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Abstract 

Background:  Leveraging previously identified viral interactions with human host 
proteins, we apply a machine learning-based approach to connect SARS-CoV-2 viral 
proteins to relevant host biological functions, diseases, and pathways in a large-scale 
knowledge graph derived from the biomedical literature. Our goal is to explore how 
SARS-CoV-2 could interfere with various host cell functions, and to identify drug targets 
amongst the host genes that could potentially be modulated against COVID-19 by 
repurposing existing drugs. The machine learning model employed here involves gene 
embeddings that leverage causal gene expression signatures curated from literature. 
In contrast to other network-based approaches for drug repurposing, our approach 
explicitly takes the direction of effects into account, distinguishing between activation 
and inhibition.

Results:  We have constructed 70 networks connecting SARS-CoV-2 viral proteins to 
various biological functions, diseases, and pathways reflecting viral biology, clinical 
observations, and co-morbidities in the context of COVID-19. Results are presented in 
the form of interactive network visualizations through a web interface, the Coronavirus 
Network Explorer (CNE), that allows exploration of underlying experimental evidence. 
We find that existing drugs targeting genes in those networks are strongly enriched in 
the set of drugs that are already in clinical trials against COVID-19.

Conclusions:  The approach presented here can identify biologically plausible hypoth‑
eses for COVID-19 pathogenesis, explicitly connected to the immunological, virological 
and pathological observations seen in SARS-CoV-2 infected patients. The discovery 
of repurposable drugs is driven by prior knowledge of relevant functional endpoints 
that reflect known viral biology or clinical observations, therefore suggesting potential 
mechanisms of action. We believe that the CNE offers relevant insights that go beyond 
more conventional network approaches, and can be a valuable tool for drug repur‑
posing. The CNE is available at https://​digit​alins​ights.​qiagen.​com/​coron​avirus-​netwo​
rk-​explo​rer.
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a member of the 
coronavirus family, is the etiologic agent of the pandemic COVID-19. Like other posi-
tive-stranded RNA viruses, its encoded proteins interact with proteins of the infected 
host cell at various stages of the replicative cycle, including with those involved in the 
immune response [1]. Such proteins therefore represent possible targets for the devel-
opment of antiviral strategies. Human host proteins that bind to overexpressed SARS-
CoV-2 viral proteins in immortalized human cells were previously identified using an 
affinity-purification mass spectrometry screen [2], which provides a starting point to 
study virus-host interactions using network-based approaches. Our goal in this paper is 
to illuminate possible molecular mechanisms permitting viral proteins to affect a range 
of host cell and immune functions that have been shown to be relevant in the context of 
COVID-19, and—in a second step—identify drugs that could potentially interfere with 
those mechanisms.

Host proteins that interact with viral proteins were initially functionally character-
ized and screened for existing drug targets against COVID-19 in [2]. Subsequent work 
expanded on this by further integrating SARS-CoV-2 viral proteins into the human 
interactome and using network biology approaches to identify existing drugs for repur-
posing [3–5], in some cases also leveraging gene expression data [1, 6]. Gysi et  al. [5] 
provide a systematic exploration of state-of-the art proximity- and diffusion-based net-
work algorithms, as well as algorithms based on graph convolutional networks with the 
primary goal of ranking candidate drugs for repurposing, but also exploring disease co-
morbidities and tissue specificity using gene annotations.

In this work, we integrate SARS-CoV-2 viral proteins into a large-scale knowledge 
graph (KG) which in addition to including the protein interactome, also leverages vari-
ous kinds of cause-effect relationships curated from the biomedical literature. In con-
trast to the approaches described above, these relationships specifically distinguish 
between activating and inhibiting effects therefore enabling predictions to be made 
about the direction of drug effects on host functions that are important in a clinical or 
disease context. For instance, clinical observations [7–11] indicate that SARS-CoV-2 has 
an activating effect on the coagulation of blood (severe coagulopathy has been detected 
in many patients with advanced disease) which leads us to specifically look for drugs that 
have an inhibiting effect on coagulation in order to counteract viral effects. The advan-
tage of the method described here compared to the purely interactome-driven network 
biology approaches above is, that by integrating other experimental evidence from the 
literature in the form of cause-effect relationships, we are able to better elucidate rel-
evant biological mechanisms, and propose repurposable drugs specifically targeted to 
block or counteract observed clinical endpoints.

Our algorithm uses a machine learning (ML) approach to prioritize genes that are 
known or predicted to causally affect a given host function either through activation or 
inhibition. This approach is based on the distributed representation [12] of genes as vec-
tors embedded in a high-dimensional vector space. Such gene embeddings have been 
obtained previously from protein-protein interaction [13] and co-expression [14] net-
works, and were also used for function prediction [15, 16]. In contrast, here, we con-
struct embeddings from known causal effects on the expression of other genes, curated 
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from the literature, explicitly distinguishing between up- and down-regulation. This has 
the advantage that the direction of effects is already encoded in the embedding vectors.

