominantly observed in the NOCM
group. However, when contrasting the NOCM group with both
the CCM and ECM groups for the decision cycle, the effects
observed from the general activity model, for HbO and HbR in
the right occipital region become non-significant. A significant
effect was observed for HbR in the left frontal region for the
NOCM group [β = −13.742, SE = 5.6311, df (84), t = 2.4404,
p < 0.016774]. Contrasting the NOCM and CCM groups for the
monitoring cycle shows a significant HbR response in the right
frontal region for the CCM group [β = 6.7841, SE = 3.2148 df
(84), t = −2.1103, p < 0.037811]. Additionally, after contrasting
the NOCM, CCM and ECM groups, the significant HbO activity
for the NOCM group observed in the general model, becomes
non-significant. However, contrasting the ECM and CCM groups
for this monitoring cycle shows a strong HbR effect for both
channels of the left frontal region, [β = 9.3662, SE = 4.0584, df
(84), t = 2.3079, p < 0.023464] and [β = 14.69, SE = 6.95, df
(84), t = 2.1137, p < 0.037508] respectively for channels 2–3, 2–4
of the NIRS probe.

While it is not customary to report HbR activity, the
response was strong enough throughout this task block to
warrant mention, as this response coupled with the lack of a
significant direct two-phase neurovascular coupling response is
potentially interesting. A possible interpretation could be that
we are observing some form of temporal cycling hemodynamic

effect, in which the length of time spent on-task by participants
could have resulted in a significant “flushing” of oxygenated
blood to remove metabolic by-products. Conversely, it could
be that the NIRS probe design is not granular enough to
record the full gamut of hemodynamic activity. Overall the
GLM results indicate that both the CCM and NOCM groups
were active (in terms of HbO) during this task block, and that
in general the NOCM group were more engaged during this
task cycle, indicating higher metabolic activity (interpreted as
“mental effort”) to maintain sustained attention while “on-task.”
However, the overall decrease in hemodynamic activity highlights
that a potential decrement in sustained attention and task
engagement was manifest for all groups.

The GLM results for the third task block (Table 3)
showed no significant differences in hemodynamic activity was
observed between the groups for the decision cycle. However,
significant activity was observed during the monitoring cycle in
the right-frontal and right-occipital for the NOCM and CCM
groups, respectively. Contrasting NOCM and CCM responses
for this cycle showed a clear coupled neurovascular response for
the NOCM group, with weak but still significant HbO activity
[β = 17.337, SE = 8.4743, df (76), t = −2.0459, p < 0.044229]
and strong HbR activity [β = −10.533, SE = 3.9263, df (76),
t = −2.6828, p < 0.01]. Contrasting the CCM and ECM groups
shows the observed right occipital activity remains significant
[β = 33.999, SE = 15.127, df (76), t = 2.2475, p < 0.027],
indicating that in this instance, right occipital activity was more
prevalent for the CCM group than the ECM group and non-
significant when compared to activity from the NOCM group. No
other significant hemodynamic activity was observed for this task
block. A possible interpretation for the lack of overall significant
activity for this task block could be that a decrement in sustained
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TABLE 3 | General linear model results for entire NIRS probe for the third task block.

ROI Response Contrast Beta SE DF t p

O2 HbO Monitoring 3 Group CCM −23.6298 11.01096 76 −2.14602 0.035063

F4 HbO Monitoring 3 Group NOCM −6.93781 2.755174 76 −2.5181 0.013902

attention is well established by this point (circa 56 min of task
time). However, both the CCM and NOCM groups still display
some significant activity during the monitoring cycle.

For the final task block, the GLM results showed no significant
activity other than a significant HbR response for the CCM
group [β = 24.54102, SE = 11.24811, df (52), t = 2.181791,
p < 0.033667] in the right occipital region during the monitoring
cycle. This response once contrasted with the two other groups
became non-significant. It is a fair assumption, that by this time a
decrement in sustained attention and task engagement is firmly
in effect, with only the CCM group showing minimal but still
significant activity.

