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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a leading cause of liver cirrhosis and hepatocel-
lular carcinoma. NAFLD is associated with metabolic disorders such as obesity, insulin resistance, dys-
lipidemia, steatohepatitis, and liver fibrosis. Liver-resident (Kupffer cells) and recruited macrophages
contribute to low-grade chronic inflammation in various tissues by modulating macrophage polar-
ization, which is implicated in the pathogenesis of metabolic diseases. Abnormalities in the intestinal
environment, such as the gut microbiota, metabolites, and immune system, are also involved in
the pathogenesis and development of NAFLD. Hepatic macrophage activation is induced by the
permeation of antigens, endotoxins, and other proinflammatory substances into the bloodstream as a
result of increased intestinal permeability. Therefore, it is important to understand the role of the
gut–liver axis in influencing macrophage activity, which is central to the pathogenesis of NAFLD and
nonalcoholic steatohepatitis (NASH). Not only probiotics but also biogenics (heat-killed lactic acid
bacteria) are effective in ameliorating the progression of NASH. Here we review the effect of hepatic
macrophages/Kupffer cells, other immune cells, intestinal permeability, and immunity on NAFLD
and NASH and the impact of probiotics, prebiotics, and biogenesis on those diseases.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver
disorders worldwide and its prevalence is increasing [1,2]. NAFLD is characterized by
hepatic damage caused by steatosis without secondary causes (e.g., medications, excessive
alcohol consumption, or certain heritable conditions), which can progress to non-alcoholic
steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma [3]. NASH has sev-
eral histological features, such as steatosis, hepatocellular ballooning, lobular inflammation,
and fibrosis [4,5].

Several cross-sectional clinical studies have focused on the pathogenesis of NASH. In
addition, mouse models of NASH mimic the pathogenesis of diet-induced obesity and its
resulting metabolic disturbances, including NAFLD and NASH [6–10]. The development
and progression of NAFLD is closely related to metabolic syndrome, insulin resistance, and
type 2 diabetes mellitus (T2DM) [11–16]. NAFLD is a genetic-environmental-metabolic
stress-related disease of unclear pathogenesis. The two-hit hypothesis explains progression
of NASH from NAFLD. The first hit is insulin resistance and excessive fatty acids, which
induce simple hepatic steatosis. The second hit is oxidative stress, lipid peroxidation,
reactive oxygen species (ROS), and mitochondrial dysfunction. Moreover, recent findings
support the multiple-hit hypothesis of the pathogenesis of NAFLD, which implicates liver,
intestinal tract, and adipose tissue changes [17–19] (Figure 1). It is important to assess
the role of inflammatory immune cells and oxidative stress in inducing inflammation,
or of overproduction of ROS in liver mitochondrial dysfunction, a major pathogenic
factor in NASH [20,21]. Dysregulation and polarization of macrophages (inflammatory
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M1 macrophages and anti-inflammatory M2 macrophages) in the liver contribute to the
development and progression of NAFLD and NASH [22–24]. Oxidative stress-induced
endoplasmic reticulum (ER) stress leads to upregulated liver lipogenic sterols, resulting
in hepatic steatosis. Moreover, the activation of redox-sensitive nuclear factor-κB (NF-
κB) by oxidative stress causes an increase in the expression of tumor necrosis factor-α
(TNF-α), interleukin (IL)-1β and IL-6 [25]. The impaired mitochondrial respiratory chain
caused by oxidative stress and peroxidation of cardiolipin (a dimeric phospholipid in the
inner mitochondrial membrane) increases mitochondrial ROS production and promotes
mitochondrial damage [26]. In addition, the intestinal barrier, immune cells, and microbiota
composition are also involved in NAFLD and NASH development [27–30]. Herein we
discuss the pathogenesis of NAFLD and NASH, and the potential of probiotics, prebiotics,
biogenics for treatment.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 14 
 

