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Abstract: After stroke, there is a delayed neuronal loss in brain areas surrounding the infarct, which
may in part be mediated by microglial phagocytosis of stressed neurons. Microglial phagocytosis of
stressed or damaged neurons can be mediated by UDP released from stressed neurons activating the
P2Y6 receptor on microglia, inducing microglial phagocytosis of such neurons. We show evidence
here from a small trial that the knockout of the P2Y6 receptor, required for microglial phagocytosis
of neurons, prevents the delayed neuronal loss after transient, focal brain ischemia induced by
endothelin-1 injection in mice. Wild-type mice had neuronal loss and neuronal nuclear material
within microglia in peri-infarct areas. P2Y6 receptor knockout mice had no significant neuronal loss
in peri-infarct brain areas seven days after brain ischemia. Thus, delayed neuronal loss after stroke
may in part be mediated by microglial phagocytosis of stressed neurons, and the P2Y6 receptor is a
potential treatment target to prevent peri-infarct neuronal loss.

Keywords: stroke; ischemia; microglia; phagocytosis; cell death; phagoptosis; neuronal death;
delayed neuronal death; selective neuronal loss

1. Introduction

Stroke is one of the main causes of mortality and serious disability in the world [1].
Ischemic stroke is caused by blockage of an artery in the brain, resulting in rapid death of
all cells within the area of lowest perfusion (the infarct), but also a delayed and selective
neuronal loss in brain areas around the infarct (peri-infarct or penumbra areas) one to seven
days after transient ischemia [2–6]. This delayed neuronal death after stroke is potentially
preventable, so it is important to understand the mechanisms involved.

The mechanisms of delayed neuronal death after stroke are unclear [2,7], but one
potential mechanism is microglial phagocytosis of live neurons, resulting in death of
the engulfed neurons [8,9]. Microglial phagocytosis of live neurons and neuronal parts
is known to occur during development, physiology, and pathology [10–13]. Microglial
activation is associated with delayed neuronal loss in peri-infarct areas in rodent models of
stroke [14–17]. We previously showed that transient brain ischemia induced by injection
of endothelin-1 into the rodent brain caused a delayed loss of neurons, accompanied by
microglial phagocytosis of neurons, and knock-out of the phagocytic receptor Mer tyrosine
kinase (MerTK) or the opsonin MFG-E8 prevented both the delayed neuronal loss and
long-term functional deficits [18]. This suggested that microglial phagocytosis contributed
to the delayed neuronal loss after stroke. However, MerTK and MFG-E8 can mediate
phagocytosis of dead cells and debris, which may be beneficial after stroke [19–21], so
we were interested in other receptors regulating microglial phagocytosis of neurons as
potential treatment targets.

The P2Y6 receptor (P2Y6R) is expressed on microglia and mediates microglial phago-
cytosis when activated by extracellular uridine diphosphate (UDP) released by stressed
neurons [22,23]. We have previously shown that addition of UDP to neuronal-glial co-
cultures results in microglial phagocytosis of live neurons, and that a P2Y6R inhibitor
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(MRS2578) prevents neuronal loss induced by UDP, lipopolysaccharide (LPS) and amyloid
beta in culture, and prevents neuronal loss induced by injection of LPS into rat striatum [24].
More recently, we showed that chronic, peripheral LPS induced neuronal loss in the brains
of mice and this neuronal loss was prevented by knockout of P2Y6R [25]. We also found
that injection of amyloid beta into the brains of mice induced microglial phagocytosis
of neurons, loss of neurons, and memory deficits, all of which were prevented in P2Y6R
knockout mice [26]. Similarly, we used a chronic model of neurodegeneration (i.e., mice
expressing P301S TAU) and found that crossing these mice with P2Y6R knockout mice pre-
vented the brain neuronal loss and memory deficits [26]. Thus, we were interested to know
whether P2Y6R knockout could prevent the loss of peri-infarct neurons after transient brain
ischemia. To do this, we induced transient brain ischemia by injection of endothelin-1 into
mouse brains, as this induces relatively mild damage and small infarcts [18,27,28] which
may be more likely to benefit from inhibition of microglial phagocytosis.

