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Abstract: We propose a new packaging process for an implantable blood pressure sensor using
ultrafast laser micro-welding. The sensor is a membrane type, passive device that uses the change in
the capacitance caused by the membrane deformation due to applied pressure. Components of the
sensor such as inductors and capacitors were fabricated on two glass (quartz) wafers and the two
wafers were bonded into a single package. Conventional bonding methods such as adhesive bonding,
thermal bonding, and anodic bonding require considerable effort and cost. Therefore CO2 laser
cutting was used due to its fast and easy operation providing melting and bonding of the interface
at the same time. However, a severe heat process leading to a large temperature gradient by rapid
heating and quenching at the interface causes microcracks in brittle glass and results in low durability
and production yield. In this paper, we introduce an ultrafast laser process for glass bonding because
it can optimize the heat accumulation inside the glass by a short pulse width within a few picoseconds
and a high pulse repetition rate. As a result, the ultrafast laser welding provides microscale bonding
for glass pressure sensor packaging. The packaging process was performed with a minimized welding
seam width of 100 µm with a minute. The minimized welding seam allows a drastic reduction of the
sensor size, which is a significant benefit for implantable sensors. The fabricated pressure sensor was
operated with resonance frequencies corresponding to applied pressures and there was no air leakage
through the welded interface. In addition, in vitro cytotoxicity tests with the sensor showed that there
was no elution of inner components and the ultrafast laser packaged sensor is non-toxic. The ultrafast
laser welding provides a fast and robust glass chip packaging, which has advantages in hermeticity,
bio-compatibility, and cost-effectiveness in the manufacturing of compact implantable sensors.

Keywords: implantable blood pressure sensor; ultrafast laser; glass welding; direct bonding; MEMS
hermetic packaging

1. Introduction

Hypertension is a major risk factor for cardiovascular disease (CVD) and stroke, causing disability
and premature death worldwide. Over the last 30 years, ongoing clinical treatments and control
of hypertension have been conducted, but they have failed to reduce the proportion of adults
with hypertension [1]. In order to resolve this issue, it is necessary to reduce the misdiagnosis by
removing the erroneous factors providing incorrect measurements such as patient posture, environment,
cuff size, and measurement technique and by measuring blood pressure accurately before and after the
treatment [2,3]. Even though standardized non-invasive cuff and catheterized invasive devices are
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utilized in favorable conditions, misinterpretation of the blood pressure has occurred due to white coat
effects produced by complications such as the patients’ lack of comfort, trauma, and infection [4–6].

The development of a variety of biological signal measurement technologies using wearable or
implantable biosensors promises to change the conventional medical treatment based on a single
measurement into prophylactic treatment through real-time continuous monitoring with high accuracy
and precision [7–9]. An implantable blood pressure sensor is inserted into blood vessels to directly
monitor the blood vessel pressure over a long period of time, and the long-term data can be used for
the evaluation of hypertension, heart failure, restenosis, and the efficacy of surgical interventions [4,10].
Over the past decades, implantable blood pressure sensors have been developed by various groups
focusing on principles, materials, and fabrication processes [10–19]. Most blood pressure sensors
use a micro-scale membrane that is deformed under external pressure. The membrane works as a
capacitor and the capacitance varies with physical pressure and is measured as an electrical signal.
The advantages of this capacitive structure are a simple structure and easy integration with other
components [20,21]. However, the implantable sensor requires a perfectly hermetic package because
the electronic components of the sensor should be completely isolated from the living body. In addition,
the biocompatibility of packaging materials also should be considered.