 

important to assess the role of inflammatory immune cells and oxidative stress in induc-
ing inflammation, or of overproduction of ROS in liver mitochondrial dysfunction, a ma-
jor pathogenic factor in NASH [20,21]. Dysregulation and polarization of macrophages 
(inflammatory M1 macrophages and anti-inflammatory M2 macrophages) in the liver 
contribute to the development and progression of NAFLD and NASH [22–24]. Oxidative 
stress-induced endoplasmic reticulum (ER) stress leads to upregulated liver lipogenic 
sterols, resulting in hepatic steatosis. Moreover, the activation of redox-sensitive nuclear 
factor-κB (NF-κB) by oxidative stress causes an increase in the expression of tumor necro-
sis factor-α (TNF-α), interleukin (IL)-1β and IL-6 [25]. The impaired mitochondrial respir-
atory chain caused by oxidative stress and peroxidation of cardiolipin (a dimeric phos-
pholipid in the inner mitochondrial membrane) increases mitochondrial ROS production 
and promotes mitochondrial damage [26]. In addition, the intestinal barrier, immune cells, 
and microbiota composition are also involved in NAFLD and NASH development [27–
30]. Herein we discuss the pathogenesis of NAFLD and NASH, and the potential of pro-
biotics, prebiotics, biogenics for treatment. 

 
Figure 1. Multiple parallel-hit hypothesis of the progression of NAFLD/NASH. Overnutrition or 
inactivity caused by adipocyte hypertrophy and dysfunction. Obese adipose tissue shows chronic 
inflammation and insulin resistance as a result of infiltration of activated macrophages and T cells. 
Adipokines, such as interleukin-6 and tumor necrosis factor-α, and chemokines including CCL2 
produced by adipocytes induce hepatocyte fat accumulation, hepatic inflammation, and insulin re-
sistance. Overloading of triglycerides, free fatty acids, and free cholesterol induces endoplasmic re-
ticulum stress and oxidative stress, leading to hepatic inflammation, mitochondrial dysfunction, 
fibrogenesis and, ultimately, hepatic steatosis. By contrast, microbial dysbiosis results in production 
of pathogen-associated molecular patterns and damage-associated molecular patterns, inducing an 
inflammatory response in hepatocytes, Kupffer cells, and hepatic stellate cells via a Toll-like recep-
tor cascade, resulting in liver damage. 

2. Relationship between Hepatic Immune Cells and the Pathogenesis of NAFLD and 
NASH 

Innate immune responses of NAFLD and NASH involve resident Kupffer cells, re-
cruited macrophages derived from bone marrow cells, neutrophils, and natural killer T 
cells. These cells contribute to the progression of NASH by inducing inflammation, by 
promoting the production of cytokines, chemokines, eicosanoids, nitric oxide, and ROS. 
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Figure 1. Multiple parallel-hit hypothesis of the progression of NAFLD/NASH. Overnutrition or
inactivity caused by adipocyte hypertrophy and dysfunction. Obese adipose tissue shows chronic
inflammation and insulin resistance as a result of infiltration of activated macrophages and T cells.
Adipokines, such as interleukin-6 and tumor necrosis factor-α, and chemokines including CCL2
produced by adipocytes induce hepatocyte fat accumulation, hepatic inflammation, and insulin
resistance. Overloading of triglycerides, free fatty acids, and free cholesterol induces endoplasmic
reticulum stress and oxidative stress, leading to hepatic inflammation, mitochondrial dysfunction,
fibrogenesis and, ultimately, hepatic steatosis. By contrast, microbial dysbiosis results in production
of pathogen-associated molecular patterns and damage-associated molecular patterns, inducing an
inflammatory response in hepatocytes, Kupffer cells, and hepatic stellate cells via a Toll-like receptor
cascade, resulting in liver damage.

2. Relationship between Hepatic Immune Cells and the Pathogenesis of NAFLD
and NASH

Innate immune responses of NAFLD and NASH involve resident Kupffer cells, re-
cruited macrophages derived from bone marrow cells, neutrophils, and natural killer T cells.
These cells contribute to the progression of NASH by inducing inflammation, by promoting
the production of cytokines, chemokines, eicosanoids, nitric oxide, and ROS. In addition,
excessive free fatty acids (FFAs) and cholesterol cause hepatic lipotoxicity and stimulate
macrophage activation, and production of proinflammatory cytokines [31]. Palmitate in
serum FFAs showed elevation in patients with NASH [32]. Increased levels of palmitic
acid and its metabolites, such as phospholipids, diacylglycerol and ceramides, activate
LPS-mediated Toll-like receptor (TLR) 4, PKCs, and ER stress and increase ROS production
by inducing mitochondrial dysfunction. ER stress and ROS activate the NOD-like receptor
pyrin domain containing 3 (NLRP3) inflammasome and NF-κB and increase production
of proinflammatory cytokines and chemokines [33]. Moreover, C-C motif chemokine 2
(CCL2, also known as MCP-1), IL-1β, IL-18, and TNF-α recruit bone marrow-derived



Int. J. Mol. Sci. 2021, 22, 8008 3 of 14

macrophages to activated hepatic stellate cells and cause damage to the liver. This section
is focused on macrophage/Kupffer cells and chemokines, which play an important role in
the progression from NAFLD to NASH.

