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ABSTRACT: Whether quantum state transitions occur by instantaneous jumps (a
la Bohr) or deterministic dynamics (Schrödinger’s preference) has been intensely
debated. Recent experimental measurements of shelved electrons have reignited
the debate. We examine aspects of the time-dependent numerical solutions of the
Schrödinger equation in quantum systems with two and three levels perturbed by a
sinusoidal field. A geometrical construction involving quantum state phase
differences illuminates the role of interstate phase differences in a deterministic,
rather than random, process of multiphoton absorption. Alternate halves of the
Rabi cycle exhibit phase reversals much like the classical beats of coupled
oscillators. For non-zero detuning, population inversion does not occur because the
exciting field drifts out of the proper phase before inversion is complete. A close
correspondence with classical, coupled oscillator beats offers insights for
interpretation of deterministic quantum dynamics and suggests an experimental
test for the correctness of this picture depending on the long-time phase stability of
exciting fields.

I. INTRODUCTION
Whether transitions between atomic-level quantum states
occur as rapid, random “quantum jumps” or as continuously
evolving dynamics has been intensely disputed. A review by
Dick1 summarizes recent arguments. Experimental evidence of
jumps using shelved-electron detection has accumulated since
the 1980s.2 Recently publicized experiments have renewed
interest in the time-dependence of “quantum jumps.” For
example, Minev et at.3 observed absorption and emission in an
artificial “atom” engineered using superconducting qubits and
documented dynamics that appeared to be more deterministic.
According to Dick,1 resolution of the controversy in favor of
jumps requires quantization of the field and appropriate
asymptotic scattering states. However, both these experiments
and their theoretical interpretation require spontaneous and
well as stimulated emission. Sidestepping this controversy, this
paper explores the continuous evolution of stimulated
absorption and emission using numerical solutions of the
Schrödinger equation to clarify the importance of phase
relations between quantum states and the field.

The response of a multilevel quantum system to an
oscillating perturbation is one of the most important subjects
in chemistry or physics, subsuming all areas of spectroscopy.
Most spectroscopies deal with absorption or emission of a
single photon, but several modern techniques involve two or
more photons.4 These include Raman spectra5 (including
coherent anti-Stokes Raman spectroscopy or CARS), double
resonance techniques, second harmonic generation, infrared
multiple photon absorption, optical parametric oscillation, and

multiphoton ionization. This paper introduces a simple
theoretical tool in numerical simulations of one- and two-
photon processes, revealing a key dependence on interstate
phase differences.

A sinusoidally perturbed quantum system can be described
theoretically on several different levels. Although the quantum
mechanical description of both the system and the perturbing
field has certain advantages, the most common treatment
describes the field as an externally imposed perturbation (i.e., a
classical field). Some call this a semiclassical6 or neoclassical
analysis since the system is treated quantum mechanically and
the field is treated classically. Herein we avoid this terminology
because the term semiclassical is also used to describe
approximate quantum treatments such as the JWKB method,7

EBK quantization,8 or the Heisenberg correspondence
principle approximation of matrix elements.9

We analyze a quantum system with discrete states in the
Schrödinger picture10 as described by the time-dependent
Schrödinger equation11
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where ℏ is Planck’s constant divided by 2π, H is the
Hamiltonian operator for the system, and Ψ is the wave
function. Equation 1 describes the interaction of a quantum
system with an externally imposed sinusoidal field, most often
an electromagnetic field, by dividing the Hamiltonian into two
parts, H = H0 + H1, where H0 contains all of the time-
independent description of the system (i.e., the discrete bound
states) and H1 contains the time-dependent part of the
Hamiltonian describing the interaction of the system with the
external field. Assuming that the eigenfunctions, ψn0, and
eigenvalues, En0, of H0 are known, the general solution of eq 1
can be expanded as a linear combination of ψn012
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where q represents the coordinates of the system and where
the second equality exhibits the natural, oscillatory, time
dependence of the linear expansion coefficients, cn(t), that
result from eq 1. If H contains only the internal Hamiltonian,
H0, then the an coefficients are time-independent. However, if
the perturbing Hamiltonian, H1, is included, then the cn
coefficients may not have the simple oscillatory time
dependence indicated in eq 2, or equivalently, the an
coefficients must be allowed to vary in time. In either case,
the amplitude coefficients describe the probability of the
system being in the nth quantum state at time t:

= | | = | |P t c t a t( ) ( ) ( )n n n
2 2

(3)

By substituting the wave function from eq 2 into the time-
dependent Schrödinger equation, eq 1, the time-dependent
Schrödinger equation is reduced to a set of first-order, coupled
differential equations for the coefficients cn(t) or an(t) in terms
of the matrix elements of the perturbing Hamiltonian13

= + | |c t i c t E c t n H t k( ) ( ) ( ) ( )n n n
k

k
0

1

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (4)

= | |a t i a t e n H t k( ) ( ) ( )n
k

k
i t

1
nk

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (5)

where ⟨n|H1(t)|k⟩ is the matrix element of H1 coupling states n
and k and ωnk= (En0 − Ek0)/ℏ is the transition frequency
between state k and state n. We explore the continuous
dynamics of these equations for which instantaneous quantum
jumps are not really an allowed result.

Methods for solving eq 4 or eq 5 include (1) numerical
solution as an initial value problem, (2) Fourier analysis
(Floquet theory),14 or (3) perturbation theory. We chose
option 1, numerically integrating eq 4 from t = 0 to a
sufficiently large time using a standard integrator15 which
returns real and imaginary parts of {c1, c2, ... cn}(where n is the
number of states) at uniformly spaced time intervals. The
amplitude and phase of cn are then reconstructed using

| | = {[ ] + [ ] }
= [ ]
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where ATAN2 is the two-argument inverse tangent function
defined on (-π,π] (argument order for ATAN2 lacks a uniform

standard). The relationship between cn and an with the phase
θn is
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i
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iE t/n n

0

(7)

where rn = |cn| = |an|. The phase of an can also be defined

=a r en n
i n (8)

where

= [ ]E tmod /n n n
0
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The most useful information comes, not from these phases, but
from the dif ference in phases between two states as discussed
below.

The time-dependent Schrödinger equation, eq 1, requires
solutions which have both real and imaginary parts, and the
complex-valued nature of quantum wave functions is a
fundamental difference between classical mechanics and
quantum mechanics. When combined with the fact that the
wave function represents a complex amplitude rather than a
probability, complex wave functions result in the strikingly
nonclassical effect of interference. Consider the form of eq 4.
The first term in the square brackets results in the oscillating
nature of the cn coefficients. Because the zero-order
eigenvalues, En0, are real, the contribution of this first term
to the time derivative of cn always differs in phase from cn by π/
2 (e.g., − i = e−iπ/2), so this term can never cause a change in
the probability. For real perturbations, even the diagonal term
from H1 only causes cn to rotate, rather than change in length.
The terms that cause changes in probability are those terms for
which the ck coefficients are near ± π/2 out of phase with cn
such that the contribution of the whole term is in phase with
cn. Thus, we conclude that transitions between quantum states
in this picture are phase sensitive, and an analysis of the phase
relationships between states is necessary to understand
transitions, although few previous treatments have explicitly
examined their role. In this paper, we examine the phase
relationships between the time-dependent coefficients and
develop an instructive geometrical method to understand the
absorption and emission process.

We use the Morse oscillator as a useful approximate
description of the stretching motion of a diatomic molecule,
as described in the Supporting Information, Section 1, but the
results presented here are much more general and applicable to
any multilevel quantum system among whose levels transitions
may be induced. We ignore spontaneous emission, which does
not appear unless the field is quantized.16

II. TWO LEVEL SYSTEMS: THE RABI SOLUTION
Insight into the dynamics of energy absorption and emission
usually grows from an understanding of simplified model
systems.17 The Rabi solution to the two-level system in the
rotating-wave approximation is perhaps the classic example of
Schrödinger picture dynamics.