We have developed an implantable blood pressure sensor that satisfies all of the above conditions
with biocompatibility. Moreover, the sensor size was minimized without a battery to reduce possible
harmful factors. Quartz glass (SiO2) was chosen for the upper and bottom substrates of the sensor
because it exhibits excellent material properties in terms of mechanical, chemical, thermal, optical,
and insulation characteristics. In particular, it has high biocompatibility and thus is frequently used for
implantable medical devices and bio-MEMS devices [22–24]. However, glass is in general brittle and
consequently has many limitations related to micromachining such as micro-patterning using MEMS
processes, hole-drilling using diamond drill bits, and mechanical cutting using blades. In particular,
a lack of reliable bonding technology limits glass-based device development [24–26]. Typically, simple
and easy glass-to-glass bonding methods with an adhesive layer such as epoxy and UV glue are
used in most pressure sensor fabrications. However, encapsulation of implantable sensors with
chemical adhesives is not suitable due to low mechanical strength, thermal resistance, and chemical
durability of the intermediate adhesive layer [27]. On the other hand, direct bonding methods such as
thermal bonding, fusion bonding, and anodic bonding are hermetic and provide high bonding strength.
However, they do not provide selective bonding of the specific area and require long processing
time and are costly. In particular, thermal bonding requires a high temperature (~550 ◦C) and fusion
bonding uses both high pressure and high voltage. Therefore, direct bonding or adhesive bonding is
not capable of packaging sensors with built-in components such as metal inductors [28].

In the case of initial implantable blood pressure sensors, CO2 laser packaging was applied to
overcome the limitations of conventional packaging processes [10–12,18]. The advantage of adopting
the CO2 laser process is that the glass is very absorptive at the wavelength of the laser and thus
the temperature at the cutting edge is rapidly increased over the melting point of the glass during
laser cutting to separate individual sensors from a wafer. The local heating of edges followed by
rapid quenching after melting of the top and bottom substrates leads to bonding of the interface [29].
However, the use of brittle materials such as glass, excessive heat accumulation, and propagation
during the process cause microcrack formation at the edge, which significantly reduces the yield and
durability of the sensors. Therefore, generation of a large heat-affected zone (HAZ) around the laser
focus is a bottleneck to the miniaturization of sensors [30].

Recently, ultrafast lasers have been widely used in the fabrication of glass-based microdevices.
Ultrafast laser micromachining provides advantages that are particularly useful for glass
micromachining. First, ultrafast lasers including femtosecond lasers deliver photon energy to glass
substrates very efficiently within their pulse duration, which is much shorter than the heat transfer
time through a glass. Thus, the process minimizes the HAZ around the process area [31]. Second,
nonlinear absorption induced by the ultrafast laser enables effective absorption of photon energy in
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the vicinity of the focused beam in the glass. The localized absorption leads to local melting of glass
only at the interface between glass substrates. This allows direct bonding of glass without chemical
adhesives or physical processes such as heating of glass with pressure [32–35]. In 2005, direct welding
of glass was first demonstrated by Tamaki et al. with silica glass using a Ti:sapphire femtosecond laser
at a repetition rate of 1 kHz and a pulse width of 85 fs [32]. However, due to the limitation of the
process speed by the low pulse repetition rate and its poor bonding strength, direct bonding using
ultrafast lasers has not been practically applied. Recently, process optimization has been achieved
to overcome the limitations by effective control of heat accumulation with the introduction of a high
pulse repetition rate laser system in the MHz range. The direct bonding of glass using ultrafast lasers
has opened a new door to innovate the fabrication of glass-based devices [24,26,35–37].

The advantages of ultrafast laser welding for implantable blood pressure sensor packaging are
as follows: First, the sensor size can be drastically reduced as welding seams can be placed as close
as possible to the sensing areas on a microscale [38]. Second, the durability of the device can be
improved thanks to high bonding strength [39]. Our preliminary research demonstrates that the
obtained maximum internal pressure of a glass microfluidic device was as high as 1.4 MPa and
leak-free packaging was also realized [24]. Other prior studies have reported that the maximum
bonding strength was roughly 85% of the pristine bulk material [40]. Lastly, simple and rapid direct
bonding increases the process efficiency and improves biocompatibility as no chemical interlayer is
required [41,42].