In total, 70 networks involving viral proteins and a number of relevant “endpoint” 
functions were computed and made available for the community through a web inter-
face called the Coronavirus Network Explorer (CNE). These networks represent the 
large spectrum of host biology affected by the viral infection. Immunological signaling 
pathways (e.g. IL-1, IL-6, IL-8) were included as they describe broadly the impact of the 
inflammatory setting in COVID-19 patients [17]. We have also included networks that 
display biological endpoints observed in severely or critically ill COVID-19 patients such 
as pneumonia, respiratory failure, and myocarditis [9, 10, 18, 19]. A set of networks rep-
resents the complex viral life cycle and its counterpart host response (e.g. replication, 
budding, entrance, antiviral response), and finally we included networks for functions 
that are possibly hijacked by the virus itself for its replication/multiplication or transmis-
sion (e.g. endocytosis and endoplasmic reticulum stress response) [20]. The complete list 
of included endpoint functions as they appear in the KG is shown in Additional file 1: 
Table S1.

Implementation
Overview of the algorithm

Three distinct subgraphs of the KG play specific roles in the different steps of our 
method: (1) the protein-protein interaction network (PPI), (2) the causal gene expres-
sion network (CGE), and (3) the causal gene-function network (CGF). The CGE con-
tains relationships that describe the causal effect of genes on the expression of other 
genes, while the CGF is comprised of causal relationships between genes and functions, 
which can either be biological processes, diseases, or entire pathways. Figure 1 gives an 
overview of our approach: As a first step we build a network neighborhood around viral 
proteins in the PPI (Fig. 1a) that includes direct interactors as well as second neighbors 
that are “specific”, i.e. exclude network hubs. Using a ML algorithm that leverages the 
CGE and CGF, we then build gene neighborhoods around functions comprised of genes 
that are prioritized or predicted to be important causal effectors (Fig. 1b). Viral proteins 
are then connected to functions by intersecting both, viral and function neighborhoods 
(Fig. 1c). In order to create additional network context, subnetworks constructed in the 
previous step are then expanded by adding additional genes from the function neighbor-
hood using a heuristic based on paths through the KG. Genes in the resulting network 
are viewed as potential drug targets interfering with the effect of viral proteins on the 
particular function, and are therefore annotated with existing drugs as candidates for 
repurposing (Fig. 1d).

Knowledge graph

The KG is a large-scale network with approximately 120,000 nodes and 3.7 million 
edges, that represent prior knowledge from the biomedical literature. Nodes in the KG 
are genes, chemical compounds, drugs, microRNAs, and functions (biological processes, 
diseases, pathways). Different edge types represent a variety of functional mechanisms 
such as gene expression and transcription, activation and inhibition, phosphorylation, 
and protein-protein binding among others. The KG was constructed from the QIAGEN 
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Knowledge Base [21, 22], a structured collection (using an ontology) of biomedical con-
tent that has been manually curated from the literature for the past 20 years, and also 
integrates content from third-party databases. The KG has three distinct subgraphs that 
play specific roles in the method presented here: the protein-protein interaction network 
(PPI), the causal gene expression network (CGE), and the causal gene-function network 
(CGF). The CGE contains relationships that describe the causal effect of genes on the 
expression of other genes, while the CGF is comprised of causal relationships between 
genes and functions. In addition, functions in the CGF are organized in a hierarchy (as 
part of the ontology) where generally parents inherit gene associations of their descend-
ants. Each causal edge in the CGE and CGF has a positive or negative sign indicating 

a

b

c

d

Fig. 1  Method overview. a Network neighborhood around viral protein in the PPI, including direct 
interactors as well as specific second neighbors. b Gene neighborhood around endpoint function that 
contains genes that are prioritized or predicted to be important causal effectors based on an ML model 
leveraging the CGE and CGF. c Intersection of viral neighborhoods with function neighborhoods. d Addition 
of network context in the KG using a heuristic involving shortest paths. Genes in the resulting network are 
viewed as potential drug targets interfering with the functional effect of viral proteins, and are annotated 
with existing drugs
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the direction of the effect, i.e. whether it leads to an increase or decrease (or activation/
inhibition). Most causal relationships represent experimental observations involving 
indirect effects. In the CGF, gene-pathway edges are treated in the same way as gene-
function edges, i.e. genes are associated (through manual curation) with an activating or 
inhibiting effect on the pathway as a whole. All edges in the KG generally bundle a num-
ber of underlying literature findings from various experimental contexts, therefore edge 
signs reflect a consensus among all these contexts.

Drugs and targets

Drug and target information was obtained from the QIAGEN Knowledge Base [22] 
which draws on other databases, e.g. DrugBank [23]. There are currently (as of Decem-
ber 19, 2020) 1533 drug targets and 4824 drugs (including combinations) represented in 
the QIAGEN Knowledge Base.