For physical reasons, we restrict this discussion to real-
valued perturbations. For an oscillating field of angular
frequency ω, the matrix elements of H1 will be given by

| | = +
= [ + ]+ +
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i t i t
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where Vnk is real and γ is the initial phase. We have chosen the
negative sign because, for our applications, H1 is given by − μ·
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E, the electric dipole coupling, and Vnk = μnkE0/2 (see
Supporting Information, Section 2).

II.A. Two-Level Rabi Solution and Rotating-Wave
Approximation. We denote the two levels as 1 and 2 where
state 2 is the highest in energy (i.e., E2

0 > E1
0). Since diagonal

matrix elements of H1 cannot cause transitions, we temporarily
neglect ⟨1|H1|1⟩ and ⟨2|H1|2⟩. The only additional term we
need consider is

| | = +
= [ + ]+ +

H V t

V

1 2 2 cos( )

e ei t i t
1 12

12
( ) ( ) (11)

Since V12 is the only such quantity for two states, we call it
simply V. The Rabi solution is obtained by retaining only the
first of the two exponentials in eq 11. The neglect of the
second, counter-rotating term is called the rotating-wave
approximation (RWA).18,19 The resulting coupled equations
are
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where δ = ω − ω21 is the detuning. The detuning is zero if the
perturbation frequency is equal to the frequency of the
transition, in other words, on resonance. If probability is
entirely in state 1 at t = 0 (i.e., a1(0) = 1, a2(0) = 0), eqs 12
have an analytic solution
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where Ω = [δ2/4 + V2]1/2 is the Rabi frequency.20 The time
dependence of the probability of being in the second state is
given by
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When the perturbing field is on resonance (zero detuning), the
maximum probability in state 2 is unity and probability
oscillates between the states with frequency 2Ω = 2V and
period T = π/Ω. This oscillation is illustrated in Figure 1 where

we plot the results of a numerical calculation for two states
without making any approximations. For this computation, an
electric field equivalent to a light intensity of 1.0 TW/cm2

perturbs a hydrogen fluoride molecule (HF). For this field, V =
0.005494ℏω0 for which the period of the oscillation should be
571.81 in units such that the harmonic oscillation period is 2π
(hereafter called natural units) and the harmonic frequency is
ω0. This prediction agrees with the numerically determined
period to five decimal places. The first half of this oscillation
corresponds to stimulated absorption of radiation, but after the
maximum is reached, no more absorption is possible, and
stimulated emission occurs.

The maximum probability in the upper state as a function of
radiation frequency has a familiar resonance (Lorentzian)
shape. As the detuning deviates from zero in either direction,
the maximum probability in the second state decreases, and the
Rabi oscillation frequency increases. The half-width of
maximum P2 at half-maximum as a function of frequency is
2V, and the maximum value of P2 falls as the inverse of the
square of the detuning. The period of oscillation as a function
of exciting frequency also has a resonance shape with half-
width at half-maximum of 121/2 V, falling as the inverse of the
absolute detuning. For the detuning used in Figure 1 (δ =
−0.007), the predicted period is 482 time units and the
predicted maximum probability is 0.7113, both in excellent
agreement with the numerical calculation.

How can a photon cause a jump to an energy level for which
it does not supply the correct energy (δ ≠ 0)? The answer can
come from the time-energy uncertainty principle. The higher
level state is occupied for only a limited time and with only a
small probability.

Note that the second exponential term in the perturbation
described by eq 11 has a detuning of about −1.9 ω0, for which
the amplitude of maximum probability would be only 3 × 10−5.
This result justifies our neglect of the counter-rotating term
because it is rotating in the wrong direction (wrong sign) and
thus is oscillating too fast to cause significant excitation. Its
effect, to the extent that the two terms can be treated
independently, must be rapidly oscillating and of low
amplitude compared to the first term.