In this paper, direct welding of glass using an ultrafast laser at a high pulse repetition rate is
applied to improve the packaging process of an implantable blood pressure sensor. We investigated
optimal welding conditions in terms of critical laser processing parameters such as beam scanning
speed, pulse energy, and focal position. We then analyzed the resonant frequency characteristics of the
fabricated sensor corresponding to the precision pressure control range of blood pressure. As a result,
fast and reliable packaging of glass implantable sensors by ultrafast laser welding can be carried out
within a minute with minimal welding seam on a microscale.

2. Experiments

2.1. Principle and Fabrication of Implantable Blood Pressure Sensor

A real-time implantable blood pressure sensor requires biocompatibility of the sensor material
and ease of wireless communication. Therefore, we selected an LC resonant-type pressure sensor on a
quartz wafer (Semistore, Pyeongtaek, Korea) that is inductively coupled with an external antenna coil
of a measurement system and this passive type sensor does not require a battery [43].

Figure 1A shows a schematic illustration of the proposed implantable blood pressure sensor
consisting of two inductor coils. They are placed such that they face each other with an air gap and this
configuration works as a capacitor so that the entire structure is equivalent to an LC resonance circuit,
as shown in Figure 1B. When an external pressure is applied to the hermetic sensor package, one thin
wall of the package is deformed and the air gap is also changed. The change varies the capacitance
of the resonance circuit, resulting in a resonant frequency shift [44]. To monitor the altered resonant
frequency, an external inductor, which is placed near the sensor package, indirectly measures the
impedance of the resonance circuit as a function of frequency (Figure 1C). As the external inductor and
the pressure sensor are inductively coupled, the frequency when the maximum energy is transferred
from the external inductor to the pressure sensor is the resonant frequency of the pressure sensor. If the
frequency is measured, the change in the capacitance of the resonance circuit is calculated and the
external pressure applied to the sensor is measured. It is not necessary to have an active power source
such as batteries in the presented pressure sensor so that the sensor is a passive type, as opposed to
active sensors that have their own power source.

The two micro inductors were fabricated on two quartz substrates; one is a flat thin substrate and
the other has a trench (Figure 1A). A quartz material was selected due to its high chemical resistance
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and non-toxicity. The micro-inductor fabrication was conducted using MEMS processes such as
sputtering, etching, photolithography, electroplating, bonding, and so on [10–12,18,19]. The detailed
fabrication steps are described in Supplementary Material. The micro-inductor has 10 turns of a wire
with a diameter of 60 µm and a spacing of 40 µm. The size of the fabricated inductors was 2.2 mm
(width) × 12 mm (length). The glass substrates were directly bonded by optical contact [19].
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Figure 1. (A) Schematic of the proposed implantable blood pressure sensor with two micro-inductors
with an air gap working as a capacitor. (B) Equivalent circuit of the implantable blood pressure sensor.
(C) Variation of the sensor resonance frequency by increasing pressure (in vascular).

2.2. Optimization of Micro Welding for Implantable Blood Pressure Sensor Packaging

The aforementioned implantable blood pressure sensor was pre-bonded (optical contact), as shown
in Figure 2A, to ensure hermetic sealing. The glass can be bonded directly by van der Waals force without
adhesive if the cleanliness of the bonding surface is maintained throughout chemical cleaning [45].
However, an irregularly bonded area (interference fringes, indicated by blue area) is observed due to
fine gaps generated by metal and organic particles or dust, which are residues caused by imperfect
cleaning. This is the primary factor that degrades the sealing quality of the sensor. This degradation
of the sealing quality can be mitigated by using ultrafast laser welding. Prior studies showed that
ultrafast laser glass welding can effectively bond glass substrates by filling the interface gap up to
3 µm [46,47]. Figure 2B provides a schematic illustration of the ultrafast laser welding of a cover glass
to the sensor substrate. One side of the substrate (membrane) changes the capacitance according to the
mechanical deformation by pressure. Therefore, thickness control of the upper wafer was performed
to improve the sensitivity. We first investigated the feasibility of glass wafer welding with an optical
contacted area and non-optical contacted area. The laser used for this experiment was a femtosecond
laser (Satsuma HP2, Amplitude Systèmes, Pessac, France) with a center wavelength at 1030 nm.