2.1. Macrophages and Kupffer Cellsn

Liver macrophages comprise several populations and play a key role in liver immune
homeostasis and the pathogenesis of liver disease [34]. Kupffer cells originate from the
fetal yolk sack and form a self-renewing pool of organ-resident macrophages, independent
of myeloid monocytic cells [35]. Macrophages recruited during inflammation are differ-
entiated from circulating monocytes derived from bone marrow cells [36]. Although the
populations of macrophages and their transcriptional controls are adequately characterized
in mice, the distinction between macrophage subsets in humans is unclear [37–40].

Kupffer cells and recruited macrophages regulate liver immune homeostasis and the
development of liver diseases. Kupffer cells recruit additional immune cells, including
neutrophils and lymphocyte antigen 6C-high (Ly6Chi) inflammatory blood monocytes. The
latter differentiate to CD11b+F4/80+ inflammatory macrophages (M1-type), which have
phagocytic activity and secrete proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β,
and ROS [41,42]. Kupffer cell activation contributes to initial hepatic lipid deposition and liver
injury [10]. M1/Kupffer cell-type macrophages secrete inflammatory mediators, such as TNF-
α, interleukin (IL)-1β, and IL-6, leading to systemic insulin resistance and NASH [43]. M1
macrophages are stimulated by Toll-like receptor (TLR) ligands, such as lipopolysaccharide
(LPS) and interferon-gamma (IFN-γ). By contrast, alternative activation of LY6ClowF4/80+

macrophages (M2-type) with an immunosuppressive, pro-fibrogenic phenotype is observed
in the reparative phase of NAFLD and NASH. M2-type macrophages secrete high levels of
IL-13 and transforming growth factor-β1 (TGFβ1), resulting in progressive fibrosis [44–46].
M2 macrophages ameliorate alcoholic fatty liver disease and NAFLD by inducing apoptosis
of M1 macrophages [23]. Therefore, the pathology of NAFLD is associated with dynamic
changes in macrophage polarization—M1 macrophages initiate and sustain inflammation
and M2 macrophages attenuate chronic inflammation [23,24].

2.2. Chemokines and Monocytes

Chemokines recruit and activate monocytes and are important in the progression
of chronic inflammation in obesity, which underlies adipose tissue inflammation, insulin
resistance, and NAFLD [47]. Chemokines, such as C-C motif ligand (CCL) 2, are produced
by KCs and recruited macrophages. CCL2 binds to C-chemokine receptor (CCR), and the
resulting CCL2-CCR2 complex induces the recruitment of macrophages into adipose tissue
and the liver, leading to hepatic steatosis and insulin resistance in obese patients [48,49].
However, CCL2 deficiency does not affect macrophage infiltration or insulin sensitivity,
suggesting that CCL2-CCR2 signaling is not critical for obesity-induced macrophage re-
cruitment or systemic insulin resistance [50,51]. Instead, other chemokines involved in
obesity may contribute to macrophage recruitment and insulin resistance. CCR5 defi-
ciency attenuates insulin resistance and hepatic fatty acid accumulation by modulating
macrophage recruitment and M1/M2 polarization [52].