A close examination of stimulated absorption and emission
into and out of the second state shows the effects of the
counter-rotating wave (see Figure 2). In Figure 2, we compare

Figure 1. Probability as a function of time for the upper state of a
two-level system with V = 0.005495ℏω0 determined by numerical
integration of eq 5 showing that the Rabi solution gives the proper
frequencies and probability maximum on resonance (black) and off
resonance (red line).

Figure 2. Higher resolution comparison of the Rabi solution (dashed
lines) with the numerical solution of the two-level system from Figure
1. The fast oscillations result from the counter-rotating term and
diagonal terms in the dipole moment.
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a numerical solution of the differential equations from Figure 1
to the Rabi solution, eq 14, on a zoomed scale for greater
detail. The counter-rotating wave causes small oscillations in
the absorption that are absent from the Rabi solution. For zero
detuning, the slope of P2(t) is always greater than or equal to
zero when the second state is absorbing, and less than or equal
to zero when the second state is emitting. The counter-rotating
wave can be considered to alternate between constructive and
destructive interference with the rotating wave. When it
interferes destructively with the rotating wave, the slope of
P2(t) is zero, and when it interferes constructively, the slope of
P2(t) is twice that of the Rabi solution. Similar oscillations are
also seen for nonzero detuning (Figure 2). Additional
corrections to the Rabi solution can be obtained by
perturbation theory using the Rabi solution as the zero-order
approximation (see the Supporting Information, Section 3).
Although more accurate solutions beyond the RWA may be
interesting for high intensities, the counter-rotating wave has
little effect on the overall absorption of energy of the system at
low to moderate intensity levels, providing only a small
amplitude, rapidly oscillating perturbation. Likewise, the
diagonal matrix elements of H1 add an additional correction
seen as rapid oscillation in the an phases. Our plotted results
compare numerically exact results (including both counter-
rotating terms and diagonal dipole matrix elements) to analytic
results obtained using the RWA. The diagonal matrix elements
for a molecule with a permanent dipole moment can be quite
large (see the table in the Supporting Information, Section 5).

Note that the initial phase of the field, γ, does not appear in
the probability expression for the Rabi solution. Its sole effect
is to change the relative phases by a constant amount (see eq
13). The initial field phase also changes the phase of the
counter-rotating wave oscillations, but again, this has little
consequence on the overall dynamics for weak to moderate
fields.

II.B. Inter-Level Phase Difference Defined. For two
states using RWA, the differential equation for the time
derivative of a2 is eq 12. In the expression for the time
derivative of a2 in eq 12, the phase of the right-hand side is
mod(π/2 + φ1 − δt − γ)2π. Likewise, from eq 12 for the time
derivative of a1, the phase of the right-hand side mod(π/2 + φ2
+ δt + γ)2π. Thus, we define the phase difference between a1
and a2 and their time derivatives as

=

= + +
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The effect of state 2 on state 1 is proportional to the projection
of the time derivative of a1 on a1, leading to the definition of
angle d12 whose cosine determines the rate of change of the
length of a1. The effect of state 1 on state 2 is likewise
proportional to the cosine of angle d21. Note that d12 = −d21 ±
π, so only one of the two phase differences is independent, a
kind of quantum analogy to Newton’s Third Law.

The time evolution of the quantities r1, r2, and d21 is
expressed by substitution into eq 12 and simplifying:

= = =
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Equation 16 clarifies the effect of the interstate phase angles on
the dynamics. When −π/2 < d12 < π/2, r1 increases due to
stimulated emission from state 2. When π/2 < d12 < 3π/2, r1
decreases due to stimulated absorption into state 2. If d12 ≈ 0,
r1 increases most rapidly. If d12 ≈ π, r1 decreases most rapidly.
For d12 ≈ ± π/2, the interaction between the two states only
serves to change the relative phases. Similarly, V r1 cos d21 is
the rate of change of r2 due to interaction with state 1. The
solutions to the differential equations of eq 16 may be
transformed from eq 13. The form of d21 is given by

