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Abstract

A high proportion of life science researches are gene-oriented, in which scientists aim to investigate the roles that genes
play in biological processes, and their involvement in biological mechanisms. As a result, gene names and their related
information turn out to be one of the main objects of interest in biomedical literatures. While the capability of recognizing
gene mentions has made significant progress, the results of recognition are still insufficient for direct use due to the
ambiguity of gene names. Gene normalization (GN) goes beyond the recognition task by linking a gene mention to a
database ID. Unlike most previous works, we approach GN on the instance-level and evaluate its overall performance on the
recognition and normalization steps in abstracts and full texts. We release the first instance-level gene normalization (IGN)
corpus in the BioC format, which includes annotations for the boundaries of all gene mentions and the corresponding IDs
for human gene mentions. Species information, along with existing co-reference chains and full name/abbreviation pairs are
also provided for each gene mention. Using the released corpus, we have designed a collective instance-level GN approach
using not only the contextual information of each individual instance, but also the relations among instances and the
inherent characteristics of full-text sections. Our experimental results show that our collective approach can achieve an F-
score of 0.743. The proposed approach that exploits section characteristics in full-text articles can improve the F-scores of
information lacking sections by up to 1.8%. In addition, using the proposed refinement process improved the F-score of
gene mention recognition by 0.125 and that of GN by 0.03. Whereas current experimental results are limited to the human
species, we seek to continue updating the annotations of the IGN corpus and observe how the proposed approach can be
extended to other species.
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Background

Knowledge about the functions and behaviours of genes and

proteins is the primary research interest of life scientists, which can

assist in gaining advanced perception of the complex mechanisms

behind biological phenomena. Take users of PubMed as an

example. In addition to bibliographic queries (e.g. an author’s

name or article title), Dogan et al. [1] found that the most frequent

PubMed searches were for genes and proteins. In contrast to a

bibliographic query, a gene/protein query tends to return a large

number of results due to the ambiguity of gene/protein names and

the frequent use of abbreviations in such a query.

In an ideal information retrieval system, a user would simply

input an entity name and receive search results clustered according

to the different entities that share this name. One method to

approach such a system is to include the results of entity

recognition for the documents to be indexed. Although significant

progress has been achieved in named entity recognition, however

its results are still insufficient for direct use because of the wide

array of synonyms and high ambiguity of name variations in

names across documents [2]. For instance, a search for ‘‘tumor

protein p53’’ in the Entrez Gene database returns over 400

proteins with the same name in over 20 species. When the same

term is used to query GQuery, a global cross-database NCBI

search engine, even more complex results are obtained, inferring

that distinguishing the true identity of named entities is indeed an

indispensable process. Recently, some advanced retrieval systems,

such as BioContext [3] and EVEX [4], have begun to integrate

entity normalization/disambiguation components e.g., GeneTU-

Kit [5] and GenNorm [6] to deal with the ambiguity issues. Entity

normalization goes beyond the recognition task by linking a

textual entity mention to a knowledge base entry. Several

preliminary results [7,8] have demonstrated that such a disam-

biguation process can improve search quality. It can also help one

manually curate a database [9] and index entries [10], facilitate

links among data across resources [11,12], and improve the online

browsing experience [13].

This paper focuses on linking gene/gene product mentions in

biomedical articles to their IDs recorded in a database, a task

referred to as Gene Normalization (GN). Most previous GN-

related tasks [14,15] consider this task from the document-level

perspective. For instance, in BioCreative II GN task [16], a

normalization system is required to provide a list of gene mentions

that exist in an abstract with their corresponding Entrez Gene IDs.

Regarding the abstract shown in Figure 1 and its results after GN,

the gene ‘‘urocortin’’ can be associated with multiple species in the
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abstract, as it appears in the abstract’s title as a human gene, and

as a rat gene in the first sentence of the abstract. Each instance

must be linked to a different Entrez Gene ID. Unfortunately, the

document-level linked result shown in Figure 1 is incapable of

assembling the biological pathway shown in Figure 2, because it is

difficult to distinguish which urocortins (7349, 29151 or both) are

inhibited by the CRF-binding protein and/or stimulate ACTH.

Only a few document-level GN systems, such as GenNorm [17],

have begun to adjust their method by choosing the most consistent

ID throughout the document-level set for bridging the extracted

biomedical events and biomolecular database records. For the

construction of biomedical pathways, linking biomedical entities in

text to nodes in a pathway is a highly context dependent task [18]

in which the precise identity of each of these entities should be

recognized. Hence, an instance-level approach will serve as a

better solution during the construction of biomedical pathways.

To this end, this work considers the GN task from the

perspective of the instance level. In contrast to document-level

methods, an instance-level GN system deals with the finer level of

granularity that must link all gene mentions in a text, and also

precisely give their exact occurrence information. The results are

very important since they allow following applications to infer the

interrelationships among those linked entities. However, it is also

more challenging than traditional GN tasks.