Gene neighborhoods around viral proteins

We construct network neighborhoods around 27 viral proteins in the PPI that include 
direct interactors from Gordon et al. [2] as well as second neighbors (Fig. 1a). In total 
there are 330 host proteins directly binding to a viral protein, 41 of which can be mapped 
to the ML model. Second neighbor genes are added to this set provided that their inter-
action edge with a first neighbor is “specific”, i.e. the probability of finding such an edge 
in a random network with preserved node degrees is small. The idea behind this is that 
we want some confidence that the presence of a viral protein exerts an actual causal 
effect on the activity of genes in its neighborhood. This confidence is low for two-hop 
protein-protein interactions going through “hub” genes. In addition, including all second 
neighbors would lead to a combined viral neighborhood of 1453 genes out of 2314 (in 
the ML model), which is more that 63% of the complete network, so clearly unspecific. 
The probability of finding an edge between two given nodes n1 , n2 in a random network 
preserving (expected) node degrees of the PPI is approximately p = d1d2

2E  (when d1 , d2 are 
small enough) where d1 , d2 are the degrees of nodes n1 , n2 , and E is the total number of 
network edges. We therefore construct a score s =

(

∑

g ′
2E

dg ′dg

)−1

 for each second neigh-

bor gene g of a viral protein where the sum runs over all two-hop paths through the 
intermediate genes g ′ . The number of second neighbors included in the neighborhoods 
is then determined by a preselected score cut off s0 , and requiring s < s0 . For the CNE, 
we chose s0 = 0.001 leading to a total size of the viral network neighborhood of 124 
genes which is still roughly of the order of the number of direct interactors (and not of 
the size of the whole network). Increasing s0 will make more genes available for intersec-
tion with function neighborhoods, but also introduce more noise (“false positives”), 
while decreasing s0 , possibly up to the point where no second neighbors are included, 
will increase the chance that important connections to functions are missed (“false nega-
tives”). The results of this paper are not sensitive on the precise choice of s0.

Gene neighborhoods around functions

Gene neighborhoods around host functions are constructed from genes that are prior-
itized or predicted to be important causal effectors of a given function (Fig. 1b). For this 
we use a novel algorithm, based on machine learning, that leverages the CGE and CGF, 
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and involves two parts, an unsupervised step to construct gene embeddings in a high-
dimensional vector space, and a supervised step to score gene-function relationships. 
Building on an assumption that expression relationships encode information about gene 
function, the unsupervised step builds gene feature vectors by leveraging downstream 
causal gene expression signatures derived from the literature and represented in the 
CGE. It is important to distinguish this from gene expression patterns found in expres-
sion datasets: Here, expression signatures are created from individual published gene-
to-gene expression or transcription relationships, not from datasets. The supervised step 
then employs a linear least-squares regression model using signed causal gene-function 
relationships in the CGF as training data. For the construction of gene neighborhoods 
around functions, the gene-function score is mapped to a z-score, and only genes that 
can be considered “significant” ( |z| > 2 ) are included. Note, that the approach incorpo-
rates edge signs in the underlying networks. Therefore, unlike existing gene-function 
prediction approaches [24], it can distinguish between activating ( z > 0 ) and inhibit-
ing ( z < 0 ) effects. High-scoring genes for a given function include both, genes that are 
already connected to the function by an edge in the CGF, as well as those that are purely 
predicted. These can be thought of exhibiting some “consistency” in the biology under-
lying the gene-function and gene-expression networks. Hence, the algorithm performs 
both, prediction and prioritization, since not all existing edges in the CGF necessarily 
have a high score.

Gene embedding

In the following we view the CGE as a bipartite graph (see Fig. 2), i.e. regulating and 
regulated genes are distinguished from each other even if they refer to the same gene. 
We define the signed, weighted N ×M adjacency matrix W, Wij =

sij√
Ni

 with 

sij ∈ {−1, 0, 1} , whose rows represent the N genes for which we wish to compute 
embeddings, and columns are the genes of the downstream expression signature. The 

Fig. 2  Gene embedding method based on the CGE bipartite graph with the signed, weighted adjacency 
matrix W. The rows of W represent regulating genes (for which embeddings are constructed), and columns 
are the genes of the downstream expression signature. The edge signs sij are positive for upregulation, 
negative for downregulation, and Ni is the total number of genes that are regulated by gene i. It is sij = 0 
if there is no edge. Gene embeddings are computed using a low-rank approximation of the singular value 
decomposition of W, W ≈ U�VT  , where the matrix U projects one-hot encoded vectors representing single 
genes onto K-dimensional embedding vectors
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edge signs sij are positive for upregulation, negative for downregulation, and Ni is the 
total number of genes that are regulated by gene i. It is sij = 0 if there is no edge. In 
order to compute gene embeddings we take the low-rank approximation using singu-
lar value decomposition [25] of W,

where columns of the N × K  matrix U are the eigenvectors of the positive definite 
matrix S = WWT , corresponding to its top K eigenvalues ( � is a diagonal K × K  matrix 
and V is M × K  ). We can think of U as projecting one-hot encoded vectors representing 
single genes onto K-dimensional embedding vectors, i.e. these embedding vectors are 
the rows of U. Note that UTU = I . The weight factors 1√

Ni
 were chosen such that genes 

with different node degree in the CGE are put on equal footing. This is seen by noting 
that Sii = 1 for all i. For the CNE, the embedding dimension was set to K = 100 (see 
Cross-validation). Also, in order to ensure that there is enough content coverage around 
the genes included in the model, we required included genes to have at least 10 down-
stream expression-regulated genes in the CGE.