= +d sign t A t t
2

(1 (sin( ))) tan2( sin( ), 2 cos( ))21

(17)

The first term in eq 17 is just the phase of a2 (0 or π)
determined by the sign of the term sin(Ωt). The second term
comes from the phase of the first term of the formula for a1 in
eq 13. We have defined d21 so that all other contributions
cancel. Equation 17 agrees well with the results of numerical
calculations exhibited in figures and which do not use the
RWA. For numerical calculations, it is useful to define
interstate phase differences in terms of the cn variables using
eq 15 and eq 9:
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In Figure 3, we have plotted d21 as a function of time for two
states with the field on resonance (ω = ω21 or δ = 0) (black
line). Again, this plot was generated numerically without the
RWA. The relative phase, d21, remains near 0 during the first
half of the Rabi cycle (absorption), and then d21 abruptly shifts
to near π for the second half of the cycle. This abrupt shift can
be attributed to the term with r1 in the denominator in the

Figure 3. Quantum interstate phase difference, d21, versus time. When
the perturbation is resonant (black line), the phase switches between
0 and π for alternate halves of the Rabi oscillation. When the
perturbation is not resonant, the d21 drifts out of an absorption
relationship before complete population inversion can occur (red
line).
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second line of eq 16. When r1 passes near zero, d21 changes by
π. The high frequency oscillations in Figure 3 about 0 and π
(barely visible on the scale of the figure) are primarily due to
diagonal terms in eq 5 because of the large permanent dipole
moment of HF. Except for these oscillations, eq 17 is very
accurate.

When δ < 0, the first term in eq 16, line 2, causes d21 to drift
downward from zero until it makes a rapid shift back to zero
when it reaches −π (see red line in Figure 3) due to the second
term in eq 16, line 2. When δ > 0, d21 drifts upward to π where
it makes a shift downward by π (not shown). In all three of
these cases, the rapid shifts by π can be understood as due to a
change in either φ1 or φ2 through π as the corresponding
amplitude passes through (or near to) zero in the complex
plane.

This analysis explains why absorption is limited when the
perturbing frequency is off-resonant: the two states drift out of
proper phase relationship for absorption before much
probability is transferred. In fact, when d21 becomes greater
than π/4 or less than −π/4, the interaction acts primarily to
drive the phases apart and limit absorption even more (see the
rapid change in d21 near the midpoint of the off-resonance
absorption or emission process in Figure 3). If two states
remain in phase (because of zero detuning), the value of P2
eventually reaches unity. However, when the phases drift apart
due to nonzero detuning, the maximum probability is less than
one. In other words, reduced excitation occurs when relative
phases stay in proper relationship for a shorter time.

The relationship between quantum phases represented by
d21 corresponds in detail to the phase relationship between
coupled classical oscillators which undergo classical beats. This
correspondence is reviewed in Supporting Information, Section
4. This same correspondence with classical oscillators is shown
in the period for energy exchange, the maximum probability in
the excited state for quantum systems, and phase reversals by π
in opposite halves of the beat cycle. The dynamics of single
and multiphoton processes can be easily and clearly under-
stood in terms of this correspondence between the quantum
Rabi cycles and classical beats. The clearer analogy may
actually be the classical-quantum correspondence for coupled
oscillators where the field is treated as a second oscillator in a
conservative system (similar to a dressed state picture);21

however, we confine the present discussion to a forced
oscillator view of the excitation for simplicity.