When considering the task from the instance level, the first

challenge is the lack of context information for disambiguating

each individual instance. Conventional GN approaches [6,19]

have focused on making an independent decision for each gene

mention. The essential idea was to extract the discriminative

features (e.g., species, chromosome, etc.) from the profile

knowledge of a specific gene (e.g., the gene’s Entrez Gene page,)

then link each gene mention in a document by comparing the

contextual similarity with each of its candidate referent entries. For

instance, in Figure 1, the candidate IDs of the ‘‘urocortin’’ in the

first sentence of the abstract include {7349, 29151}. Judging from

the context, this mention should be a rat protein, so it is linked to

29151. As these approaches only exploit local features around

each name mention, they are referred to as individual GN

approaches in this paper.

A drawback of individual approaches is that, when they decide

the linking ID of a mention, they cannot make use of information

about the linked IDs and features of other mentions in the same

document. Therefore, the urocortin in the second sentence of the

Figure 1. Examples of gene normalization (PMID: 8612563) and the result of the BioCreative Gene Normalization task. Note that for
the explicitness of this example, the Entrez Gene IDs of rat genes are also included.
doi:10.1371/journal.pone.0079517.g001

Figure 2. The pathway described in Figure 1.
doi:10.1371/journal.pone.0079517.g002
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abstract cannot be linked because the context (i.e. the sentence

containing the mention) does not provide adequate information.

Our previous work [20] proposed to model the relations among

gene mentions across sentences to deal with the challenge. For

example, in Figure 1, the two urocortin genes described in the first

two sentences can be correctly linked if we can infer that they form

a co-referent. We refer this approach as an intra-section collective

GN method because it considers both a mention’s individual

features and its relations with other mentions in the same section.

In this paper, we extend the idea to consider not only intra-section

collective information but also cross-section collective information

and section-specific properties to improve GN performance. In

addition, a refinement procedure is proposed to provide a sort of

feedback mechanism from the GN step back to the gene mention

recognition step to improve the overall performance.

The second challenge of the instance-level GN is the lack of an

openly available gold standard corpus for developing instance-level

entity normalization systems. The corpora of the previous

BioCreative GN-related tasks, including BioCreative I-III

[14,15,21,22], only provide document-level annotations. On the

other hand, the CALBC corpus [23] for the concept identification

task is a silver corpus that was compiled by integrating different

systems’ output through a voting scheme. Therefore, they are not

suited for developing or evaluating advanced applications to

associate extracted relationships between entities with correct IDs.

To the best of our knowledge, only three pioneering works

aggressively attempted to list all mentions’ identities and made

their datasets openly available. The first is Cucerzan’s dataset

[24], which was compiled from two different sources: Wikipedia

and MSBC news stories. The second dataset is released by

Kulkarni et al. [25], which was sampled from online news. Both

dataset are compiled for the newswire domain. There is only one

similar corpus available within the biomedical domain, the

CRAFT corpus [26], which contains 97 open-access biomedical

journal articles annotated with nine biomedical ontologies.

Nonetheless, the articles of the CRAFT corpus are manually

annotated with sophisticated guidelines, which may at times

increase the ambiguity of the dataset (e.g. the same name can be

annotated with different ontologies due to its surrounding

context). Therefore, in this work, we undertook to compile a

more straightforward instance-level GN (IGN) corpus, which fully

annotates gene/gene products and links them to the correspond-

ing Entrez Gene IDs.

In this work, the proposed method was trained on the released

IGN corpus and its performance was evaluated using instance-

level precision/recall/F-measure on both abstracts and full texts.

In addition, the performance of other instance-level GN systems,

including GenNorm [27] and Moara [17], has also been

reported. The current evaluation is only based on human genes,

due to the leading demand of linking gene names to the human

genome. Although our evaluation focuses on human genes only,

the datasets used for evaluation also contain place-holders for

non-human gene mentions. We used the Markov logic [28] to

jointly model the candidate selection and disambiguation stages

in the GN decision to filter out non-human gene candidates.

These non-human genes were also taken into consideration

during evaluation.

Figure 3. A snapshot of the IGN annotations in the BioC format.
doi:10.1371/journal.pone.0079517.g003

Figure 4. Problem of the supervised gene mention recognition.
The tag ,entity. indicates successfully recognized gene mentions. The
context features extracted for the Arnt protein in the first sentence are
underlined. The Arnt mentions that failed to be recognized are
represented in the bold font.
doi:10.1371/journal.pone.0079517.g004
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Materials and Methods

The Instance-level Gene Normalization Corpus
The IGN corpus was compiled using two datasets, one for

abstract and the other for full text-level evaluations. For each

article, in addition to the annotations of all described gene/gene

product mentions, the following annotations are included in our

corpus: 1) The corresponding Entrez Gene ID of each human

gene mention, 2) Species information of each gene mention, 3)

gene full name/abbreviation pairs, 4) co-reference of gene

mentions, and 5) sentence boundaries. The annotated corpus,

which can be downloaded from https://sites.google.com/site/

hongjiedai/projects/the-ign-corpus, is released in the BioC XML

format [29] as a publicly available resources for other text mining

systems.