Gene‑function prediction and prioritization

Causal gene-function relationships from the CGF are captured in a signed bipartite 
adjacency matrix Y, with rows representing genes, and columns representing down-
stream functions. We only include those N genes that correspond to the rows of the 
matrix W. It is Yij = 1 if the effect of gene i exerted on function j is activating, and 
Yij = −1 if it is inhibiting, otherwise Yij = 0 if there is no edge between i and j in the 
CGF. The idea is to use the gene embedding vectors computed above as feature vec-
tors in a linear model to predict the effect of gene i on function j. For each function j 
separately, we minimize the mean squared error

w.r.t. βj , where xi is the K-dimensional gene embedding vector for gene i, and βj is a 
K-dimensional parameter vector for function j. It follows that

where yj is the jth column vector of Y, and signed prediction “scores”

are found to be orthogonal projections of yj onto the subspace spanned by the column 
vectors of U,

In order to make scores comparable across functions we map Pij to z-scores Zij for each 
function j separately,

W ≈ U�VT
,

Lj =
1

N

∑

i

(xi · βj − Yij)
2

βj = (UTU)−1UTyj = UTyj

Pij = xi · βj

P = UUTY .
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where mean and standard deviation are taken over all genes i. Like for the CGE, in order 
to ensure sufficient content coverage, we only considered functions that are connected 
to at least 10 genes in the CGF, i.e. have at least 10 non-zero entries in the matrix Y.

Cross‑validation

Prediction accuracy of our model was tested using cross validation by randomly remov-
ing edges from the CGF, training the model, and then assessing how well those removed 
edges could be predicted. To avoid artificial dependencies between functions, we 
restricted ourselves to those that are “leaves” of the function hierarchy in the subset cov-
ered by the model. In order to create a balanced test set, we randomly picked n entries of 
the matrix Y that had the value 1, n entries that had the value -1, and 2n entries that were 
zero. This procedure was repeated k times to create k independent test sets. For each 
test set, the selected elements of Y were set to zero, a model was trained using this new 
matrix Y, and receiver-operating characteristic (ROC), and precision-recall curves were 
determined from the computed z-scores. It shall be noted that, strictly speaking, zero 
entries of Y, i.e. the lack of a gene-function edge in the CGF is not a true negative exam-
ple in a training or test set since it only means that there is no finding in the literature 
regarding that causal gene-function effect. It does not mean that there was experimental 
evidence that this effect does not exist. We therefore make the (reasonable) assumption 
that the vast majority of zero-entries in Y correspond to true negative examples, and that 
the possible few “false” negative examples in the test set do not significantly affect test 
results. In that light, prediction can also be viewed as discovering the “false” negative 
entries in Y, i.e. missing edges in the CGF.

In particular, we assess two prediction tasks: (1) the prediction of the presence of an 
edge using a threshold on the absolute z-score, |z|, and (2) the prediction of the edge 
sign, i.e. whether its effect is activating or inhibiting, using thresholds on the z-score 
itself. For case (1) we use the complete test set with 4n examples, in case (2) the test 
set is limited to the 2n non-zero examples. Results are shown in Fig.  3 for n = 1000 , 
and k = 20 . Figure 3a, b show average ROC and precision-recall curves for case (1) for 
embedding dimension K = 100 , which is close to the optimal case w.r.t. the area under 
the ROC curve (AUC) (see Fig. 3c), where AUC = 0.6413 . For the construction of gene 
neighborhoods around functions we are interested in genes with the highest absolute 
z-scores ( |z| > 2 in the CNE) which corresponds to the case of low recall in our test 
scenario. As seen in Fig.  3b we reach about 90% precision in the limit of zero recall, 
while in the borderline case |z| = 2 precision is around 80%. Case (2), which probes the 
discrimination between activating and inhibiting edges, has two sub-cases correspond-
ing to the prediction of either activation or inhibition among edges with unknown sign, 
which leads to two separate precision-recall curves in Fig. 3e. We find a precision greater 
than 90% in the limit of zero recall for both sub-cases. Note, that only one ROC curve 
needs to be drawn for the first sub-case (see Fig. 3d), the ROC for the second sub-case 
is obtained by simply flipping the curve, leading to the same AUC = 0.7602 . As a cross 
check, to test whether there are no hidden biases, we have also run tests using random, 

Zij =
Pij − meani(Pij)

stdi(Pij)
,
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normally distributed gene embedding vectors (i.e. random features that should not be 
reflective of any functional relationship), which, as expected, leads to an unpredictive 
model (AUC ≈ 0.5).