There are two major subsets of murine monocytes: differentiation into M1 or M2
macrophages, which is important in the pathogenesis of NAFLD and NASH. These
subsets of monocytes are distinguished by expression of CCR2 and CX3C chemokine
receptor 1 (CX3CR1) and include CCR2 + Ly6Chi and CX3CR1 + Ly6C- monocytes. Un-
der inflammatory conditions, CCR2 + Ly6Chi monocytes transmigrate and differentiate
into M1 macrophages. In steady state, CX3CR1 + Ly6C- monocytes differentiate into
anti-inflammatory M2 macrophages and mediate tissue repair [53]. In high-fat (HF) diet-
induced obese mice, which exhibit NAFLD features, adipose tissue shows significantly
increased macrophage infiltration, inflammation, and tissue remodeling. Furthermore,
CCR2 + Ly6Chigh monocytes are recruited to adipose tissue and differentiate into M1
macrophages. CX3CR1 + Ly6C- monocytes accumulate in adipose tissue and are classified
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as M2 macrophages [54]. DIO mice show increased M1 macrophages and decreased M2
macrophages compared with lean mice, leading to a shift to an M1 dominant macrophage
phenotype and inducing inflammation and insulin resistance [52]. Indeed, CCR2 deficiency
reduced liver steatosis in DIO mice by suppressing the recruitment of CCR2 + Ly6Chigh
monocytes [48,49]. Moreover, loss of CX3CR1 in DIO mice exacerbated insulin resistance,
inflammation, and steatohepatitis by inducing a shift to M1 macrophages in adipose tis-
sue [55]. On the other hand, another study using a different strain of Cx3cr1 deficient
mice found no changes in obesity-induced inflammation, insulin resistance, and adipose
macrophage accumulation, as compared with control mice [56]. The relationship between
CX3CR1 expression in immune cells and pathogenesis differs among organs [57,58]. In
liver inflammation and fibrosis induced by carbon tetrachloride and bile duct ligation,
CX3CR1-deficient mice showed increased accumulation of inflammatory Ly6C+ mono-
cytes [59]. Furthermore, CX3CR1 contributes to hepatic macrophage polarization and
ameliorates steatohepatitis by controlling intestinal barrier function and dysbiosis [60].
CX3CR1 and CCR2 may independently regulate monocyte phenotype and macrophage
polarization, and contribute to adipose tissue inflammation and insulin resistance, and the
progression of NAFLD.

3. The Gut–Liver Axis in NAFLD and NASH

The increased prevalence of NAFLD may be linked to increased energy intake caused
by dietary changes, such as increased intake of carbohydrate (flour and cereal products), fat,
and fructose. Moreover, increased use of corn syrup or fructose as sweeteners and sucralose
as a non-caloric artificial sweetener may affect the development of NAFLD [61–63]. These
changes in diet may alter the gut microbiota, intestinal immune system, and intestinal
barrier function, promoting metabolic endotoxemia and low-grade hepatic inflammation,
thereby contributing to the development of NAFLD and NASH. Hepatic inflammation
due to altered food habits may be attributed to changes in the intestinal environment.
Understanding the relationship between diet and the gut–liver axis is important for treating
and preventing NAFLD and NASH [64].

3.1. Intestinal Permeability and the Microbiota

The liver and gut are impacted by nutrients and the microbiome via the biliary tract,
portal vein, and systemic mediators. Liver damage caused by disruption of the gut micro-
biome, its derived metabolites, and the gut immune system is implicated in the pathogene-
sis of obesity-induced insulin resistance and NAFLD. The liver is exposed to portal system
products, such as pathogen-associated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs) and is strongly influenced by diet-induced dysbiosis. PAMPs
and DAMPs induce an inflammatory response in hepatocytes, Kupffer cells, and hepatic
stellate cells (HSCs) by a Toll-like receptor (TLR) cascade, enhancing release of cytokines
and chemokines (such as TNFα, IL-1, IL-6, IL-8, and IFN-γ), resulting in liver damage.
Mice fed a HF or choline-deficient diet and patients with NAFLD have increased intestinal
permeability [30,65,66], triggering a proinflammatory cascade that worsens hepatic inflam-
mation by facilitating portal influx of microbiome-derived metabolites to the liver [66,67]
(Figure 2). Intestinal permeability is regulated by epithelial tight junctions, which consist
of several integral membrane proteins, such as zonula occludens (ZO), occludin, junctional
adhesion molecule-A (JAM-A), and claudins [68]. Mice fed a HF diet exhibit decreased tight
junction proteins and low-grade gut inflammation as a result of microbiome abnormalities.
That is, the intestinal barrier and gut vascular barrier are impaired by HF diet-induced
microbiome changes, promoting the portal influx of bacterial products, thereby worsening
non-hepatic inflammation and metabolic abnormalities (Figure 1). Moreover, the altered
microbiota disrupts the intestinal epithelial and vascular barriers by acquiring the ability to
cross the intestinal epithelial barrier in mice fed a HF diet [30]. Whether the ability to cross
the damaged intestinal epithelium is an active mechanism or a result of increased intestinal
permeability caused by decreased expression of tight junction proteins is unknown.
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Figure 2. Interaction between dysbiosis-induced alteration of the intestinal mucosal barrier and
progression of NASH. Tight junction dysfunction is induced by LPS, and proinflammatory cytokines
are produced by intraepithelial lymphocytes (IELs) and the lamina propria (LP), enhancing intestinal
epithelial permeability and inducing metabolic endotoxemia followed by hepatic inflammation,
steatosis, and fibrosis. Intestinal IL-17 protects tight junctions in the gut, and the serum IL-17 level
is increased in NASH patients. The secretion of IL-17 by Th17 cells stimulates monocytes, Kupffer
cells, biliary epithelial cells, and stellate cells to secrete proinflammatory cytokines and chemokines,
inducing inflammation in the liver.