This laser provides an adjustable pulse width between 0.3 to 10 picoseconds (ps) and the pulse
repetition rate is variable up to 2 MHz. In most cases, the pulse width was set to be 1 ps at a repetition
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rate of 2 MHz to introduce heat accumulation. Modest heat accumulation can effectively melt the
glass at the vicinity of the laser focus between substrate interfaces. The laser process parameters
such as pulse energy, focal position, and beam scanning speed have been quantitatively investigated
to optimize welding conditions. Pulse energy ranging from 2 to 8 µJ and scanning speed from 10
to 40 mm/s were tested to determine the process window. A 3D machining stage with a maximum
translation speed of 300 mm/s and 300 mm full stroke was used to mount and translate the glass wafer.
The flatness of the 4-inch wafer was kept within 5 µm. The focused laser beam was initially placed
450 µm below the interface and moved towards the interface by 50 µm after a scan to explore the effect
of the focus position on the welding quality. A 20× objective lens (378-867-5, Mitutoyo, Kawasaki,
Japan) with a numerical aperture of 0.4 was used to focus the laser beam. Figure 2C shows the welded
zone of selective welding near the micro-inductor components of the sensor. After laser welding,
laser cutting was performed by the same laser source to separate the sensors from the glass wafer.
However, the pulse width was adjusted to be the shortest, i.e. about 370 fs, to minimize the thermal
effect. Figure 2D illustrates the welding and cutting paths. Finally, we compared the quality of the
cross sections of two sensors, which were separated using either a CO2 laser or an ultrafast laser.
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Figure 2. (A) Wafer-state of sensors fabricated by MEMS process. (B) depiction of the laser welding
(sensor thickness 750 µm). (C) visualization of the welded area near the inductor of a sensor.
(D) visualization of the laser cut path for individualization and miniaturization of sensors (sensor
cutting size: width 4mm, length 16 mm).

2.3. Evaluation of Improved Packaging

We developed a custom-built performance evaluation system for the measurement of the resonant
frequency of the sensor according to the change in pressure (Figure 3). It is composed of an
ultra-precision pressure controller (CPC3000, Mensor, San Marcos, TX, USA), vacuum and pressure
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pumps, a custom-built chamber, and a network analyzer (8753E, Hewlett Packard (HP), Palo Alto,
CA, USA). The entire device was controlled by LabVIEW programming and the data of pressure
and frequency were through GPIB communication (IEEE-488). The input and output characteristics
of the implantable blood pressure sensor at different pressures were analyzed by the customized
evaluation system. For the pressure protocol of the input value, the pressure range from 760 mmHg to
900 mmHg was selected considering the human blood pressure range and the atmospheric pressure
difference. While the input pressure was increased to 15 steps by 10 ± 1 mmHg and then decreased
by the same interval, the resonance frequency was measured at each step. At each pressure step,
the sensor was exposed to a dwelling time of 2 min for mechanical stabilization before measuring the
resonance frequency.

The resonant frequencies of the non-welded and non-cut sensor were measured first, and then the
sensor was welded and cut and the resonant frequencies were measured. With the resonance frequency
difference, we analyzed the input-output characterization, sensitivity, and hysteresis.
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Figure 3. Schematic of the sensor characterization evaluation system.