Hypothesis network construction

Networks obtained by intersecting viral and function neighborhoods (see Fig. 1c) estab-
lish connections from a viral protein to a given endpoint function, possibly via a pre-
dicted gene-function relationship. Since, in general, these networks contain very few 
genes from the function neighborhood, we include additional genes with high absolute 
z-scores that can be connected through edges in the KG, and therefore likely play a role 
in the mechanism underlying the viral protein’s effect on the endpoint function. In order 
to do this, we employ a simple heuristic based on shortest paths (see Fig. 1d) through the 
KG from the viral protein to the endpoint function, where edge weights (i.e. single edge 
distances) are taken as the inverse geometric mean of the absolute z-scores of adjacent 
nodes (“z-scores” for nodes that don’t have one, e.g. the endpoint function, viral pro-
teins, and some viral-interacting host proteins are set to 1). This choice leads to paths 
that are enriched in high-scoring genes from the function neighborhood. For the final 
hypothesis networks we take the union of all networks constructed from single viral 

a

c d e

b

Fig. 3  Cross validation of gene-function prediction. a Average ROC for edge prediction (TPR: true positive 
rate, FPR: false positive rate). b Average precision-recall curve for edge prediction indicating absolute z-score 
cut offs for different precision levels. c AUC for edge prediction as a function of the embedding dimenion K. 
The optimal embedding dimension is K ≈ 100 , smaller values of K lead to underfitting, while greater values 
lead to overfitting. d Average ROC for edge sign prediction. e Average precision-recall curves for edge sign 
prediction (blue: prediction of activation vs. inhibition, orange: prediction of inhibition vs. activation). Error 
bars and grey areas around curves represent standard deviations estimated from replicated tests
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proteins connecting to the same endpoint function. In some cases we have also included 
slightly longer paths to increase network size. Hypothesis networks are connected sub-
graphs of the KG that represent supporting experimental evidence from the literature 
for projected viral effects on the selected endpoint function.

Software implementation and user interface

The algorithm described here was implemented in Python using the standard scientific 
computing stack (numpy, pandas, sklearn, etc.). We also implemented a publicly acces-
sible web-based interface through which the computed networks can be accessed for 
interactive exploration. This interface enables the user to select a particular endpoint 
function, as well as the direction of the effect (activating or inhibiting) that infection with 
SARS-CoV-2 is thought to have on this function. In the resulting displayed networks (see 
examples in Figs. 4, 5, 6) the user can click on any entity (node or edge) to reveal under-
lying findings from the literature, or a description of the selected entity itself. Colors of 
gene nodes indicate whether that particular gene is inferred to be activated (orange) or 
inhibited (blue) in order to achieve the preselected effect on the endpoint function. In 
addition, we also annotated genes with associated signaling pathways, colored accord-
ing to their predicted activation state. Nodes whose activation status cannot be inferred, 

Fig. 4  Molecular network that may explain how the host function “Coagulation of blood” can be increased 
by COVID-19 infection. The SARS-CoV-2 proteins (represented with black 8-pointed icons) bind to and may 
affect the activity of host proteins (various shapes) leading to increases in blood coagulation. The orange 
color of the host proteins and host function indicate predicted increases of activity whereas the blue color 
represents predicted decreases in activity. The network was constructed using the QIAGEN Knowledge Graph 
and machine learning techniques as described herein
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either because they are only connected by unsigned binding edges, or do not meet the 
score threshold, are shown in white. Genes that are targets for existing drugs are marked 
with a purple border. Selecting such a node will display the drugs targeting that gene 
along with each drug’s predicted effect on the endpoint function. The web application 
also allows users to search for specific genes or pathways in order to narrow down the 
number of networks to peruse.

Results
Functional analysis

The ML model (see Implementation) for constructing gene neighborhoods around func-
tions (Fig. 1b) covers 2314 genes in total, all of which are also included in the PPI, and 
therefore potentially accessible in viral neighborhoods. Gene neighborhoods are com-
puted for 11532 functions which include 276 pathways, 4155 diseases, and 7101 biologi-
cal processes. The union of all first and second neighbors of SARS-CoV-2 viral proteins 
intersected with those covered by the ML model in total contains 124 genes. Function 
neighborhoods include on the average 108 genes (stdev: 18).

While the main objective of this work was to choose functional endpoints and con-
struct corresponding networks using prior knowledge of COVID-19-related clinical 

Fig. 5  Molecular network that may explain how the host contracts “Pneumonia” by COVID-19 infection. The 
SARS-CoV-2 proteins (represented with black 8-pointed icons) bind to and may affect the activity of host 
proteins (various shapes) leading to increases in Pneumonia. The orange color of the host proteins and host 
function indicate predicted increases of activity whereas the blue color represents predicted decreases in 
activity. The network was constructed using the QIAGEN Knowledge Graph and machine learning techniques 
as described herein
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observations and their underlying biology, we may also ask whether a statistical analysis 
of intersections of viral and function neighborhoods is able to pick up relevant biological 
processes, diseases, or pathways on its own without prior information. For this we com-
puted Fisher’s Exact Test (FET) p values measuring enrichment of functional neighbor-
hood genes in the set of 124 viral neighborhood genes for all 11532 functions. Significant 
functions ( p ≤ 0.05 ) are shown in Additional file 1: Tables S2-S4. Notably we find fibro-
sis of heart ventricle, cardiotoxicity, and pulmonary alveolar proteinosis among the most 
significant diseases, and release of virus, the accumulation of triacylglycerol, dysfunc-
tion of endothelial tissue, and uptake of cholesterol among the most significant biologi-
cal processes. This is not surprising, since pulmonary and cardiovascular complications 
are among the known manifestations of COVID-19. Also, since SARS-CoV-2 has a lipid 
envelope, cholesterol biosynthesis plays an important role in assembly and replication. 
Interestingly the list of significant functions also hints at neurological implications (e.g. 
injury of cerebrum, abnormal brain myelination, release of 5-hydroxytryptamine, exo-
cytosis by neurons, and activation of dopaminergic neuron). Neurological effects are 
known to be observed in patients; for instance, there are widespread cases of loss of 
olfactory function and taste [26]. Some of the preselected functions that are included 