II.C. Geometric Complex Phase Plane Defined. The
importance of the interlevel phase difference, d21, is illuminated
if we plot the phase in the complex plane with

= = +z r e r d ir dcos( ) sin( )id
2 2 21 2 21

21 (19)

so r2 cos d21 is plotted on the x-axis (real axis), and r2 sin d21 is
plotted on the y-axis (imaginary axis) as in Figure 4. In this
polar representation, the radial coordinate is r2, and the angular
coordinate is d21. During the first half of the Rabi cycle with a
resonant perturbation, d21≈ 0 and the graphed point moves to
the right along the real axis as absorption occurs. (A
complementary polar plot of r1 and d12 would start with r1 =
1 and d12 = π with the graphed point moving rightward along
the negative real axis.) When r2 reaches its maximum, r1 ≈ 0
and φ1 decreases almost instantly from π to 0. Consequently,
d12 changes from π to 0, and d21 changes from 0 to π. The
second half of the Rabi cycle proceeds with the two graphs
exchanging roles. The small oscillations in Figure 4 are
primarily due to the diagonal dipole terms whose effects are

magnified when r1 is very small because of the large oscillations
in φ1.

In summary, when the field is exactly on resonance (δ = 0),
d21 oscillates between zero and π in alternate halves of the Rabi
oscillation. If the detuning is negative (ω < ω21), the graphed
point circles downward and clockwise through negative angles
in the plane (see Figure 4). If the detuning is positive (ω >
ω21), the graphed point circles upward and counterclockwise
through positive angles in the complex plane (not shown).
This circling motion is due to the term δ = ω − ω21 in the
definition of d21, shown in the first term on the right-hand side
of line 2 in eq 16.

Regardless of the sign of δ, the position of the point z
describes the system geometrically. When the point is in
quadrants I and IV, absorption takes place from the first state
into the second state, and (in the absence of other states) r2
increases. When z is in quadrants II and III, emission from the
second state to the first state occurs, and r2 decreases.
Furthermore, the square of the radial distance is the probability
of the molecule being in the second state. A phase shift of π is
caused by either of the graphed points passing near the origin
and represents a reversal of the relative phase analogous to two
coupled oscillators which alternatively drive each other in
classical beats with periodic phase reversal.22 This construction
provides a geometric picture of the phase relationship between
two states involved in a transition and can be augmented to
show the time evolution which is not seen in the polar plots by
including time as a third dimension, in which case the off-
resonance curve becomes a spiral and the resonant curve is a
sawtooth line.

III. MULTIPHOTON PROCESSES INVOLVING THREE
OR MORE LEVELS

The possibility of multiphoton processes was first discussed by
Göppert-Mayer.23 A two-photon absorption usually involves
two photons of the same frequency, ω.24 Sometimes, two
photon excitation is described as a simultaneous absorption of
two photons; however, it has also been described as absorption
of one photon to an energy halfway to the second excited state,

Figure 4. Geometric quantum phase plane showing the phase
differences in Figure 3 as the polar angle and (P2)1/2 as the radius.
Angles between − π/2 and + π/2 indicate absorption. Angles between
π/2 and 3π/2 indicate emission.
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but not exactly into the first excited state (a virtual state),25

followed quickly by absorption of a second photon into the
second excited state (see Figure 5). In fact, the dynamics of a

two-photon process as described by the time-dependent
Schrödinger equation, eq 1, is not simple and involves phase
relationships between the states similar to those described
above for two states. Interlevel phase differences defined in the
previous section illuminate this important but easily visualized
relationship.

Some would argue that eq 1 describes only the probability of
an ensemble as a function of time and does not describe the
dynamics of absorption by individual molecules. We leave this
discussion to experts in quantum measurement theory and
philosophy of science. We will concentrate on the solution and
clarification of the dynamics described by eq 1 and await
experiments to confirm or refute the results. Electron shelving
experiments,1−3 for example, involve single atoms and cannot
easily be described using optical Bloch equations and density
matrices of ensembles.