Several clinical studies have suggested a link between the gut microbiota (such as small
intestinal bacterial overgrowth and microbial dysbiosis) and the pathogenesis of NAFLD,
but causality has not been established [69]. Shotgun metagenomic sequencing indicated
an association between a microbiome signature characterized by increased abundance of
Escherichia coli and Bacteroides vulgatus and advanced fibrosis in patients with NAFLD [70].
Escherichia abundance was higher in obese children with NASH compared to those with
only obesity [71]. Moreover, Bacteroides and Ruminococcus were significantly increased, and
Prevotella decreased, in patients with NASH (stage ≥ 2 fibrosis) compared to those without
NASH, shown by 16S amplicon sequencing [72]. This finding is consistent with evidence
that Bacteroides and Prevotella are competitors in the gut microbiota, depending on dietary
composition [73].

3.2. Intestinal Immune System

Intestinal immune cells contribute to the establishment of the intestinal mucosal bar-
rier. These cells are classified as intraepithelial and lamina propria cells. Intraepithelial cells
include intestinal intraepithelial lymphocytes (IELs), encompassing several T cell receptor
(TCR)-positive and -negative subsets. TCR+ and TCR− IELs exhibit different subtypes
depending on the developmental conditions: TCR+ IELs are induced after antigens are
encountered, natural TCRαβ+ IELs undergo thymic agonist selection, TCRγδ+ IELs dif-
ferentiate either intrathymically or extrathymically, and the development of TCR− IELs is
similar to that of peripheral innate lymphocytes [74,75]. IELs produce proinflammatory
type I cytokines (IL-1β, IL-1α, IL-12, TNF-α, and GFAP), are cytolytic, and release antimi-
crobial peptides upon activation by intestinal epithelial cell-released cytokines or engaging
activating natural killer (NK) cell receptors [75]. IELs and intraepithelial mononuclear
phagocytes fight infection and induce tolerance to food and microbial antigens. In the
lamina propria (LP), immune cells act as a second line of defense and promote regeneration
of damaged tissue. The immune cell population of the LP includes T lymphocytes (mostly
CD4+), NK T lymphocytes, dendritic cells, macrophages, ILCs, IgA+ plasma cells, IgG+

and IgM+ plasma cells, and B lymphocytes [76,77]. CD4+ T cells in the LP comprised pri-
marily T helper (Th) 17 cells and regulatory T (Treg) cells. Th17 cells release IL-17A, IL-17F,
and IL-22, preventing bacterial dissemination by inducing the expression and secretion
of antimicrobial peptides [78]. IL-17A maintained intestinal permeability by regulating



Int. J. Mol. Sci. 2021, 22, 8008 6 of 14

the tight junction protein occludin in a dextran sulfate sodium injury model [79]. The
reduced proportion of Th17 cells in the small intestine of obese mice induced weight gain
and worsened glucose intolerance and insulin resistance [80]. By contrast, IL-17 promoted
intestinal barrier dysfunction by disrupting tight junction structure and promoting bacterial
dissemination in sepsis models [28]. Notably, the intestinal IL-17 level was elevated in mice
with steatohepatitis, and the number of Th17 cells was increased among peripheral blood
mononuclear cells in patients with NASH [29,81]. Intestinal Th17 cells migrate to the liver
and secrete IL-17 to stimulate monocytes, Kupffer cells, biliary epithelial cells, and stellate
cells, and to secrete proinflammatory cytokines and chemokines, triggering inflammation
in the liver [82]. The effect of IL-17 in the intestinal tract may differ depending on the
disease and is an important therapeutic target for NAFLD and NASH.