We assessed the in vitro cytotoxicity of the sensor according to ISO 10993-5: 2009.
The biocompatibility of SiO2 material has already been well established in many studies [48]. If there
are any physical defects in the sensor packaging, the eluate from the internal components of the sensor
may lead to severe human injury. In this study, we conducted an extraction method to check the
biocompatibility of the packaged sensor system. The mammalian mouse fibroblast cell line, L929 (ATCC
CCL1, NCTC Clone 929), was used because it can be easily cultured in a reproducible manner, and also
this cell line is widely used for preliminary cytotoxicity evaluation for a wide range of biomaterials.
The L929 fibroblast cells were cultured with RPMI Medium (Steinheim, Germany) and 10% Fetal
Bovine Serum (FBS; GIBCO BRL, Grand Island, NY, USA) and incubated at 37 ◦C in 5% CO2 and a
humid environment. The collected L-929 cells were then plated in 24-well microculture plates at a
density of 1 × 105 cells/ml. Extracts were obtained by placing the negative control group (high-density
polyethylene film, HDPE), the positive control group (polyurethane film, ZDBC), and the test group
(the fabricated sensor) in the culture media, RPMI with 10% FBS for 24 h at 37 ◦C. Then, the extracts
were added in the microculture plates to determine their viability. After 24 h, the cells were observed
for visible signs of toxicity and analyzed quantitatively using optical density.
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3. Results and Discussion

3.1. Optimized Laser Conditions for Quartz Wafer Welding

Welding parameter optimization of the optically contacted quartz wafer was investigated in terms
of pulse energy, process speed, and focal position. Figure 4A shows the welding success range of
the pulse energy of 4 µJ as a function of speed and focus position. The local glass melting by the
focused ultrafast laser beam associated with volume expansion of the molten pool results in ejection
of the molten pool of glass near the subsurface of glass [40]. The interface gap is filled by the ejected
molten glass [40,46,47]. The molten glass volume decreases as the scanning speed increases to lower
the laser dose that is related to the decrease of heat accumulation. As a result, with faster welding
speed, a smaller welding seam is formed when fixed pulse energy was used. We determined that the
optimal welding speed is about 20 mm/s at a focus position of 225 µm.
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Figure 4. (A) Weldability map as functions of welding speed and focus position (Ep = 4 µJ). (B) Optical
images of welding seams with different laser pulse energies (Focal position from an interface: −225 µm,
Speed: 20 mm/s). (C) Selectively bonded square welded by optimized laser parameters (fringe-removed
lines indicate successful bonding).

Figure 4B shows a top view of the welding seam with different pulse energies at the optimized
processing speed and focus position. A welding seam width of 111 µm was obtained at a pulse energy
of 4 µJ, which provides the best welding quality. In the case of the pulse energy of 2 µJ, the welding
seam was measured to be 83 µm, which was the narrowest in this investigation. When the pulse
energy was increased up to 8 µJ, excessive heat accumulation generated microcracks near the welding
seam. In addition, black spots were observed in the welding seam when we used pure silica glass
(e.g., quartz, fused silica), which has a higher melting point compared to other silicate glass families
such as borosilicate and soda-lime glass. These spots are due to gas bubbles or disruption caused
by rapid temperature rise followed by quenching at the focal volume of the glass. This may lead
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to degradation of the bonding strength, and therefore the process parameters should be thoroughly
optimized to minimize the formation of black spots [49,50].

From these optimization processes, we found that if the glass was optically contacted and the
stage flatness was kept to be smaller than 125 µm, we could form long welding seams over 100 µm,
which guarantees reliable welding for entire glass substrates. Figure 4C shows a rectangularly sealed
area of the quartz wafer by laser welding. The disappearance of the interference fringe (Newton’s ring)
at the welded area indicates that the interfacial gap was completely filled by molten glass and thus no
gap was found.

3.2. Implantable Blood Pressure Sensor Hermetic Packaging

Figure 5 shows the results of sealing and cutting of the sensors, which are the final steps for the
fabrication of an implantable blood pressure sensor. Figure 5A shows the laser-welded sensor with
good optical contact. Ultrafast laser welding can be accomplished by two approaches, continuous
welding or point welding. The point welding method may be a better option for obtaining higher
bonding strength [50]. However, in our case, the hermeticity of the sensor was the highest priority
and thus we applied a continuous welding method to ensure a hermetically sealed sensor. Therefore,
we produced a welding seam with a 100 µm width 200 µm from the air gap area where the MEMS
inductor is formed. We did not observe any welding failures such as thermal damage of the MEMS
inductor made of electroplated copper or physical collapse of the air gap area fabricated by wet etching.