Engagement Index
Given that the BCI and interface feedback countermeasure
is driven by the engagement index, statistical analyses were
performed to determine if a significant difference exists between
groups and between task cycle types, i.e., decision or monitoring.
To test this, we performed a one-way analysis of variance
(ANOVA) and found a significant statistical difference between
the three conditions, ECM - NOCM and CCM - NOCM
[F(2,2297) = 71.78, p < 0.001]. The results showing the NOCM
group with a significantly lower level of SA when compared
to the other two groups. However, no significant statistical
difference was found between the CCM and ECM (p = N.S.)
groups. Furthermore, a two-way ANOVA reported a weak but
still significant difference in the level of sustained attention
between the decision and monitoring cycles [F(1,2177) = 5.72,
p < 0.05] for all groups.

NASA Task Load Index
To measure perceived metrics of workload and performance
we employed the simplified RAW-TLX version of the NASA
Task Load Index (NASA-TLX). The Raw-TLX Scores, mean
raw, and subscales are shown in Table 4. by condition.
The subjective perceived workload is the average of the
six subscales: mental demand, physical demand, temporal
demand, performance, effort, and frustration, scored on a

TABLE 4 | NASA-TLX mean (σ) scores for each condition.

Condition CCM ECM NOCM

Raw TLX 7.27 (3.1) 9.7 (3.3) 9.2 (3.4)

Mental Demand 9 (5.7) 13.6 (6) 12.8 (5.7)

Physical Demand 5.5 (6.4) 2.9 (3.8) 3.9 (3.96)

Temporal Demand 5.2 (5.1) 3.3 (4.6) 6.5 (7.2)

Performance 7.8 (2.9) 13.7 (5.1) 8.9 (3.4)

Effort 7.5 (4.9) 10.4 (5.3) 11.4 (5.7)

Frustration 8.8 (4.4) 15.2 (5.8) 11.6 (4.8)

twenty-step bipolar scale. The condition with CCM shows
the lowest total score with 7.27 (σ = 3.1). The highest score
comes from the event-related countermeasures (ECM) who
reported a surprisingly high level of frustration and lesser self-
reported performance.

We found no statistical difference between the Raw TLX, or
the subscales via ANOVA, with the exception of self-perceived
performance [F(2,20) = 4,305, p < 0.028], which asks the question
“How successful do you think you were in accomplishing the
goals of the task set by the experimenter (or yourself)? How
satisfied were you with your performance in accomplishing these
goals?” Here there was a significant difference between ECM and
CCM conditions was reported, with the ECM group reporting a
perception of higher performance.

Performance Metrics
Sales and Estimated Missed Sales
To drive the behavior of the participant during the business
task, the participant was asked to maximize sales. To measure
performance, two metrics were created: total sales and estimated
missed sales. The CCM group had the best performance with an
average of 7.46% (σ = 1.76) of estimated missed sales, and mean
total sales of 14,785 (σ = 423), compared with 14,180 (σ = 875),
9.62% (σ = 4.91) and 14,529 (σ = 510), 9.79% (σ = 2.75) for
ECM and NOCM groups respectively. However, no significant
statistical difference in performance metrics was observed when
comparing the conditions via ANOVA.

While differences in performance in terms of sales and missed
sales appear moderate, they are still apparent with a trend of
increased sales and decreased errors. Given that the task was
designed for long durations, potentially if the task was run for
a longer period, the margin between the groups may well have
widened. This aspect is one for further study.

Actions per Minute
To calculate the amount of activity each participant spent
interacting with the interface, we created a metric: actions
per minute (APM) to determine if the countermeasures
had any effect on the number of user actions during task
completion. We observed a significant statistical difference
between the conditions, for ECM – NOCM and CCM – NOCM
[F(2,2297) = 12.05, p < 0.001], but no significant difference
between ECM – CCM. For the entire duration of the simulation,
the CCM and ECM conditions had a higher mean APM of
3.460 (SE = 0.140) and 3.317 (SE = 0.139) respectively. The
NOCM group displayed a lower APM with 2.65 (SE = 0.097).
There was an observed gradual rise in APM during the decision
cycles compared to the monitoring cycles, with the CCM group
spending more time interacting with the interface at these times
when compared to the two other groups, and on average the
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CCM group spent more time interacting with the interface during
monitoring periods.