4. Treatment of NAFLD and NASH with Probiotics, Prebiotics, and Biogenics

Many pharmacotherapeutic strategies have been used for NASH, which can progress
to cirrhosis. Insulin sensitizers, such as metformin or pioglitazone, have been studied
for the treatment of NASH. In addition, vitamin E, a food ingredient with antioxidant
properties, has also been studied for its therapeutic effect on NASH [83,84]. In the TONIC
trial (metformin and vitamin E) and the PIVENS trial (pioglitazone and vitamin E), met-
formin, pioglitazone, and vitamin E improved steatosis and inflammation but not fibrosis.
However, pioglitazone led to significant weight gain [85,86]. Clinical and animal studies
have evaluated the therapeutic effects on NAFLD and NASH of probiotics, prebiotics
and biogenics. These have been shown to ameliorate NAFLD and NASH, but there are
issues in developing methods for evaluating clinical studies and appropriate biomarkers
for prognosis and diagnosis.

4.1. Lactic Fermentation and Control of Gut Microbiome

Studies have investigated the ability of functional foods, such as lactic acid bacteria,
to improve the gut microbiome in NASH and NAFLD. Functional foods are classified as
probiotics, prebiotics, and biogenics based on their mechanisms of action [87]. Probiotics
were defined as “live microorganisms, which when administered in adequate amounts,
confer a health benefit on the host” by the 2001 World Health Organization/Food and
Agriculture Organization (WHO/FAO) expert consultation. Probiotics positively alter the
intestinal microbiota and immune system. Probiotics must promote survival and exert
an immunomodulatory effect in the gastrointestinal tract, inhibit pathogenic bacteria, be
safe, and not have antibiotic resistance genes [88]. Microorganisms used as probiotics
include Lactobacillus, Streptococcus, Lactococcus, Enterococcus, Bifidobacterium, Bacillus, and
Clostridium. These probiotics promote an anti-inflammatory environment and intestinal
epithelial growth and survival and counteract pathogenic bacteria by modulating immunity.
Prebiotics were defined by Gibson et al. in 1995 as, “A non-digestible food ingredient that
beneficially affects the host by selectively stimulating the growth and/or activity of one or
a limited number of bacteria in the colon, and thus improves host health” [89].

Prebiotics include oligosaccharides and dietary fibers. Oligosaccharides encompass
fructooligosaccharides and galactoses, such as lactulose, which have highly selective
availability to bifidobacteria and promote their growth. The term “synbiotic” refers to a
combination of probiotics and prebiotics, as defined by Gibson et al.

Biogenics was proposed by Mitsuoka et al., and applies to food ingredients that con-
tain biologically active peptides and immunopotentiators (biological response modifiers)
produced directly or indirectly by modulation of the intestinal microflora [90]. Biogen-
ics encompass various biologically active peptides, plant polyphenols, docosahexaenoic
acid, eicosapentaenoic acid, vitamins, and other food components related to biological
regulation, biological defense, disease prevention, functional recovery, and aging control.
Heat-inactivated probiotic bacteria are also considered biogenics. Probiotics or biogenics
are taken up by M cells in Peyer’s patches and transferred to subepithelial dendritic cells,
reducing the expression of proinflammatory cytokines in mice [91].
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4.2. Therapeutic Effects of Probiotics, Prebiotics, and Biogenics on NAFLD and NASH