In addition, the entire processing time required to seal a pressure sensor was within 40 s. We tried
to package the sensor with a wide gap bwtween the upper and lower substrate based on the preliminary
test results. Figure 5B shows that two welding seams around the inner components of the sensor
were formed, and the interference fringes were selectively removed from the laser-welded regions,
indicating that the bonding was successful and the interfacial gaps were completely removed.

Sensors 2019, 19 FOR PEER REVIEW  8 

 

From these optimization processes, we found that if the glass was optically contacted and the 

stage flatness was kept to be smaller than 125 μm, we could form long welding seams over 100 μm, 

which guarantees reliable welding for entire glass substrates. Figure 4C shows a rectangularly 

sealed area of the quartz wafer by laser welding. The disappearance of the interference fringe 

(Newton’s ring) at the welded area indicates that the interfacial gap was completely filled by molten 

glass and thus no gap was found. 

3.2. Implantable Blood Pressure Sensor Hermetic Packaging  

Figure 5 shows the results of sealing and cutting of the sensors, which are the final steps for the 

fabrication of an implantable blood pressure sensor. Figure 5A shows the laser-welded sensor with 

good optical contact. Ultrafast laser welding can be accomplished by two approaches, continuous 

welding or point welding. The point welding method may be a better option for obtaining higher 

bonding strength [49]. However, in our case, the hermeticity of the sensor was the highest priority 

and thus we applied a continuous welding method to ensure a hermetically sealed sensor. 

Therefore, we produced a welding seam with a 100 μm width 200 μm from the air gap area where 

the MEMS inductor is formed. We did not observe any welding failures such as thermal damage of 

the MEMS inductor made of electroplated copper or physical collapse of the air gap area fabricated 

by wet etching. 

In addition, the entire processing time required to seal a pressure sensor was within 40 s. We 

tried to package the sensor with a wide gap bwtween the upper and lower substrate based on the 

preliminary test results. Figure 5B shows that two welding seams around the inner components of 

the sensor were formed, and the interference fringes were selectively removed from the 

laser-welded regions, indicating that the bonding was successful and the interfacial gaps were 

completely removed.  

 

Figure 5. (A) An optical image of the sealed implantable blood pressure sensor using ultrafast laser 

micro-welding (the total length of the micro-welded track is 31.2 mm) (B) zoomed image of the 

corner indicating successful welding (discontinuity of interference pattern due to the welding track 

is shown)  . 

Removed fringes 

100 μm 

(A) 

(B) 

Figure 5. (A) An optical image of the sealed implantable blood pressure sensor using ultrafast laser
micro-welding (the total length of the micro-welded track is 31.2 mm) (B) zoomed image of the corner
indicating successful welding (discontinuity of interference pattern due to the welding track is shown).
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3.3. Chracterization of the Implantable Blood Pressure Sensor after Welding

The resonance frequency of the sensor before welding was 74.84 MHz at atmospheric pressure
of 760 mmHg. As shown in Figure 6A, frequency changes of 3 kHz or less occurred randomly even
though there were 15 step input pressure changes. This is due to a pressure inflow into the sensor that
did not have hermetic sealing. The pressure inflow led to equilibrium of pressures between the inside
and outside of the sensor and the membrane of the sensor was not deformed, resulting in no change in
the capacitance of the sensor. On the other hand, the sensor after welding worked successfully and
the resonance frequency linearly decreased when the pressure was increased, as in the case of the
electrostatic pressure sensor. The sensitivity of the sensor was 2.4 kHz/mmHg and the error was less
than 3 mmHg due to the hysteresis characteristic of 7.5 kHz.