Fig. 6  Molecular network that may explain how the host pathway “IL6 Signaling” can be increased by 
COVID-19 infection. The SARS-CoV-2 proteins (represented with black 8-pointed icons) bind to and may affect 
the activity of host proteins (various shapes) leading to increases in IL6 Signaling. The orange color of the 
host proteins and host function indicate predicted increases of activity whereas the blue color represents 
predicted decreases in activity. The network was constructed using the QIAGEN Knowledge Graph and 
machine learning techniques as described herein
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in the CNE also come up as significant: These are the fragmentation and degradation of 
Golgi apparatus, concentration of cholesterol, release of virus, CDK5 Signaling (which 
is involved in post-mitotic processes), and the diseases pneumonia, hypertension, and 
edema of pericardial cavity.

Hypothesis networks

Hypothesis networks (Fig. 1d) were constructed for the 70 selected endpoint functions 
in Additional file 1: Table S1, and included in the CNE. Overall we find that 18 of the 
27 SARS-CoV-2 viral proteins are represented in at least one of these networks, which 
contain on the average 13.6% (stdev: 5.3%) of the genes present in the neighborhood of a 
function (Fig. 1b). Examples of hypothesis networks are shown in Fig. 4 (coagulation of 
blood), Fig. 5 (pneumonia), and Fig. 6 (IL6 signaling). For the purpose of usability, in the 
CNE we have also annotated network nodes with relevant canonical pathways, provided 
gene and function descriptions, and show literature findings underlying edges. The CNE 
allows for an interactive exploration of gene and drug effects by preselecting the desired 
effect (promotion or suppression) on the endpoint function.

Drugs and targets

We have assessed all hypothesis networks corresponding to the 70 endpoint functions in 
Additional file 1: Table S1 for included drugs and targets. We also specifically selected 24 
of these endpoint functions (subset S) for which the direction of the desired drug effect 
(promotion or suppression) is evident (see Additional file 1: Table S1). For the follow-
ing analysis, we only considered single-compound drugs, i.e. all drug combinations were 
excluded upfront. It shall also be noted that we only include drugs that have a host target 
that is included in the ML model. In total, we find 2382 drugs and 551 drug targets that 
are in principle accessible this way. There are 466 drugs and 118 corresponding targets 
that are present in at least one hypothesis network. Among them, 196 drugs are “consist-
ent” (see Additional file 1: Table S5), i.e. for at least one of the 24 functions in the subset 
S, the computed drug effect on the function corresponds to the desired drug effect (pro-
motion or suppression), 71 drugs are “inconsistent”, i.e. the opposite is the case, and for 
199 drugs we could not easily determine the direction of the effect because information 
whether the drug acts as an agonist or antagonist was not available in the drug-target 
database (see Implementation) used, or the drug was not in any of the networks in sub-
set S.

In order to compare the 466 drugs found in our hypothesis networks to those cur-
rently in clinical trials, we downloaded a list of COVID-19 clinical trials from Clinical-
Trials.gov [27], and after normalizing drug names and excluding drug combinations, 
assembled a table of 506 drugs, 110 of which could be mapped to the ML model. These 
drugs, together with the number of clinical trials in which they are currently tested, are 
listed in Additional file 1: Table S6, noting also which of them are predicted in a hypoth-
esis network. As a result, we find that 54 of the 466 drugs present in hypothesis networks 
are among the 110 drugs currently in clinical trials, and accessible in the ML model. This 
is shown in the Venn diagrams in Fig. 7a (all drugs), and Fig. 7b (only drugs accessible in 
the ML model). As a further result we find that 30 of the overlapping drugs are consist-
ent, 8 are inconsistent, and 16 have an unknown direction of effect. Drugs present in 
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hypothesis networks are strongly enriched in the set of clinical trial drugs (odds ratio: 
4.35, FET p value: 8.10 ×10−13 ), and predicted drugs that are also in clinical trials, are 
enriched in the subset of drugs that are in multiple ( > 5 ) clinical trials (odds ratio: 4.69, 
FET p value: 0.00291).

To make contact to other approaches that use network biology for predicting repur-
posable drugs, we compare our results to the set of 100 top-scoring drugs obtained by 
Gysi et al. [4] based on their consensus model, and added the corresponding numbers to 
the Venn diagrams in Fig. 7. The number of clinical trial drugs among predicted drugs is 
24 in their approach, while it is 54 in ours. 28 drugs predicted by Gysi et al. [4] are also 
found in hypothesis networks, and 8 of those drugs are at the same time present in the 
clinical trial set. Interestingly, 6 of these drugs (dexamethasone, hydrocortisone, meth-
ylprednisolone, budesonide, prednisolone, and prednisone) have the same target, the 
glucocorticoid receptor (NR3C1), while the other two (secukinumab and rivaroxaban) 
target the proinflammatory cytokine IL17A, and the coagulation factor F10.