Several animal model studies and clinical trials have reported evidence of benefits.
For example, VSL#3 and modified VSL#3 are a mixture of several probiotic bacteria of
the genera Lactobacillus, Bifidobacterium, and Streptococcus, or Lactobacillus alone. VSL#3
protected against insulin resistance and NAFLD by inhibiting inflammatory signaling, such
as c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) and restoring the reduced
number of hepatic natural killer T cells caused by a HF diet [92,93]. By contrast, VSL#3
did not affect methionine-choline-supplemented (MCS) diet-induced hepatic steatosis
or inflammation but ameliorated hepatic fibrosis by negatively regulating TGF-β signal-
ing in mice [94]. Other animal model studies showed that probiotics improved the gut
microbiota composition and maintained tight junctions, restoring the intestinal mucosal
barrier and suppressing serum LPS levels. Liver inflammatory markers (e.g., ALT, AST,
hepatic TG, and proinflammatory cytokines) were reduced by a decrease in serum LPS and
liver TLR4 mRNA levels [95,96]. Lactobacillus plantarum NA136 isolated from fermented
food suppressed the body weight gain and decreased the mass of fat tissues of HF diet
and fructose-fed mice (NAFLD model).; lipids, AST, and ALT levels were also reduced
L. plantarum NA136 decreased de novo lipogenesis and increased fatty acid oxidation
by activating the AMPK pathway to phosphorylate ACC and suppress SREBP-1/FAS
signaling in a NASH model. Furthermore, L. plantarum NA136 reduced oxidative stress
in the liver by activating the AMPK/NF-E2-related factor 2 (Nrf2) pathway in a NAFLD
model. These effects resulted in L. plantarum NA136 attenuating NAFLD [97]. Moreover,
Lactobacillus paracasei decreased the expression of TLR-4, CCL2 and TNF-α and attenuated
hepatic steatosis. L. paracasei decreased the proportion of M1 Kupffer cells and increased
that of M2, leading to M2-dominant shift in the liver of a NASH animal model [98]. The
effect of an aqueous probiotic suspension (SymproveTM, containing Lactobacillus acidophilus
NCIMB 30175, Lactobacillus plantarum NCIMB 30173, Lactobacillus rhamnosus NCIMB 30174,
and Enterococcus faecium NCIMB 30176) on the composition of human intestinal microbiota
was studied using the M-SHIME® system on an in vitro human intestinal model. Three
probiotics showed colonization and growth in the luminal and mucosal compartments
of the proximal and distal colon, and growth in the luminal proximal colon. This in-
creased the proximal and distal colonic lactate concentrations. Lactate stimulated growth of
lactate-consuming bacteria, resulting in increased short-chain fatty acid (SCFA) production,
especially butyrate. Additionally, the probiotics exerted immunomodulatory effects, such
as increased production of anti-inflammatory cytokines (IL-10 and IL-6) and decreased
production of proinflammatory chemokines (IL-8, CXCL 10 and MCP-1) [99]. A meta-
analysis of the effects of probiotics on patients with NAFLD/NASH showed improved
serum levels of liver aminotransferases, total cholesterol, and TNF-α, and amelioration
of insulin resistance. However, the data are difficult to reconcile, given use of different
probiotic strains and dosages, treatment durations, and outcome indices [100].

Prebiotics may have a beneficial effect on NAFLD and NASH. In animal models,
prebiotics altered the gut microbiota composition and increased the plasma glucagon-like
peptide-2 (GLP-2) level, improving gut barrier function. Moreover, prebiotics reduced liver
inflammation and improved metabolic disorders in obesity and diabetes [101]. Furthermore,
prebiotics including inulin and oligofructose controlled the growth of Faecalibacterium praus-
nitzii and Bifidobacterium and reduced the plasma endotoxin level by increasing GLP-1
secretion as well as the GLP-2 trophic effect on gut barrier integrity [102]. In humans,
oligofructose supplementation improved glucose tolerance and promoted weight loss
by regulating the expression of hormones involved in energy intake, such as ghrelin and
peptide YY, in obesity [103]. Moreover, a meta-analysis of probiotic, prebiotic, and synbiotic
therapies for NAFLD showed significantly reduced BMI, ALT, and AST. Synbiotics, but not
prebiotics or probiotics, did not decrease serum lipids [104].