2. Results

In order to test whether blocking microglial phagocytosis can prevent neuronal loss
in peri-infarct areas after stroke, we conducted a small study in P2Y6 receptor (P2Y6R)
knockout and wild-type mice. We induced focal ischemia in a mouse brain by injecting
the vasoconstrictor endothelin-1, which induces transient ischemia, followed by delayed
neuronal loss [27,28].

We injected endothelin-1 into the right sensorimotor cortex (and vehicle PBS into the
left motor cortex) of four wild-type and four P2Y6R knockout mice, and seven days later
killed the mice. We then sectioned and stained the brains. The endothelin injection induced
a small infarct area with zero neurons (visualized with antibodies to NeuN, an antigen
specific to neuronal nuclei, Figure 1a) and microglial activation (visualized with isolectin
B4 (IB4), which specifically binds activated microglia, Figure 1b). The injection of vehicle
control (PBS) resulting in physical damage only, without microglial activation or neuronal
loss (Figure 1a,b).
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Figure 1. Endothelin-1 injection into wild-type mouse cortex induces neuronal loss and microglial ac-
tivation, measured seven days later. (a) Representative coronal brain section stained using antibodies
to NeuN, revealing neuronal nuclei. (b) Same section stained using IB4, revealing activated microglia.
Scale bar = 1 mm.

The infarct size was similar in wild-type and P2Y6R knockout mice (Figure 2a). The
density of microglia within the peri-infarct area was similar in wild-type and P2Y6R knock-
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out mice (Figure 2b). Peri-infarct microglia contained NeuN+ neuronal debris within the
microglia (Figure 2c), indicating microglial phagocytosis of neuronal nuclei. This phagocy-
tosis was reduced by half in P2Y6R knockout mice (Figure 2d), although the difference was
not significant (p = 0.10), suggesting less phagocytosis of neurons in the knockout.
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a mouse. 
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Figure 2. P2Y6R knockout (ko) has no effect on infarct size or microglial density relative to wild-type
mice (wt), but reduces neuronal nuclear material within microglia. (a) Endothelin-1-induced infarct
size, defined as area lacking neuronal nuclei. T-test of significance of difference yields t = 0.42,
p = 0.69. (b) Microglia per field in peri-infarct area. t = 0.90, p = 0.40. (c) Confocal image of NeuN
and IB4 stained peri-infarct area showing NeuN+ neuronal nuclear material (red) within microglia
(green). Scale bar = 10 microns. (d) Proportion of microglia in the peri-infarct area with NeuN+
material inside. t = 2.00, p = 0.10. Mean and SEM error bars are shown. Each data point is the mean
for a mouse.

In wild-type mice, the infarct was surrounded by an area (from 0 to 200 microns
from the infarct boundary) with reduced neuronal density (Figure 3a,b). Quantification of
the neuronal density within this peri-infarct area indicated there was a significant loss of
neurons in this area measured relative to either the adjacent area further from the infarct
(200–1000 microns from the infarct boundary) or the anatomically-matched area on the
contralateral hemisphere (control) in wild-type mice (Figure 3c,d). However, this peri-
infarct neuronal loss was prevented in P2Y6R knockout mice. In other words, P2Y6R
knockout mice had no significant neuronal loss in the peri-infarct area (Figure 3c,d). Thus,
we conclude that P2Y6R knockout prevents peri-infarct neuronal loss.
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1000 microns from infarct) on the endothelin-1 side of motor cortex in wild-type or P2Y6R knockout 
mice. * p = 0.013, ns = 0.509. Data were analyzed by two-way ANOVA and Sidak’s multiple compar-
ison’s test. 
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Figure 3. Knockout of the P2Y6 receptor prevents peri-infarct neuronal loss after transient, focal
ischemia induced by endothelin-1 injection into mouse brain. (a) Representative peri-infarct brain
section stained for NeuN, revealing neuronal nuclei in wild-type cortex injected with endothelin-1.
Scale bars = 50 microns. (b) Representative contralateral section stained for NeuN in wild-type
cortex injected with PBS. (c) Neurons per field in peri-infarct area on endothelin-1 (infarct) or PBS
injected (control) side of motor cortex in wild-type or P2Y6R knockout mice. * p = 0.029, ns =
0.133. (d) Neurons per field in peri-infarct area (0–200 microns from infarct) and further from infarct
(200–1000 microns from infarct) on the endothelin-1 side of motor cortex in wild-type or P2Y6R
knockout mice. * p = 0.013, ns = 0.509. Data were analyzed by two-way ANOVA and Sidak’s multiple
comparison’s test.