Regarding the abstract level evaluation, we use the dataset

released by the BioCreative II GN task [15]. For each abstract, the

gold-standard BioCreative corpus contains a list of all human

genes that appear in that abstract, and these name strings are

linked to IDs in Entrez Gene. However, the lists do not give the

exact location of the corresponding gene mentions in the abstract.

To construct our IGN corpus, three in-lab annotators annotated

the exact locations and the boundaries of the IDs’ gene mentions

by following an annotation guideline. Our annotations for the

abstract shown in Figure 1 are displayed in Figure 3. All sentences

within an abstract containing gene mentions are recorded

individually, along with the precise boundary of these names.

For those acknowledged as human genes, their corresponding

Entrez gene IDs are specified (entrez_id). As for non-human genes,

their probable associated species is provided (taxonomy_id).

Furthermore, all instances within the article that possess the same

identity are also listed out for reference (coreference_chain).

Specific annotations as such are more suitable for the construction

of signaling pathways than that of document-level annotations.

For the full text level IGN corpus, this work uses the dataset of

the IntAct project, which was downloaded from ftp://ftp.ebi.

ac.uk/pub/databases/intact/current/various/data-mining/. The

Figure 5. The Markov network obtained by grounding the discourse salience collective formula to the constants x, y = {1, 2}, s =
{‘‘Abstract’’}, and id = {966}. Note that the circular nodes in dark background color represent the unobserved predicates, and the other circular
nodes represent the observed predicates. The triangular nodes represent the cliques shown in (a).
doi:10.1371/journal.pone.0079517.g005

Table 1. The effect of the refinement stage in human gene
mention recognition on the test set of IGN.

Configuration P (%) Diff R (%) Diff F (%) Diff

Original 66.2 2 82.7 2 65.1 2

+Refinement 67.3 +1.1 91.8 +9.1 77.6 +12.5

doi:10.1371/journal.pone.0079517.t001

Collective Instance-Level Gene Normalization
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IntAct dataset contains a set of 6,409 unique text snippets of about

1 to 3 sentences. Each snippet describes at least one protein-

protein interaction that is encoded by using the IntAct interaction

accession number. Through the PubMed IDs of the snippets, we

retrieved all the corresponding abstracts and screened for

matching snippets. If a snippet was found in its corresponding

abstract, a pair of linked IDs of the interacting proteins in the

given snippet was generated by resolving the accession number.

For our evaluation, only human interaction pairs were selected,

resulting in a corpus containing 45 abstracts with 59 snippets.

Subsequently, the resolved IDs’ name strings are used to tag the

snippets, and then the annotators rectified the boundaries and ID

linking errors based on the context. In addition, annotators were

asked to complement the linking of gene mentions in the title

section. After this process, sections containing snippets that are

absent in the abstracts were manually located in the full text article

and included into our corpus. 256 protein-protein interaction pairs

were supplemented from 39 full-text articles.

System and Methods
GN includes the two main tasks performed by a biologist

reading an article: (1) gene mention recognition, and (2) gene

mention disambiguation. The first task consists of recognizing

words or phrases that are considered gene names. This task is a

named entity recognition problem. The second task consists of

finding the correct database ID that should be linked to a given

candidate gene mention.

In this work, we employ several entity recognizers to locate

biomedical entities, such as genes, tissues, chromosome locations

and species terms, in a given text. After entity recognition, the

gene mention mapping step assigns candidate Entrez Gene IDs to

each recognized gene mention. A refinement step is then used to

identify mentions that were not recognized by the recognition step.

Finally, the gene mention disambiguation step selects the most

likely ID from multiple IDs which share the same gene mention

name. The following subsections elaborate each step in detail.

Entity Recognition. The recognition of gene names is

handled by a machine learning-based gene mention recognizer

trained on the BioCreative II gene mention dataset [21]. The gene

mention recognition problem is formulated as a word-by-word

sequence labelling task and the underlying machine learning

model is the conditional random fields with a set of features

selected by a sequential forward search algorithm [30]. In

addition, a prefix tree string matching algorithm is implemented

to recognize names of cells, tissues, and species mentions by using

lexicons collected from online resources.

Gene Mention Mapping. In this step, we assign each

recognized gene mention a specific Entrez Gene ID. This process

requires a lexicon of gene mentions and related information such

as name variations, acronyms, full names, spelling variations, etc.

In this work, we use Entrez Gene and UniProtKB as sources to

compile the lexicon. We use two mapping methods to assign each

gene mention in an article with candidate Entrez Gene IDs. The

first method is exact matching. Since the coverage of the

dictionary is not sufficient to cover all gene mention variants,

similar to the state-of-the-art GN systems, this work use rules to

create orthographical variants for each name in the dictionary

before matching. The second mapping method is partial

matching. Gene names in the compiled dictionary are tokenized

and indexed using Lucene. We then submit the recognized gene

mention to our local Lucene index as a query term to find partial

matches.