Discussion
In contrast to existing network biology approaches [2–6] that are based on the interac-
tome, the method presented here leverages literature-curated cause-effect relationships 
represented in the KG as additional information. It relies on an algorithm that prioritizes 
known causal gene-function relationships, and predicts new ones that are deemed most 
important for the underlying biology, including their direction of effect (activation or 
inhibition). This is used to construct “hypothesis networks”, subgraphs of the KG, that 
show related experimental observations from the literature, and therefore allow for 

a b

Fig. 7  Venn diagram for drugs currently in clinical trials (from ClinicalTrials.gov [27]), included in CNE 
hypothesis networks, or predicted in [5]. a All drugs (excluding drug combinations). b Subset of drugs 
represented in our model. We find that 54 of the 466 drugs present in hypothesis networks are among the 
110 drugs currently in clinical trials, and accessible in the ML model. Drugs present in hypothesis networks 
are strongly enriched in the set of clinical trial drugs (odds ratio: 4.35, FET p value: 8.10 ×10

−13 ), and predicted 
drugs that are also in clinical trials, are enriched in the subset of drugs that are in multiple ( > 5 ) clinical trials 
(odds ratio: 4.69, FET p value: 0.00291). We compare our results to the set of 100 top-scoring drugs predicted 
by Gysi et al. [4] based on their consensus model, and added the corresponding numbers to the Venn 
diagrams. The number of clinical trial drugs among predicted drugs is 24 in their approach, while it is 54 in 
ours. 28 drugs predicted by Gysi et al. [4] are also found in hypothesis networks, and 8 of those drugs are at 
the same time present in the clinical trial set
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biological interpretation to determine plausible molecular mechanisms in contrast to 
the more “black box”-like existing network approaches. We have applied our approach 
to drug repurposing by identifying existing targets affecting functional endpoints that 
either represent known viral effects, or clinical observations and co-morbidities. Drug 
predictions are therefore driven by external information in addition to their relation-
ships to host proteins that interact with the virus. This has the advantage of providing 
better biological interpretability of predicted drug effects, but is in contrast to existing 
approaches [2–6] where no such information is used, and predictions are made solely 
based on network connectivity of drug targets. In addition, our approach has the abil-
ity to explicitly distinguish between activating and inhibiting drug effects which can be 
taken into account to select the most promising candidates for repurposing.

A comparison with the work of Gysi et al. [4] shows that their results for significant 
co-morbidities obtained by intersecting disease network modules with the COVID-19 
module is in line with our findings from the functional analysis (see Results). In their list 
of 100 top-scoring drugs, 24 overlap with the list of drugs in clinical trials that we com-
piled (see Results). In contrast, 54 of the drugs covered by the 70 hypothesis networks 
that we constructed are also in the clinical trial list. An explanation could be that, since 
our method is driven by functional endpoints that reflect known clinical manifestations, 
it is closer to the medical community assessment regarding the efficacy of drugs which 
is reflected by the drugs currently in clinical trials. It shall be noted that the method 
presented here is limited to drugs that have a host target, so it will not be able to detect 
antiviral drugs that target viral proteins or RNA.

The CNE likely misses a number drugs (e.g. methotrexate and hydroxychloroquine are 
predicted in [4] but not in our approach) because their (relevant) target is currently not 
covered by the underlying ML model for gene-function prioritization which contains 
2314 genes. This occurs because we took a conservative approach in requiring included 
genes to be sufficiently well-connected by signed edges in the KG (see Implementation). 
More genes could be added by either relaxing those requirements or curating addi-
tional content in the future. Similarly our approach is at this time limited by the use 
of the Gordon et al. data set [1] and could be expanded by including additional data. It 
shall be noted that our method does not involve any explicit scoring, and simply col-
lects all drugs that modulate targets linked to viral-interacting host proteins and affect 
a given functional endpoint, so the number of drugs predicted depends on the set of 
endpoints included. Hypothesis networks expose experimental evidence from the litera-
ture as cause-effect relationships from the KG which helps elucidate underlying biologi-
cal mechanisms. Ongoing work is focused on making those mechanisms more explicit, 
for instance by bringing in established causal cascades from known pathways, or adding 
tissue and cell type context.

In the following we discuss three hypothesis networks in more detail from a biological 
perspective.

Coagulation of blood

Most people infected with SARS-CoV-2 will experience mild to moderate respira-
tory illness and recover promptly. However, in some cases, severe disease occurs with 
major pathophysiological and sometimes lethal outcomes. Comorbidities such as 
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cardiovascular, renal, and respiratory preexisting conditions contribute to the severity 
seen in these patients. One drastic impact seen is the change in hemostasis after SARS-
CoV-2 infection. Severe coagulopathy can arise and is associated with increased fatal-
ity rates in severely ill patients. The SARS-CoV-2 infection induces a pro-coagulative 
state and may result in vascular leakage and disseminated intravascular coagulation. The 
proinflammatory unbalance is thought to be one of the key factors of this uncontrolled 
clotting consequence seen in severe COVID-19 [7–11, 28]. The network presented here 
(Fig. 4) displays the interrelations between some of the key host molecules involved in 
the coagulation cascade, such as F3/tissue factor, F10, PLAT/plasminogen activator, and 
angiogenic factors or molecules related to angiogenesis balance such as F2RL1/protein-
ase-activated receptor 2 and EDN1/endothelin 1, PF4/Platelet factor 4 and several viral 
proteins (nsp9, nsp13, orf3a, orf9c, orf8).