Heat-killed lactic acid bacteria in biogenics, which are easier to handle compared
with live lactic acid bacteria, have been used in studies of NAFLD and NASH. Heat-killed
Lactobacillus reuteri GMNL-263 (Lr263) reduced fibrosis in the liver and heart by TGF-
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β suppression in HF diet-fed mice [105]. Similarly, live Lr263 improved inflammation,
insulin resistance and hepatic steatosis in high fructose-fed rats [106]. Moreover, heat-killed
Lactobacillus plantarum L-137 (HK L-137), which is isolated from fermented fish and rice
dishes, attenuated adipose tissue and hepatic inflammation in DahlS. Z-Leprfa/Leprfa rats
as a model of metabolic syndrome [107]. Live and heat-killed Lactobacillus pentosus strain
S-PT84, isolated from Kyoto pickles (shibazuke), reportedly enhances splenic natural killer
activity and interferon-γ production in mice [108,109]. Heat-killed S-PT84 partially restored
expression of ZO-1, occludin, and xlaudin-3 but did not restore the alteration the microbiota
profile in a NASH model. Heat-killed S-PT84 suppressed metabolic endotoxemia by
maintaining the gut barrier and intestinal permeability and suppressing IL-17-producing
T (Th17) cell accumulation in the intestinal LP. By contrast, heat-killed S-PT84 had no
effect on the abundance of NKT cells in the liver. However, heat-killed S-PT84 attenuated
hepatic inflammation and fibrosis by decreasing the M1/M2 macrophage ratio in the liver.
These results indicated that heat-killed S-PT84 attenuated lipotoxicity-induced hepatic
insulin resistance and steatohepatitis in a NASH animal model [110]. By contrast, live
Lactobacillus pentosaceus LP28 (LP28), isolated from longan fruit (Euphoria longana), showed
reduced body weight gain, liver triglyceride and cholesterol in HF diet-fed mice. However,
heat-killed LP28 did not prevent metabolic syndrome [111]. Heat-killed lactic acid bacteria
as biogenics can also improve NAFLD and NASH, as do some live lactic acid bacteria.
However, heat-killed lactic acid bacteria will continue to be investigated in clinical and
animal studies because of their immunomodulatory effects, long shelf-life, and ease of
storage and transportation.

Probiotic, prebiotic, and biogenic treatment of NAFLD and NASH is new and under
development, and these agents regulate the gut microbiota and immunity. By contrast,
probiotics do not regulate the intestinal environment or improve the symptoms of acute
pancreatitis or Crohn’s disease. For instance, administration of Lactobacillus plantarum 299
v for at least 1 week preoperatively during the postoperative period in elective surgical
patients did not influence bacterial translocation, gastric colonization, or the incidence of
postoperative septic morbidity [112,113]. A meta-analysis of six randomized controlled
trials involving 536 adults with severe acute pancreatitis showed that probiotics compared
with the control did not significantly affect the pancreatic infection rate, total number of
infections, operation rate, hospital length of stay, or mortality [114,115]. However, the
probiotics did not exacerbate these diseases, and so safety concerns are unlikely. Probiotics,
prebiotics and biogenics have been shown to be effective but not curative for NAFLD and
NASH. Furthermore, the active components and molecular mechanisms of the therapeutic
effects of probiotics, prebiotics and biogenics are unclear, and further studies are needed.

5. Conclusions

NAFLD is a common chronic liver disease worldwide, and its prevalence is increas-
ing. Moreover, its association with obesity, type 2 diabetes mellitus, insulin resistance,
metabolic syndrome, and progression to cirrhosis and hepatic carcinoma increase its clini-
cal importance. The pathogenesis of NASH and NAFLD is complex, involving not only
the hepatic immune system (monocyte or macrophage polarization) mechanisms but also
adipokines produced by adipose tissue, and microbiome. Moreover, an altered gut micro-
biota composition and intestinal immunity are related to liver disease and are important in
progression from NAFLD to NASH. In human and animal studies of NAFLD and NASH,
probiotics, prebiotics and biogenics reduced serum levels of liver aminotransferases, in-
flammatory cytokines, and chemokines, and ameliorated insulin resistance and hepatic
steatosis (Figure 3). Probiotics, prebiotics, and biogenics ameliorate NAFLD and NASH by
regulating the intestinal environment and immunity; therefore, their efficiency is based on
the gut–liver axis. Although probiotics, prebiotics, and biogenics are considered safe, their
safety should continue to be evaluated. Additionally, future human studies of treatments
for NAFLD and NASH should involve standardized probiotic strains and dosages, treat-
ment durations, and outcome indications, as well as make use of advanced techniques, such
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as omics technologies. Further studies of the efficacy, safety, and molecular mechanisms of
probiotics, prebiotics and biogenics in NAFLD and NASH are needed.
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the intestinal environment and reducing hepatic inflammation, lipid accumulation, and fibrosis. In
NAFLD and NASH, probiotics, prebiotics, and biogenics suppress tight junction dysfunction and
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biogenics ameliorate NAFLD and NASH by preventing leaky gut and metabolic endotoxemia due to
tight junction dysfunction, and by depressing oxidative stress, inflammation, and fibrosis in the liver.
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