Gene Mention Recognition Refinement. After gene men-

tion mapping, names of the successfully mapped gene mentions

and their corresponding database IDs are collected to generate a

refinement dictionary. Refinement is then performed by using the

exact matching algorithm to search the whole article for mentions

in this dictionary, which were not recognized by the recognizer.

Figure 4 illustrates an example to emphasize the requirement of

the refinement process.

In the first sentence of Figure 4, the protein ‘‘Arnt’’ was

successfully recognized. However, in the following three sentences,

the same surface name failed to be recognized by the employed

supervised learning gene mention recognizer. As described in the

previous section, the sequential forward search algorithm was

employed to select the most effective feature sets. In the feature

Table 2. The performance of the intra-section collectives.

Configuration Training set (%) Test set (%)

P R F P R F

No disambiguation (P-oriented) 80.4 48.6 60.6 80.7 56.3 66.3

No disambiguation (R-oriented) 64.7 56.3 60.2 51.2 73.3 57.7

Random baseline 68.4 51.6 58.8 68.3 59.8 63.8

Salience 79.2 50.2 61.5 79.5 59.0 67.7

Transitivity 78.5 49.5 60.7 78.6 58.8 67.2

Protein-protein Interaction 79.4 51.1 62.2 80.1 59.8 68.5

All intra-section collectives 79.1 52.0 62.8 78.4 61.0 68.6

All individuals 74.9 54.3 62.9 75.7 61.7 68.0

doi:10.1371/journal.pone.0079517.t002

Table 3. The GN results after employing refinement process
and the performance of the other two openly available
instance-level GN systems.

Configuration P Diff R Diff F Diff

All Individuals+ 72.0 23.7 70.4 +8.7 71.2 +3.2

All Intra-Section Collectives+ 77.4 21.0 68.9 +7.9 72.9 +4.3

Individuals+Collectives+ 77.8 20.1 70.7 +5.4 74.1 +3.1

Moara (Exact Matching) 60.6 n/a 50.3 n/a 55.0 n/a

GenNorm 75.5 n/a 55.3 n/a 63.9 n/a

doi:10.1371/journal.pone.0079517.t003

Table 4. The effect of the advanced collectives on abstract
and full text-level IGN.

Dataset Configuration Full Abstracts Titles

P R F P R F

Abstract-level IGN Intra-section
Collectives

77.8 70.6 74.0 82.3 62.5 71.1

+Cross-section
Collectives

78.0 70.9 74.3 81.3 66.1 72.9

Full text-level IGN Intra-section
Collectives

85.8 59.4 70.2 81.6 49.1 61.3

+Cross-section
Collectives

86.0 60.3 70.9 82.0 50.2 62.3

doi:10.1371/journal.pone.0079517.t004
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selection procedure, we found the following three features to be

most effective:

1. Orthographical features: For example, ‘‘Arnt’’ matches the

Initial_Captial pattern ‘‘‘[A-Z].+’’.

2. Context features: because of the limited memory resources, the

context window size of most entity recognizers was set to five,

i.e., the two preceding words (i.e. the words ‘‘protein’’ and ‘‘(’’

for the first ‘‘Arnt’’ mention), the current word (‘‘Arnt’’), and

the two following words–‘‘)’’ and ‘‘is’’. The context provides the

hint that ‘‘Arnt’’ is the abbreviation of a protein name.

3. Part-of-speech features: the context window was also set to five.

For example, the part-of-speech of the protein ‘‘Arnt’’ is NNP.

These features provide sufficient information to imply that the

surface name ‘‘Arnt’’ in the first sentence should be a gene

product. However, in the other sentences, ‘‘Arnt’’ appears at the

beginning of each sentence. Therefore, the effect of the

orthographical features is reduced. Furthermore, the context does

not provide any clues to support the conclusion that the word

‘‘Arnt’’ should be a protein. These issues make these mentions

failed to be recognized. Our proposed refinement process in this

step can avoid these types of errors.

Collective Gene Mention Disambiguation. If a gene

mention is mapped to two or more database IDs, the disambig-

uation process is used to determine which one is more appropriate.

We employ the collective classification method in this work.

Collective classification refers to the task of inferring labels for a set

of objects using not just their attributes but also the relations

among them [31].

Definition 1 Given a network N, an node n in N, and the label

set L, there are three distinct feature types that can be utilized to

determine the label l of n, where l[L :

1. The observed features of n.

2. The observed features (including observed labels if they are

known) of nodes in the neighbourhood (related nodes) of n.

3. The unobserved labels of nodes in the neighbourhood (related

nodes) of n.

A model that can classify a set of interlinked nodes or objects

using all three types of information described above is referred to

as a collective classification model. The main difference between

our collective GN and individual GN is the model of the third

feature; the dependencies among entities across sentences.