The severity of COVID-19 is generally a consequence of hypercytokinemia (“cytokine 
storm”) with its dramatic increase of chemokines and their cellular consequences (e.g. 
increase of neutrophils, thrombocytopenia, endothelialitis). Therefore, this network also 
displays the contribution of increased pro-inflammatory molecules or signaling path-
ways (IL1B, IL6, IL8, IL17a) and upregulated chemokine signaling (CXCR4 signaling, 
CCL5) observed in severe COVID-19 outcomes. This network highlights the importance 
of understanding the molecular interplay between the players, and as shown recently, 
anticoagulant treatment appears to decrease mortality in severe COVID-19 patients.

Pneumonia

Viral pneumonia with acute respiratory distress syndrome (ARDS) is one of the extreme 
consequences of COVID-19, a condition requiring mechanical ventilation as treatment. 
Patients with these severe conditions develop progressive respiratory failure following 
dramatic cascades of events. Dysfunctional immune responses in these patients will 
induce these events and are characterized by low IFN type I, III, a high pro-inflamma-
tory setting, elevated chemokine secretion, high infiltration of myeloid and T cells in the 
lung, and finally severe pulmonary edema and pneumonia [29–31]. This network (Fig. 5) 
shows the possible interplay among type I Interferons, interleukins, the glucocorticoid 
receptor, sensors of viral infections and elements of the JAK/STAT pathway or the coag-
ulation cascade and key coronaviral proteins that might promote pneumonia.

IL6‑Signaling

IL6 is an important pleiotropic interleukin that signals through the JAK/STAT (JAK1 
and STAT3 in particular) and the MAPK pathway. It is expressed by immune cells 
(dendritic cells, macrophages, B cells and also epithelial cells) and it is involved in 
many biological processes including cell survival, apoptosis, maturation of T cells, 
TH1/Th2/Th17 differentiation/balance, and inflammation. IL6 is described as a pro-
inflammatory cytokine, secreted in response to IL1B and TNF stimulation. The severe 
or critical cases of COVID-19 correlate with high levels of IL6 (during the cytokine 
storm) and low lymphocyte counts [18, 32–34]. Furthermore, higher levels of IL6 cor-
relate with the risk of developing ARDS. As such, clinical trials are now ongoing and 
are designed to target IL6 using monoclonal antibody therapy (Tocilizumab and Sari-
lumab) as IL6 seems to be one of the key promoters of fatal outcomes. IL6 signaling 
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described in this network (Fig.  6) includes all the major proinflammatory cytokines 
(IL1B, IL17, TNF and IL6,). Several key molecules of inflammation signaling are also 
present such as RELA, IKBKB, RIPK1 as well as MAPK signaling. It is thought that 
all these genes are either upregulated or predicted to be activated and would par-
ticipate in the general increase of IL6 signaling and its unfortunate consequences in 
COVID-19.

Conclusions
We have presented the Coronavirus Network Explorer (CNE), a tool to explore how 
SARS-CoV2 may interfere with various cell functions through interactions with host 
genes. Our approach involves “mining” of a large-scale literature-derived knowledge 
graph by connecting viral proteins to host genes that are predicted by a machine learn-
ing algorithm to be most relevant in a given functional context. The result is displayed 
as a network in which edges represent experimentally observed relationships between 
nodes, suggesting underlying molecular mechanisms of the pathogenesis of COVID-
19. We have discussed a selection of these networks in order to demonstrate that our 
approach can identify biologically plausible hypotheses, grounded in actual immuno-
logical, virological and pathological observations seen in SARS-CoV-2 infected patients.

The CNE can also be used to find existing drugs that could be repurposed against 
COVID-19, as well as potentially novel drug targets. An important difference to other 
network-based approaches is that the discovery of repurposable drugs here is driven 
by prior knowledge of relevant functional endpoints that reflect known viral biology 
or clinical observations. Therefore, proposed drugs are supported by biological context 
suggesting potential mechanisms of action. Another advantage of our method is that it 
explicitly distinguishes between activating and inhibiting causal effects, so in the context 
of drug repurposing it can discriminate between agonists and antagonists. A survey of 
all drugs included in our networks finds that more than 50 of them are already in clinical 
trials, another indicator for the validity of our approach. Though there is still a number 
of improvements that can be made, we believe that the CNE offers relevant insights for 
COVID-19 pathogenesis that go beyond more conventional interactome-based network 
approaches, and can be a valuable tool for drug repurposing.

Availability and requirements

Project name: Coronavirus Network Explorer (CNE)
Project home page: https://digitalinsights.qiagen.com/coronavirus-network-explorer
Operating system(s): Platform-independent
Programming language: N/A
Other requirements: Modern web browser (Chrome, Firefox, or Safari)
License: Networks created by the CNE are covered by the CC BY license.
Restrictions to use by non-academics: None
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