DISCUSSION

Theoretical Basis
Theoretical approaches and experimental findings concerning
mental effort are often assumed to be a natural consequence of
the demands of a task (Egeth and Kahneman, 1975). However,
Hockey (2011) proposed that effort should be considered
as an optional response to the awareness and assessment
of task demands under the control of the individual. In
their view, it is the adoption of high effort responses to
task demands which drive the fatigue process, rather than
the presence of demands themselves. They provide examples
from the literature that found the greater vigilance decrement
associated with higher effort requirements was accompanied
by increased subjective fatigue. They further expand upon
this by adding the element of controllability as a moderator
of the workload-fatigue relationship, in which controllability
refers to an individual’s perception that they have control over
work activities. They confirmed this moderating effect in an
experimental study of office work, in which workload was
manipulated by time pressure and opportunity to schedule tasks
(Hockey and Earle, 2006). In the present study, interpreting
the GLM results in the context of the coherence analysis
highlights that for the NOCM group, the bursts of coherent
activity appear associated to some extent with the significant
activity reported by the GLM. Potentially this indicates higher
energy utilization through a need to sustain attention, which
was not moderated by interface countermeasures. However,
for both the CCM and ECM groups, this association is not
as closely coupled as would be expected from the coherence
analysis. That is, periods of coherent activity do not have
a corresponding significant hemodynamic effect reported by
the NIRS GLM. Thus, it would appear that significant overall
coherent activity over long durations did not equate to significant
hemodynamic responses in this instance, which appears to be
counter-intuitive.

Interpretation
Interpreting the results using this proposition provides a
more intuitive explanation of the effects observed within the
current study. The NOCM group (who received no interface
feedback countermeasures) were reliant on internal motivational
mechanisms to sustain attention and perform the task, resulting
in sporadic bursts of high effort and thus greater hemodynamic
activity. The results from the coherence analysis appear to
provide some evidence to support this, in that the magnitude-
squared coherence plot (Figure 10) shows bursts of brain activity
during key points in the task timeline. The results from the
GLM appear to loosely associate with significant hemodynamic
activity during those same periods. Furthermore, the results
from the subjective TLX inventory indicated that participants
perceived much the same thing, by self-assessing higher perceived
effort, frustration, mental and temporal demand than either of

the other two groups. However, from the performance metrics,
sales and actions per minute, the NOCM group spent less time
interacting with the interface [mean APM 2.65 (σx̄ = 0.097)];
yet still performed better than the ECM group in terms of
sales with 14,180 (σ = 875) average sales and 9.62% (σ = 4.91)
average missed sales, compared to 14,529 (σ = 510) and
9.79% (σ = 2.75).

In the ECM group, the magnitude-squared coherence plot
(Figure 9) shows a pattern of coherent activity that appears
to follow the event procedures that spawn the interface
countermeasure, i.e., activity when task cycles start and are
dependent on the level of sustained attention. There were,
however, significant areas of no activity where the interface
countermeasure appears to have been ineffective, which could
be evidence of a signal miss error. Moreover, while there were
areas where the interface countermeasure drove behavior -
evidenced by increased coherent activity, overall, there was
no statistically significant hemodynamic response. This effect
appears to conform to earlier work concerning the vigilance
decrement and signal detection errors (e.g., Parasuraman et al.,
1996; Miller and Parasuraman, 2003; De Boer and Dekker,
2017). Such that, even with the interface countermeasure(s) in
place, participants were still required to maintain a sufficient
level of sustained attention in between events in order to
detect the signal. The analysis of the subjective assessment
of workload, in this case, appears to confirm this, with the
highest overall TLX score and participants in the ECM group
reporting the highest mental demand, effort and frustration,
lowest physical and temporal demand and yet self-assessing
the highest task performance. The performance metrics do not
support this self-assessed level of task performance, with the
ECM group performing worst overall for total sales and average
missed sales, yet interacting more with the interface in terms
of mean APM 3.317 (SE = 0.139) than the NOCM group
2.65 (SE = 0.097).

For the CCM group who received continuous interface
countermeasures, the magnitude-squared coherence plot
(Figure 8) shows a pattern of consistent coherence activity
throughout the duration of the task, with only brief periods
of low coherence activity. However, this pattern of coherence
activity was not reflected in the GLM results for this group
which showed very little significant hemodynamic effects after
the first decision-monitoring cycle. A possible explanation for
this may be found in the effort-control mechanism proposed
by Hockey (1997). The CCM group were given continuous
feedback as to their current level of sustained attention; we
suggest that this information was utilized to self-regulate
effort and cognitive resource allocation for the entire duration
of the task. Moreover, the interface feedback mechanism
potentially added a supplementary element of perceived control,
in which the use of the color gradient allowed participants
to modulate their level of engagement with the task in a
way that was neither “too high” nor “too low.” Modulating
these two factors may have served to augment or bypass
the neural mechanisms proposed in the cognitive energetic
framework of compensatory control, in that the ability to
self-modulate effort (and thus cognitive resources) required
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less neural “hardware” leading to greater neural efficiency when
performing the task.