Formulation of the Collective Gene Normalization

Problem. In contrast to the individual GN formulations, which

classify each mention’s candidate IDs independently using features

that describe the similarity between the current context and the

database description of the given candidate ID, we formulate the

candidate IDs of all recognized gene mentions in a given article as

a network N. A node in N is constructed by using the properties of

the candidate ID. For example, in Figure 5, the mention’s ID (966)

and its order (being the 1st mention) form the node NormalizeTo(1,

966) in the network depicted in Figure 5 (a) and (b). An edge exists

between two nodes if they have dependencies. For instance, it can

be observed in Figure 5 that there are edges between the nodes

NormalizedTo, Candidate, Equal and MostGOTerms, which implies that

they are mutually dependent. In our implementation, the

Figure 6. The performance of the individual and the collective methods on full text.
doi:10.1371/journal.pone.0079517.g006

Table 5. The effect of different GN methods combined with
protein-protein interaction extraction.

Configuration P R F

(1) Instance-level Collective GN 81.6 48.3 60.7

(2) Document-level Results of (1) 34.1 79.6 47.7

(3) Traditional Document-level GN 33.5 75.9 46.5

doi:10.1371/journal.pone.0079517.t005

Figure 7. The effort of adding more individual disambiguation
formulae.
doi:10.1371/journal.pone.0079517.g007

Collective Instance-Level Gene Normalization
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dependencies include the linguistic phenomena, discourse salience

and transitivity; and the correlation among IDs, protein-protein

interaction. The formulation is then implemented as a Markov

network using the Markov logic [28], which alleviates the hard

constraints of first-order logic by associating each first-order logic

formula with a weight that reflects the strength of a constraint

through the construction of a Markov network.

In our setting, we define the predicate Candidate(x, id, s) to

represent that the gene x mentioned in the context s has a

candidate Entrez Gene ID id; and the predicate NormalizeTo(x, id)

to represent that x is linked to id. The priori which predicates will

be observed (e.g. Candidate and MostGOTerms(id, s), which is true if

the id has the largest number of corresponding gene ontology

terms found in the context s) and which ones (e.g. NormalizeTo) will

be queried is known, and the goal of the formulation is to correctly

predict the hidden predicates (i.e. NormalizeTo) given the observed

predicates. For instance, based on the first-order logic syntax and

the assumption that a gene mention x should be linked to the id

with the largest number of corresponding gene ontology terms

found in the context s, we can define the following formula for

individual-based GN where the symbol ‘‘A!’’ indicates a unique-

ness quantification. A!x:P(x) expresses that there is exactly one x

such that P(x) is true.

Formula 1: Candidate x,id,sð Þ ^ A!idiMostGOTerms idi,sð Þ
^idi~id[NormalizeTo x,idð Þ

The constructed network of Formula 1 is shown in Figure 5,

where no existing dependency is found between the two hidden

predicates NormalizeTo. Therefore, we refer to formulae such as

Formula 1 as individual formulae, because they didn’t exploit the

third information defined in Definition 1. Please refer to Material

S1 for the list of employed individual formulae.

Intra-section Collectives. In our collective formulation, the

linguistic phenomena and the correlation among entities are

leveraged to build dependencies. The first phenomenon is the

salience collective, which aims to capture the entity that is the center

of attention in a given discourse. Such an entity is mentioned

repeatedly, making it more salient than others. The collective can

be expressed in the following formula:

Formula 2: Salience Collective. Precede x,yð Þ^
NormalizeTo x,idð Þ ^ Candidate y,id,sð Þ[NormalizeTo y,idð Þ

In other words, if the Entrez Gene ID id is linked to the xth gene

mention that precedes the yth mention in the same section s, and id

is a candidate ID of y, then the mention y should also be linked to

id. In contrast with the individual formulae defined in Formula 1,

which only considers the observed features of the target gene

mention itself (x), Formula 2 includes features of neighboring gene

mentions and their unobserved IDs. Figure 5 compares the

constructed Markov networks of our collective GN approach and

the individual approach. As shown in Figure 5, there are

additional dependencies between the hidden predicates Normal-

izeTo. Based on the network, our collective entity disambiguation

model can capture the dependencies among the unobserved IDs of

gene mentions in the same context, allowing the information to be

employed in the GN decision.

The second dependency is based on transitivity collective, which

allows us to express the conditional claim that if two mentions x

and y refer to the same concept, and one of the mentions is linked

to an ID, then the other should also be linked to the same ID. The

hidden predicate Coreference(x, y) is defined to capture the

aforementioned conditional. We can then define the formula:

Formula 3: Transitivity Collective. Coreference x,yð Þ ^
NormalizeTo(x,idi) ^ :Aidj :NormalizeTo y,idj

� �
[ NormalizeTo

(y,idi)

The transitivity collective formula states that if the xth and the

yth gene mentions are a co-reference pair mentioned in the same

context s, and x is linked to idi and y has not been linked, then y

should also be linked to idi. In this work, we transformed a subset

of features presented by Soon et al. [32] into Markov logic

formulae to infer the co-references, and used the abstract level

training set of our IGN corpus as the training set. Please refer to

Material S1 to the full list of the implemented formula for the

resolutions of co-referred pairs and human gene.