The hysteresis results include the performance limits of the frequency measuring system and the
signal noise. The error of the sensor is lower than the error rate of the conventional cuff method, that is,
3 mmHg. As a result, the sensor pressure characteristic results show that the micro-welding provides
high-quality hermetic sealing packaging.

For separation of individual sensors from the glass wafer, sensors were cut to a designed size
(4 mm × 16 mm × 0.75 mm for the femoral artery), as shown in Figure 7A. The laser pulse energy for
laser cutting was 30 µJ to enable high-speed machining. A Galvano scanner (IntelliSCAN III, ScanLab,
Puchheim, Germany) and an f-theta lens (focal length 100 mm, Sill Optics, Wendelstein, Germany)
were used for fast beam scanning. The rim of the sensor was scanned with 30 iterations at a speed of
300 mm/s. The total cutting time was about two min.
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Figure 6. Graphs showing resonance frequency change by pressure variation. (A) Before welding,
resonance frequency change as a function of membrane deformation caused by pressure variation is
not shown due to leakage (B) resonance frequency variation due to deformation of membrane is clearly
measured after welding.
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Figure 7. (A) An optical image of the separated sensor using the laser cutting (4 mm × 16 mm × 0.75
mm). (B) Comparison of the laser-cut cross sections by the CO2 laser cutting and femtosecond laser
cutting. (C) Cytotoxicity test results for biocompatibility of welded sensors (non-toxic, grade 0).

Figure 7B shows a comparison of the side view of the edge cut with a CO2 laser and an ultrafast
laser. The upper substrate that serves as a sensor membrane was wet-etched to adjust the thickness
to 250 µm so that it can be easily deformed. CO2 laser cutting generated irregular microcracks and
thermal deformation. On the other hand, the ultrafast laser process based on ablation with 370 fs
pulses has a small HAZ as well as minimized cracks and deformation. Increased cutting quality by
femtosecond laser glass cutting benefits the durability of the sensor. It is well documented in fracture
research that the fracture force is inversely related to the radius of the crack, and thus microcracks can
be easily propagated and lead to fracture of the implanted sensor in the patient’s body. A cytotoxicity
assessment to verify the safety of the implantable sensor in the body was then conducted.

Figure 7C shows the relative cell viability (RCV) of the cells after treatment with different eluates
from the negative control group, the positive control group, and the test (treatment) group, respectively,
for quantitative analysis. As a result, the negative control group (high-density polyethylene film,
HDPE) showed a value of 111.87% and the positive control group (ZDBC polyurethane film) showed a
value of 31.55%. In the positive control group, apoptosis was clearly observed. The test group showed
a RCV of 96.88% and no reactivity, no cell lysis, and no reduction of cell growth was observed (grade
0). Typically, if the cell viability is above 80–85%, the material is considered to be non-toxic, based on
the ISO standard.

4. Conclusions

The implantable blood pressure sensor consists of inductors and a capacitor fabricated by a MEMS
process on a glass substrate and the glass substrate also served as the package structure. The biggest
problem in glass micromachining using a conventional CO2 laser is microcracks and deformation
in packaging. This generates limitations of miniaturization of implantable sensors, deterioration of
airtightness, and degradation of durability. To solve this problem, we proposed a glass micro-welding
strategy using an ultrafast laser and analyzed various characteristics such as hysteresis and hermeticity.
The laser welding was optimized after testing with various laser pulse energy, processing speed,
and focal position. As a result, the packaging by ultrafast laser micro-welding for implantable blood
pressure is simpler and faster than the conventional bonding methods and provides high chemical
resistance and a highly hermetic seal. The fabricated implantable blood pressure sensor works
successfully with high precision and accuracy and the RCV test shows that the pressure sensor is
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biocompatible. Future work will evaluate the durability of the welding through an acceleration test
and a helium leak test to verify long-term implantation. In addition, we expect that welding with
an ultrafast laser can be applied to various glass devices such as microfluidic devices, optoelectronic
devices, and optical components.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/8/1801/s1,
Figure S1: Implantable sensor fabrication flow.
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