The results for the CCM group appear to provide some
evidence to support these assertions. Using the hemodynamic
response function as a proxy for the mobilization and metabolism
of cognitive resources; both the level of engagement and the
hemodynamic responses showed the most consistent coherence;
this coupled with a lack of significant hemodynamic responses
as reported by the GLM, highlights potential cognitive efficiency
gains through lesser energy utilization. In terms of performance
metrics, the CCM group had the best task performance with
higher mean total sales 14,785 (σ = 423) and the lowest average
of missed total sales 7.46% (σ = 1.76) when compared to the
other two groups; this group also interacted more often with
the interface in terms of actions per minute 3.460 (SE = 0.140)
when compared to the other two groups. However, there was
no significant difference between the CCM and ECM groups
in terms of APM; what does appear to be noteworthy is the
effect of each action upon overall task performance, in what
appears to be a moderate net positive effect of both quantity
and quality of interactions with the interface. The analysis of
the subjective assessment of workload shows the CCM group
with the lowest mean TLX score, indicative of a perceived lower
workload overall.

Furthermore, the CCM group also recorded the lowest scores
in all factors that make up this test, i.e., mental demand, effort and
frustration, physical and temporal demand, and concluding with
an overall assessment of low task performance. This perception
of low task performance appears incongruent considering
the moderate performance improvement compared to the
ECM and NOCM groups. However, allowing for an apparent
inverse relationship between the measured neurophysiological
responses, and the self-assessment of all factors consisting
of perceived workload; it is not hard to imagine that
since participants were in actuality expending less effort
to perform the task. From this, they would conclude that
they performed worse at the task; being unaware of the
beneficial effect of augmenting their ability to self-modulate
sustained attention.

The overall aim of this research was to develop and
test a brain-computer interface which allowed the user to
modulate their level of sustained attention by utilizing the
engagement index as a measure of sustained attention and
on-task engagement. A simple neurofeedback mechanism
(driven by the BCI) was provided in real-time to combat
a decrement in sustained attention. The results for this
study provide some evidence to support our hypothesis that
a simple continuous interface feedback mechanism, in the
form of a color gradient representing low to high sustained
attention, would allow users of the system to self-regulate
their sustained attention within “optimal” boundaries as
defined in our model of adaptation. The results also provide
support for a narrative in which users of the BCI which
provided continuous interface feedback, utilized less cognitive
“energetical” resources as evidenced through both objective and
subjective measurements, leading to moderate improvements in
task performance and a decrease in on-task errors. Moreover,

users of the BCI which only provided interface countermeasures
when synchronized to events and their current level of
sustained attention performed worse at the task potentially
due to signal detection errors and an over-reliance on event
signaling. Finally, the control group who received no interface
feedback (NOCM), appeared to use more cognitive resources
as measured by NIRS to perform the task, yet performed
better than the ECM group who received the event-driven
interface feedback, and worse than the CCM group who received
continuous feedback.

Limitations
A sub-goal of our development of the BCI was to investigate
the use and efficacy of fNIRS with regards to its integration
into the BCI architecture. However, in this instance, we found
that fNIRS, given the type and duration of the task, did not
prove as useful a tool as expected. Some participants reported
high levels of discomfort, leading them to depart the experiment
before completion. We also experienced a high degree of signal
loss or artifacts within the recorded signal showing it not
to be as robust as first supposed from the literature (e.g.,
Maior et al., 2015; Lukanov et al., 2016). However, this could
be an effect of our experimental procedure and our probe
design rather than a fundamental problem with the technology.
Furthermore, the shape of the human head and the fact certain
hair and skin types preclude its use or add unwanted artifacts
to the data make fNIRS problematic for ecologically valid work
tasks in real-world scenarios, and concomitantly for real-time
BCI applications. However, we do understand that NIRS, as
with all technologies, is undergoing an accelerated evolution
in terms of size, comfort and reliability and that potentially
within 5 years the technology will be unrecognizable by today’s
standards and ready to be applied in contexts requiring real-
time feedback.