3. Discussion

We found that knockout of P2Y6R in mice prevented neuronal loss in peri-infarct
brain areas after transient, focal ischemia. These findings are consistent with this neuronal
loss being due to microglial phagocytosis of stressed neurons. Kainate-stressed neurons
have previously been shown to release UDP that activates P2Y6R on microglia to induce
microglial phagocytosis of these stressed neurons [22]. Thus, it is possible that stressed neu-
rons in peri-infarct areas after stroke may release UDP activating microglial phagocytosis
of such neurons.

We have previously shown that P2Y6R knockout prevents neuronal loss, memory loss,
and microglial phagocytosis of neurons induced by injection of amyloid beta into the mouse
brain [26], reduces neuronal loss and memory loss when crossed with the P301S TAU model
of tauopathy [26], and prevents dopaminergic neuronal loss in the substantia nigra induced
by peripheral endotoxin [25]. Similarly, injection of the P2Y6R antagonist MRS2578 into the
brain prevented LPS/endotoxin-induced neuronal loss [24], and others have found that
injection of the P2Y6R antagonist MRS2578 into the brain prevented 6-hydroxydopamine-
induced loss of dopaminergic neuronal loss in the substantia nigra [29]. P2Y6R has been
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found to promote cytokine and chemokine release from monocytes, and thus has been
suggested to be pro-inflammatory in microglia [23,30]. However, inhibition or knockout of
P2Y6R has no apparent effect on the inflammatory response of microglia [24,26,31]. On the
other hand, P2Y6R may regulate functions other than microglial phagocytosis. For example,
P2Y6R has been shown to regulate differentiation of NK (natural killer) cells [32]. However,
this has no obvious relevance to stoke damage in the brain.

Microglial phagocytosis has been shown to contribute to delayed neuronal loss after
stroke using diverse means of blocking phagocytosis. For example, we found that that
knockout of MFG-E8 or MerTK could reduce delayed neuronal loss after ischemic stroke
in mice and rats respectively [18]. Others showed that knockdown of TMEM16F, which
mediates reversible phosphatidylserine exposure on neurons after ischemia, prevented
microglial phagocytosis of stressed neurons and reduced motor deficits after transient
ischemic stroke in rats [33]. Activation of complement component C3 produces potent
opsonins to tag neurons for phagocytosis, and an inhibitor of C3 activation, Crry, prevented
phagocytosis of stressed-but-salvageable neurons in peri-infarct areas, and reduced func-
tional deficits in a mouse model of stroke [34,35]. Thus, there is evidence from a variety
of sources that microglial phagocytosis may contribute to neuronal loss after stroke (as
reviewed in [9]).

Our findings suggest the possibility that a P2Y6R inhibitor might be used to prevent
peri-infarct neuronal loss by blocking microglial phagocytosis of the neurons. A P2Y6R
inhibitor (MRS2578, peripherally given i.p.) has previously been reported to increase
brain atrophy and functional deficits after transient MCAO [31]. However, the specificity
of MRS2578 and its ability to cross the BBB are unknown, and peripheral MRS2578 can
cause hypotension [36], which could exacerbate ischemic brain damage. To elucidate these
different experimental findings, it would be useful to test: (i) whether P2Y6R knockout
reduces functional deficits against transient middle cerebral artery occlusion, and (ii)
whether MRS2578 given i.p. enters the brain, blocks microglial phagocytosis, and/or has
off-target effects.

Endothelin-1 injection induces relatively small infarcts, similar to lacunar strokes
(i.e., strokes induced by blockage of small blood vessels [27,28]), and it is possible that
blocking microglial phagocytosis is more beneficial in such small strokes since there is less
damage and debris to be removed. However, we did not test this. It would be important
to test whether P2Y6R knockout or inhibition is beneficial in stroke models with larger
infarcts. However, this study encourages further research to determine whether inhibition
of the P2Y6 receptor is beneficial after stroke by preventing delayed neuronal loss by
microglial phagocytosis.

4. Materials and Methods

P2ry6 knockout (P2ry6−/−) mice were kindly provided by Bernard Robaye (ULB
Brussels) and these were bred with C57BL/6 mice (Charles River Laboratories) for at least
six generation as P2ry6+/− mice. These mice were used to establish homozygous WT and
P2ry6−/− sub-lines. In offspring from these sub-lines, littermates were randomly assigned
to control and endothelin-1 treatment groups. Four wild-type (two male and two female)
and four P2ry6−/− mice (two male and two female) were used, all between four and six
months of age.