Finally, the protein-protein interaction collective is defined in

the following formula, which states that the yth gene mention

should be linked to idj if another gene mention x has been linked to

idi and idi has an interaction with idj in the same context s:

Formula 4: Protein-protein Interaction Collective.

NormalizeTo x,idið Þ ^Candidate(y,idj ,s) ^PPIPartner idi,idj

� �
^

HasWord wð Þ ^ PPIKeyword wð Þ[NormalizeTo y,idj

� �

Lastly, since this work only concerns human genes, we need to

integrate a human gene classifier into our collective model to

ignore non-human gene mentions. To capture the concept in our

model, we define the hidden predicate HumanGene(x), which

indicates that the xth gene mention of the article is a human

gene5. We then employ the following formula to ensure that

whenever x is linked to an ID id, it must belong to the human

species.

Formula 5: HumanGene xð Þ _ :NormalizeTo x,ð Þ The sym-

bol ‘‘_’’ in the predicate NormalizeTo (x, _,) indicates that the

variable (i.e. id) can be any value. The rationale of the formula

above is that the recognized gene mention x does not have to be

linked to an ID. Nevertheless, the id cannot be assigned to x that

has not been proposed as a potential human gene mention. The

formula is defined as a hard constraint that must always hold.

The species annotations of the IGN corpus is used to trained the

human gene classifier.

Cross-section Collectives. In contrast to biomedical ab-

stracts that summarize the content of articles, the full texts of

papers contain more information of varying relevancy, which is

much harder for a system to understand if it processes each section

independently. For example, extracting facts from the Results

section may require resolving acronyms or synonyms only

mentioned in the Introduction section [33]. We propose advanced

cross-section collectives to model the specific characteristics and

structure of difference sections to improve the performance of GN.

In brief, the idea is that GN results from information-enriched

sections can improve results from information-depleted sections.

For our purposes, sections with the most abundant information are

those that are most likely to mention a gene’s full name and

contain the most background information about it. The introduc-

tion and abstract sections are usually the richest sections where the

authors first mention the genes of interest, giving their full names–

often followed by abbreviations used thereafter. In comparison,

other sections and figure/table captions tend to comprise less

information.

The basic collective GN formulae described in the previous

section can be extended to use gene mentions linked in sections

with sufficient information to help GN in later sections. For

example, we add the predicate InfoRichSection in Formula 2, which

is true for the section si if si is the abstract or introduction. The

advanced salience collective is defined as:

Formula 6: Advanced Salience Collective.

InfoRichSection sið Þ^:InfoRichSection sj

� �
^NormalizeTo x,idð Þ

^Candidate y,id,sj

� �
[NormalizeTo y,idð Þ

The basic salience collective links the ambiguous mention y to

an id which has already been linked by another mention x that
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precedes y ‘‘in the same section s’’. The advanced salience

collective allows information about linked abstract/introduction

mentions to be propagated across sections.

Following the same idea, the collectives defined in Formula 3

and 4 can be extended by including the InfoRichSection predicate as

follows.

Formula 7: Advanced Transitivity Collective.

Coreference x,yð Þ^NormalizeTo(x,idi)̂ :Aidj :NormalizeTo y,idj

� �

^Name x, ,sið Þ^Name y, ,sj

� �
^ InfoRichSection sið Þ^:InfoRich

Section sj

� �
[NormalizeTo(y,idi)

Formula 8: Advanced Protein-Protein Interaction

Collective. NormalizeTo x,idið Þ ^ Candidate y,idj ,sj

� �
^ PPI

Partner idi,idj

� �
^ HasWord wð Þ ^ PPIKeyword wð Þ ^ InfoRich

Section sið Þ ^ :InfoRichSection sj

� �
[NormalizeTo y,idj

� �

Results and Discussion

Evaluation Metrics
This work evaluates the performance of the proposed collective

GN method by using the standard precision, recall, and F-measure

metrics (PRF) at the instance level. The instance-level evaluation

measures GN performance at a fine-grained resolution; the PRF

scores are calculated based on the sums of true/false positive/

negative counts of linked IDs for all gene mention instances.

Experiments
We use the articles of our IGN corpus, which overlaps the

training set in the BioCreative II GN task as the training set. The

remaining articles are used as the testing sets in evaluating GN

performance at the abstract and full-text levels. At both levels, we

compare the assigned IDs of each human-annotated gene mention

with the IDs determined by the GN system to calculate the PRF

scores.

Experiment 1: The Effect of Refinement stage. Primarily,

we examine the advance of the refinement stage to improve gene

mention recognition and normalization performance. We use the

abstract level IGN test set ignoring the linked IDs for each gene

mention and apply the approximate boundary matching criterion

to evaluate the recognition performance. We then add the

refinement stage after gene mention mapping and reevaluate its

performance on the same dataset. As shown in Table 1, adding the

refinement stage can significantly improve the recognition PRF-

scores. According to our analysis of the IGN corpus, for the results

generated by the employed supervised learning recognizer [34], on

average 19.5% of true gene mentions with the same name were

not recognized by the recognizer in an article. Of these missed

mentions, 29.7% appear at the beginning of a sentence or after a

punctuation mark, and 12.1% of missed mentions only consisted

of lowercase letters. The proposed refinement process reduces

these types of errors. The result also presents the upper bound

performance (77.6% in terms of F-score) following the GN stage.

