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Rho family GTPases control almost every aspect of cell physiology and, since their discovery, a wealth of knowledge
has accumulated about their biochemical regulation and function. However, each Rho GTPase distributes between
multiple cellular compartments, even within the same cell, where they are controlled by multiple regulators and signal
to multiple effectors. Thus, major questions about spatial and temporal aspects of regulation remain unanswered. In
particular, what are the nano-scale dynamics for their activation, membrane targeting, diffusion, effector activation and
GTPase inactivation? How do these mechanisms differ in the different cellular compartments where Rho GTPases
function? Addressing these complex aspects of Rho GTPase biology will significantly advance our understanding of the
spatial and temporal control of cellular functions.

Like all regulatory GTPases, Rho family GTPases cycle between
an active (GTP-bound) and an inactive (GDP-bound) state
under the control of GEFs and GAPs. They additionally cycle
between the membrane and the cytosol. Membrane anchoring is
conferred by a C-terminal prenyl group and, in some cases, adja-
cent basic residues.1 While prenylation is thought to be a perma-
nent modification of Rho GTPases, reversible S-palmitoylation
of C-terminal sites has also been described.2-6 In the resting state,
these GTPases are sequestered in the cytosol by RhoGDI, away
from activators and effectors. Upon stimulation, they dissociate
from RhoGDI and associate with membranes, concomitant with
activation by GEFs. It has been proposed that this is a two-step
mechanism whereby phosphoinositides,7-10 proteins such as
ERM (ezrin, radixin and moesin), p75 neurotrophin receptor
and the tyrosine kinase Etk,11-13 or phosphorylation of
RhoGDI14 promote dissociation of a GTPase/RhoGDI complex
followed by membrane anchoring and activation. However, the
rate limiting step of this process in living cells has not been
determined.

In the active state, Rho GTPases recruit and activate effector
molecules that elicit various biological responses. Finally, the
bound GTP is hydrolyzed following association with GAPs, and
the GTPase then dissociates from the membrane. Available data
suggest that dissociation from the membrane is spontaneous,
with RhoGDI inhibiting membrane re-association.15,16 These 2
regulatory cycles are coupled so that biochemical activation
(GTP loading), GDI dissociation and membrane targeting are

linked, as they are in the reverse reaction, where the GTPase is
inactivated (GTP is hydrolyzed to GDP), dissociates from the
membrane and rebinds to RhoGDI. Importantly, both activation
and membrane translocation are essential for signaling.17-19

While these biochemical steps are well studied, surprisingly
little is known about how they proceed in living cells, in particu-
lar, how they spatially operate at the molecular level. The earlier
observation that Rac and Rho partition into caveolae20 prompted
investigation of the role membrane domains play in Rho GTPase
function. These studies suggested that cholesterol-enriched mem-
brane domains (aka lipid rafts) are major sites of membrane bind-
ing and signaling by Rac and RhoA.21,22 Significantly,
intracellular trafficking and presence of these domains at the cell
surface are adhesion-dependent; detachment of cells from their
integrin-mediated contacts results in internalization of a large
fraction of the lipid raft components to the recycling endosomes
with consequent reduction of ordered domains in the plasma
membrane.22-24 Further, deregulation of this mechanism appears
to contribute to anchorage-independence in cancer.23,25,26 This
model was based on (1) the co-localization of Rac with lipid raft
markers in cells, (2) the strong dependence on cholesterol for Rac
binding to cellular or artificial membranes,22 and (3) the
enhancement of Rac activation and signaling by cysteine palmi-
toylation,4 a modification that strongly promotes lipid raft parti-
tioning.27 Consistent with these ideas, inducing raft localization
of the Rac GEF Tiam1 promoted formation of lamellipodia,28

while targeting Rac to lipid rafts could compensate for the lack of
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endogenous mechanisms of targeting.29 This model placed lipid
rafts at the center of Rac recruitment, activation and signaling.

However, the evidence for this model is based on methods
whose spatial resolution is limited, and it is hard to reconcile
with both the high solubility of the GTPase in the presence of
detergent30 and the known preference of prenyl groups for disor-
dered, non-raft membranes.31 Our recent study32 leads to a more
nuanced understanding of the roles of membrane domains in
Rac function. First, a FRET-based approach in living cells as well
as visualization of Rac binding to the microscopically visible liq-
uid-ordered and disordered phases in artificial bilayers showed
that a substantial amount, likely the majority, of membrane-
bound Rac exists in disordered regions. This distribution appears
to be functionally relevant since forced targeting of Rac to non-
raft regions lowered its activity and increased its susceptibility to
the Rac GAP b2-chimaerin. These results appear incompatible
with prior data demonstrating a requirement for cholesterol in
Rac translocation and function. The discrepancy was resolved by
the use of supported lipid bilayers in vitro, where lipid domains
could be resolved by light microscopy. In this system, Rac trans-
location still required cholesterol but occurred preferentially at
the boundaries between ordered and disordered domains. Fol-
lowing translocation, Rac diffused freely and accumulated mainly
in the disordered phase. Thus, we propose a model whereby the
recruitment of Rac at domain boundaries is followed by its diffu-
sion into both raft and non-raft regions. The active GTPase is
likely to encounter distinct effectors in different domains, while
in non-raft regions it will encounter GAPs, resulting in de-activa-
tion (Fig. 1).