Induction of ischemia and subsequent analysis of the brains was as described in [18].
Endothelin-1 (Bachem, 0.75 µg in 1 µL of PBS) was injected (at 6 µL/h) into the right
sensorimotor cortex, and the same volume (1 µL) of PBS (phosphate buffered saline) was
injected into the left sensorimotor cortex, of adult (4–5-month-old) wildtype or P2ry6−/−

mice using a 26-gauge needle on a stereotaxic frame (Kopf Instruments) under isoflurane
anesthesia. Injection coordinates were antero-posterior (AP) + 0.6 mm, medio-lateral
(ML) ± 2.2 mm, dorso-ventral (DV) −1.7 mm from Bregma, flat skull. Mice were allowed
to recover, and tissues collected seven days after injection.
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Mice were given terminal anaesthesia (150 µL Euthatal (200 mg pentobarbital per ml)
intraperitoneal (i.p.)) and perfused transcardially, through a 25-gauge needle, with 20 mL
PBS pH 7.4 followed by 60 mL 4% paraformaldehyde (PFA), pH 7.4 using a perfusion pump
with flow rate of 4 mL/min. Following perfusion, brains were removed and post-fixed
overnight in 4% PFA, pH 7.4 for 16 h at 4 ◦C. Brains were then washed three times in 1×
PBS and stored in 30% sucrose solution until sectioning. Brain sections were cut to 20 µm
thickness using a Compresstome VF-200 vibratome (Precisionary Instruments, Natick, MA,
USA), collected on Superfrost Plus slides (Thermo Fisher; Waltham, MA, USA) and dried
overnight. Serial coronal sections (25 µm) through the whole brain were collected using a
sliding microtome and placed in PBS as free-floating sections.

Immunostaining of brain slices was carried out at room temperature unless indicated
otherwise. Brain slices were re-hydrated for 1 h in PBS and heat-mediated antigen retrieval
was carried out at 95 ◦C for 20 min in citrate buffer (10 mM sodium citrate, 0.05% Tween
20, pH 6.0). Following washes in PBS (6 × 10 min), slices were permeabilized in PBS with
0.5% Triton X-100 for 10 min followed by 1 h incubation in blocking solution (50% normal
goat serum in PBS). Slices were then incubated with Anti-NeuN (Millipore, Burlington,
MA, USA, mouse monoclonal, 1:500) and biotinylated isolectin-B4 (Sigma, St. Louis,
MO, USA, 1:200) at 4 ◦C overnight. Sections were washed, incubated with donkey anti-
mouse-Cy3 antibody (Jackson ImmunoResearch, Ely, U.K., 1:100), washed, and treated
with Streptavidin-Alexa Fluor 647 (Invitrogen, Waltham, MA, USA, 1:500), 2 h each, at
RT. Imaging was carried out on an Olympus FV1000 upright laser-scanning confocal
microscope with a 60×, 1.35NA oil immersion objective using 488, 559 and 635 nm laser
lines.

All image analysis was carried out using ImageJ 1.49 software and all manual counting
and quantification was performed blinded to genotype and treatment condition. Four brain
sections were analyzed per animal, with both right and left sides of the sensorimotor cortex
included in the analysis. Using anti-NeuN and IB4-stained sections, the infarct was defined
as the cortical area lacking NeuN+ neurons, and the infarct volume was calculated from
contiguous sections. Neuronal density in the peri-infarct area was quantified as NeuN+
cells counted manually in the area between 0 and 200 microns from the infarct boundary.
Control neuronal density was quantified as NeuN+ cells in the area between 200 and
1000 microns from the infarct boundary, or alternatively as NeuN+ cells in anatomically
matched areas of the other cerebral hemisphere (injected with PBS). Three fields were
counted on each side per animal. Microglial density in the peri-infarct area was manually
counted as IB4+ cells in the same areas defined for counting NeuN+ cells. Microglial
phagocytosis of neuronal material was quantified as NeuN+ material within IB4+ cells.

Statistical analysis was carried out using GraphPad Prism 9 and the statistical tests are
indicated in the figure legends.
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