Experiment 2: Basic Collective GN Performance. The

second experiment compares the performance of the proposed

basic intra-section collective methods with the individual approach

and three baselines. We first conducted ten-fold cross validation on

the training set of the abstract level IGN corpus to evaluate the

performance of the proposed basic collective formulae (Formulae

2–4). The entire training set was then used to train a Markov logic

network model for collective GN. Finally, its performance was

evaluated on the abstract level test set.

Table 2 shows the experimental results. The first two rows are

the performance of the two baseline systems without any

disambiguation. For both, all mentions with only one candidate

ID were directly treated as answers, and entities with more than

one candidate ID were discarded (to optimize P; P-oriented) or

kept (for maximal R; R-oriented). For each ambiguous gene

mention, the third baseline ‘‘random baseline’’ randomly selects

one candidate IDs as the linked ID.

As shown in Table 2, all disambiguation configurations

outperformed the random baseline by at least 3.4% (F-score) on

the test set. The highest R-score was ‘‘R-oriented’’, which applies

no disambiguation processes and outputs all IDs as its linked

results. All configurations that employed disambiguation rules

improve the overall F-score at the cost of reductions in R. For

instance, adding the salience collective without any domain

knowledge can improve P by 28.3% and F by 10.0%. Protein-

protein interaction collective with domain knowledge achieves the

highest F-scores among the three proposed basic collectives.

Table 2 also shows that adding all of the basic collective formulae

can achieve an even better F-score than all individual formulae on

the test set.

We further examine the effect of adding the refinement stage in

GN by combining it with three GN methods: all individuals, all

intra-section collectives, and all individual plus intra-section

collective formulae on the test set. As shown in Table 3, the

refinement process can significantly boost the R rate of GN and

results in an improved F-score no matter what GN method is used.

The results are reasonable, because the refinement process can

significantly improve the R rate of the gene mention recognition

process. Table 3 also shows the results of other instance-level GN

systems, including GenNorm and Moara. Note that the results are

listed here just to illustrate the state-of-the-art instance-level GN

systems’ performance on the IGN corpus. There is no intention of

directly comparing these results, due to the fact that each of them

is based on different gene mention recognition/mapping systems,

respectively.

Experiment 3: The Effect of Cross-section Collectives. In

this experiment, we evaluate the effect of the proposed advanced

cross-section collective formulae on the IGN corpus. Because the

abstract level test set in IGN only contains abstracts, we divided

each article into abstract and title sections to simulate the

informationally rich and poor sections, respectively. For the full

text-level dataset, we treated sections other than the abstract section

as informationally poor. This experiment then evaluated the

performance of the two models trained on the training set: the

basic collective GN model with all of the individual and intra-

section collective formulae, and the same configuration plus the

advanced cross-section collective formulae.

Currently, the full text-level dataset was not exhaustively

annotated by our annotators. Therefiore, this work only evaluated

the PRF scores for the annotated instances. Recognized mentions

whose boundaries do not overlap with manually annotated ones

are ignored in the evaluation. The upper half of Table 4 shows the

results on the IGN corpus for full abstracts and titles, respectively.

In full abstracts, we can see that adding the advanced collectives

improves both P- and R-scores and results in a 0.3% improvement

in F-score. The improvement is even greater for the information-

ally poor title section. Adding advanced collectives here boosts the

R rate by 3.6% and improves the overall F-score by 1.8%.

For the full text-level dataset, Figure 6 shows the performance of

the three GN models: individual, collective and combined

formulae. The results show that the performance of these models

on the full text dataset is consistent with their performance on the

abstract. The pure-collective model achieves a higher P-rate, the

pure-individual model has a better R-rate, and the combined

individual+collective model achieves the highest F-score. At the

lower half of Table 4, we can see the improvement of the proposed
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advanced collectives over the basic collectives. Overall, Table 4

substantiates the effectiveness of the proposed advanced collec-

tives.

Experiment 4: The Effect of Different GN Methods on

Protein-protein Interaction Pair Extraction. As described in

the Introduction, we believe that document level GN is insufficient

for identifying the relations in an article. This experiment uses our

IGN full text-level corpus, which is based on the IntAct dataset, to

compare the linked protein interaction pairs of the document-level

approach with the results of our instance-level approach. In this

experiment, only protein interaction pairs that were explicitly

described in one sentence are selected for evaluation. In total, 377

pairs are evaluated.