Whether translocation also occurs at domain boundaries in
living cells remains to be seen. Similarly, whether GAPs other
than chimaerin prefer non-raft regions and account for the

reduced activity of Rac confined to disordered domains is
unknown. Nonetheless, this model leads to some interesting pre-
dictions concerning how mechanisms that govern Rac localiza-
tion to different membrane domains might control its activation
state and effector interactions. Local enrichment of palmitoyl
transferases is one such mechanism. Rac has a strongly basic
sequence at its C-terminus that binds anionic phospholipids,
such as PIP2 and PIP3, so metabolism of these lipids might also
govern the extent of Rac partitioning into rafts.33 Additionally,
membrane domain assembly and disassembly might influence
these processes, while proteins that bind at the hypervariable
region (a C-terminal sequence that exhibits striking diversity
among Rho GTPases) could mask the polybasic region or steri-
cally prevent addition of a palmitoyl group on the neighboring
cysteine 178,34 thereby favoring partitioning into disordered
regions. Thus, many possible mechanisms can be envisioned by
which diffusion and targeting to different membrane regions
could control Rac function.

The presence of Rho GTPases at various cellular compart-
ments such as endomembranes, the nucleus, focal adhesions and
the bulk plasma membrane in cell-extracellular matrix and cell-
cell contacts adds another layer of complexity.3,35,36 Whether the
same GTPase in these different compartments shows similar
behavior with respect to membrane translocation, diffusion,
effector interaction, inactivation and membrane dissociation is
largely unexplored. Coupling between different compartments is
also poorly understood. Diffusion of the GTPase on the mem-
brane surface between compartments has been observed37 and
might influence the GTPase cycle. Membrane trafficking
between compartments has also been suggested, for example,
activation of Rac by Tiam1 on endosomes resulted in protrusive
activity on the plasma membrane and cell migration.38

Figure 1. Model of Rac regulation by membrane domains and their boundaries. Rac preferentially translocates at domain boundaries and has a propen-
sity (thick dashed arrow) to diffuse into non-raft regions where GAPs are enriched. S-palmitoylation by palmitoyl transferases (PAT) and interactions with
phosphoinositides (black circles) restrict diffusion into raft domains (thin dashed arrow) where the GTPase is activated by GEFs and signals to effectors.
Thus, signal termination involves release from raft domains, entry into non-rafts, association with GAPs and membrane dissociation.

e943618-2 Volume 4 Issue 2Cellular Logistics



Higher complexity still can be appreciated when one considers
the multitude of regulators,39,40 effectors41 and post-translational
modifications described for Rho GTPases.4,42,43 One view postu-
lates that Rho GTPases at various sub-cellular locations utilize
different effectors and thus produce spatially complex signaling
outputs. For example, active RhoA is localized not only at the
rear of migrating cells but also at the leading edge.44,45 However,
while current models postulate that the RhoA effector ROCK
promotes contractility at the tail,46 active RhoA at the leading
edge associates with mDia to stabilize microtubules.21 Thus, par-
titioning into ordered vs disordered regions may control the
effectors that are activated. Similarly, partitioning into different
membrane domains may control GTPase activity by determining
interactions with GEFs and GAPs, as we recently reported.32

It is becoming apparent that Rho GTPases are controlled by
nano-scale reaction and diffusion mechanisms of which we know
very little. Understanding these aspects in living cells will require
identification of Rho GTPase regulatory elements at various cel-
lular locations and development of new tools to visualize and
analyze molecular movements, interactions and reaction

intermediates at the single molecule level. Rho GTPases are also
highly implicated in disease, including various types of cancer,
however, activating mutations are rarely found. Instead, changes
in expression levels are often observed.47 Changes in expression
may shift the GTPases between different compartments and
effectors, thus, altering the balance between different downstream
pathways rather than uniformly increasing or decreasing outputs.
In summary, understanding how these changes establish new
chemical equilibria and signaling outputs in the Rho GTPase
networks that contribute to disease will be important directions
for future research.
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