Another limiting factor within the current study pertains
to the design of the NIRS probe. The probe was inspired by
the current literature relating to the engagement index, and
thus we set out to measure hemodynamic responses from
those sites. Another limitation is that of sample size, with
the previously discussed issues with data reduction due to
discomfort, signal loss or artifacts, our eventual sample size
reduces the positive impact of the results reported here. However,
we believe that the results we report here give a good indication
of how much stronger the effect sizes would have been, given
larger sample sizes.

Final Remarks
The future of human labor appears to be heading in the
direction of significant RPA, and this will change how
humans interact with technology, creating new types of task.
These new tasks, at least those that include a human-
in-the-loop, will require an optimum level of sustained
attention and involve short decision and long monitoring
cycles. It would appear, at least based upon the results
presented in this study, that some form of continuous feedback
mechanism to ensure a sufficient level of sustained attention
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is maintained. This type of feedback could prove beneficial
to the workers of tomorrow becoming an important tool in
human-machine teaming and more generally for increasing task
performance in the coming decade, as technology advances to the
point where external to physiology monitoring technologies are
no longer the cutting edge.

CONCLUSION

The overarching goal of this study was to test an online BCI that
utilizes an engagement index, a novel adaptive dynamic threshold
classification method and a simple neurofeedback mechanism.
The BCI was developed to allow a user to modulate their
level of sustained attention while performing a long duration
business logistics task. Both EEG and fNIRS were utilized in
the BCI architecture, EEG to provide the engagement index and
fNIRS to monitor the responses and provide data for post hoc
analysis. Wavelet coherence analysis was used to illustrate how
the BCI and feedback mechanism drove user behavior, using
fNIRS as a proxy for energy utilization. The results of this
study provide evidence to support a hypothesis that “utilizing
a BCI to allow the self-regulation of sustained attention, can
have beneficial effects upon operator task engagement and
task performance.”

Wavelet coherence analysis revealed patterns of user activity
consistent with our hypothesis in that the continuous interface
countermeasure group (CCM) spent the most time interacting
with the interface followed by the synchronized to task events
countermeasure group (ECM) and then the control group for
which the BCI was recording data but inactive. Using actions
per minute (APM) as a metric for interface activity we found
that the CCM and ECM groups had significantly higher APM
[F(2,2297) = 12.05, p < 0.001] when compared with the control
NOCM group. The combination of Wavelet coherence analysis
and general linear model applied to the fNIRS data revealed
that while the CCM group spent more time interacting with
the interface, they appeared to expend less effort to complete
the 90-min task, followed by the ECM and then NOCM
groups who expended significantly more effort to complete the
task in comparison.

Analysis of the metrics of perceived workload and
performance measured using the simplified RAW-TLX version of
the NASA Task Load Index (NASA-TLX) appear to support this
from a user point of view. The CCM had the lowest total score
with 7.27 (σ = 3.1) when compared with the ECM 9.7 (σ = 3.3)
and NOCM 9.2 (σ = 3.4) groups. However, a one-way between-
groups ANOVA showed no statistical difference (p > 0.5)
between the Raw TLX or the subscales with the exception of
self-perceived performance [F(2,20) = 4,305, p = 0.028] when
comparing the CCM and ECM groups.

In terms of task performance metrics the results show that
when the BCI was used to deliver a continuous interface
countermeasure, task performance was moderately enhanced in
terms of total and estimated missed sales 14,785 (σ = 423),
7.46% (σ = 1.76), when compared to both the control group

were the BCI was not active (NOCM) 14,529 (σ = 510), 9.79%
(σ = 2.75), and the group which received countermeasures and
dependent on their current level of sustained attention (ECM),
14,180 (σ = 875), 9.62% (σ = 4.91).

While differences in performance in terms of sales and missed
sales appear moderate, they are still apparent and create a net
positive of increased performance in terms of higher sales and
fewer errors, higher levels of interface interactivity (time on task)
and less energy utilization (regulated sustained attention). Future
studies will focus on the integration of fNIRS response features
and increasing both duration of the task and applying the BCI
in a different context, such as a safety-critical task where the
ability to self-modulate sustained attention could potentially lead
to significant reductions in signal error detection in turn leading
to enhanced on-task safety.
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