Three configurations are compared in the evaluation. The first

and the second ones are based on our collective approach. In the

first configuration, we directly take the linked results generated by

our instance level collective GN approach. The second configu-

ration simulates the document-level GN results by combining the

results of the instance-based approach as follows: The system first

collects the names and machine-linked IDs of all recognized

protein interaction pair members. It then aggregates the machine-

linked IDs for each name in the collection. Therefore, one name

could be linked to more one ID. Finally, it assigns the aggregated

IDs to all of those name mentions as their linked IDs. Therefore,

the R rate of the second configuration should be better than the

first. In the third configuration, our previous document-level

maximum entropy-based GN approach [20] is employed.

Table 5 shows the performance when different GN methods

were employed. The results show that the proposed instance-level

GN approach achieves the best P-score on the event extraction

task. This may be because the approach can provide the ID for

each interactor. In contrast, the document-level approaches

generally achieved better R rates. The results show the benefit

of the instance-level GN method: the results of the instance-level

GN can be easily transformed into document-level results (see the

results of configuration (2)) and still achieve better performance (cf.

the configuration (2) and (3) in Table 5).

Discussion

The above experimental results indicate that the proposed

methods, including the refinement process and the intra/cross-

section collective approaches, can significantly increase the

number of normalized gene mentions. Nevertheless, after a

thorough analysis of the results, it was found that these methods

also increased the false positive rate, and this increase is more

evident at the instance level rather than the document level.

Figure 7 delineates this issue, in which the horizontal axis is the

numbers of added individual formula sets, and the vertical axis is

the achieved scores. As shown in the left part of the figure, adding

more individual formulae in our collective GN model can greatly

boost the recall, but significantly reduce the precision if we exclude

Formula 5 and its related formulae. This is caused by the

normalization of false positive mentions recognized by the entity

recognition and refinement steps. For example, consider the

sentence ‘‘It is located on the short arm of chromosome 1 in the

region 1p34 and p35’’. The two surface names ‘‘1p34’’ and

‘‘p35’’ are very likely to be recognized as gene mentions because of

the orthographical features. The normalization of these mentions

is highly probable when more disambiguation formulae are added.

Under the setting of the instance-level GN evaluation and our

formulation, this issue becomes even more critical since such

errors will be propagated to other false positive cases through the

inter- and cross-section formulae, and will then be penalized by

the instance-level evaluation scheme. As for the majority of entity

normalization works in the general domain (e.g. Cucerzan, 2007;

Kulkarni et al., 2009; Rada Mihalcea & Csomai, 2007), the same

surface name described in an article is assumed to always refer to

the same instance. Nonetheless, based on our analysis on the IGN

corpus, 14.9% of the articles contain different gene mentions that

possess the same surface name, which lead to an average of 2.93

assigned Entrez Gene ID per name. Therefore, a filtering

mechanism plays an important role in our approach. The right

part of Figure 7 shows the proposed filtering constraint (Formula

5) can somewhat ameliorate this problem and result in an

improved F-score.

Currently, the effect of our proposed method is only substan-

tiated on the human gene. We believe that the issues brought up

will be even more challenging when considering cross-species GN,

and investigating the effect of our intra- and cross-section

collective GN formulation for this task will be a very intriguing

topic. We can foresee that more formulae will be required, not

only for filtering but also for other issues, such as precisely

normalizing one gene mention to mulitple IDs in a narration like

‘‘The site is conserved in the human, rat, and mouse p53

promoters’’. The emerging larger Markov network models can

make the inference a computationally challenging problem, and

advanced inference algorithms are required to prune the

unnecessary nodes in order to improve the inference efficiency.

Conclusions

In this work, we compile the first instance-based GN corpus and

present a collective classification approach to deal with the

instance-based GN challenges at the abstract and full text levels.

The released corpus contains annotations for gene mentions, their

linked IDs along with dependency information, such as co-

reference chains and full name/abbreviation pairs, which have the

potential to significantly advance instance level GN research. We

propose Markov logic formulae to model dependencies among

gene mentions and mentions across different sections. These

formulae exploit the linguistic phenomena and the inherent

characteristics of paper sections annotated in the IGN corpus, and

the experimental results demonstrate the advantages. In addition,

a refinement process is proposed, which can significantly improve

the entity recognition and normalization performance. We believe

that these results may benefit current and new GN researchers.

The ultimate goal of life science researches nowadays is to reveal

mechanisms underlying biological phenomenon, with a hope of

benefitting human beings in different ways. Throughout our

collaborations with life scientists, basically all those that utilizes the

GN technique requires us to link the gene names to its human ID,

which is why we have decided to emphasize our results on human

genes in the current study. We expect our approach to efficiently

assist life scientists in identifying individual gene mentions, with the

hope of acquiring a comprehensive overview of biological

pathways and mechanisms enclosed within biomedical literatures.

In the future, we will improve the IGN corpus by filling-in the ID

information for non-human genes, and extend the proposed

collective approach to conduct cross species GN. We will also

integrate the developed GN system into our online web

application, PubMed-EX [35], and view its potential in processing

the large-scale data.

Supporting Information
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