Temporarily neglecting again any diagonal elements of H1
(which do not cause transitions) and ⟨1|H1|3⟩ because its
detuning is large, the differential equations, eq 5, for three
states excited by a monochromatic field at the two-photon
resonance frequency (meaning 2ω = ω21 + ω32, see Figure 5)
are

=

= [ + ]

=

a ia V e e

a i a V a V e

a ia V e

e e

e

i t i

i i i t

i t i

1 2 1

2 1 1 3 2

3 2 2 (20)

where we have used the RWA and the following notation:
H(1)

12 = ℏV1ei(ωt+γ), H(1)
23 = ℏV2ei(ωt+γ), H(1)

21 = H(1)
12*, H(1)
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23*, and δ = ω − ω21 = ω32 − ω. These equations yield
the following solutions if a1(0) = 1
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where Ω = (δ2/4 + V2)1/2, and V = (V1
2 + V2

2)1/2. The
probability of being in each state is given by
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The probability in the third state includes three frequencies: a
slow oscillation (frequency Ω − |δ|/2) that describes the
overall absorption of probability into the third state; a second
oscillation frequency that is due to the interaction of the
second state with its neighbors (frequency 2Ω) and is similar
to the Rabi frequency in the two level system; and a third
oscillation frequency (Ω + |δ|/2) which may be smaller or
larger than 2Ω. Figure 6 shows about two oscillations of the
low frequency oscillation as determined numerically (without
making the RWA or neglecting diagonal matrix elements). For
this simulation, V1 was the same as in Figures 1−3 and V2 =
0.007653ℏω0. For these parameters, the predicted slow

Figure 5. Energy states in a two-photon absorption. The excitation
initially is to an energy halfway from the ground state to the second
excited state and thence into the second excited state. The first excited
state must be near the “virtual state,” state 1. For the Morse oscillator,
the energy gap between the ground and the first excited state is
greater than between the first and second excited states so the
detuning is negative.

Figure 6. Probability in the second and third states shown in Figure 5
versus time during a two-photon absorption as determined numeri-
cally. Population in the intermediate state oscillates with a period of
approximately 223. The first 10 probability maxima are labeled a−j
for future reference. The probability in the third state oscillates with a
maximum near 1.0 with a period approximately 1840. The field
frequency in these units is 0.936554ω0.
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oscillation has period 1775 time units, in good agreement with
the simulation.

The probability in state 2 in Figure 6 oscillates with a low
amplitude oscillation similar to that in a two-level system
excited off-resonance. The major difference between P2(t)
from eq 14 for two levels and P2(t) from eq 22 for three levels
is that the one-photon Rabi frequency, Ω, for the latter case
involves both coupling matrix elements V1 and V2. In addition,
the numerically determined P2(t) has a modulation frequency
Ω − |δ|/2 in the amplitude of the oscillation of frequency 2Ω,
which is not present in the RWA solution, eq 22. The
probability P3(t) undergoes a low frequency oscillation similar
to the Rabi oscillation of the two-level problem on resonance
(similar in that the probability reaches nearly unity each
oscillation). Superimposed on this low-frequency oscillation
are faster oscillations of frequency 2Ω which correspond to the
oscillations in P2(t). When P2(t) is significant, the relative
interlevel phases can either act to cause stimulated emission
back to the initial state or further excitation up to the higher
state. If these phases were random, one would expect that each
would be equally likely, and that the odds of accumulating
probability into the upper state would be remote. The fact that
a periodic oscillation occurs as exhibited in Figure 6 shows that
the mechanism of multiphoton excitation combines the
interstate phases precisely in such a way to make the
absorptions sequentially reinforcing.

III.A. Inter-Level Phase Differences with Three Or
More States. The interlevel phase difference, dnk, can be
generalized for more than two states as was done in eq 21 by
expressing the solutions in polar form and specifying the phase
of the term containing ak on the right-hand side of eq 5 less the
phase of an onto which it is projected
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where δij = ω − ωij. When specified in this form, dnk represents
the phase difference between an and the time derivative of an
due to the term containing ak in eq 5. The magnitude of the
term multiplied by cos dnk then gives the time derivative of rn
due to interaction with the state ak. Note also that dnk + dkn = π.
For the three state problem of the previous section, the
equations may be reduced to the following set (within the
RWA):
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The definitions of d21 and d23 from eq 23 can be used to obtain
their time derivatives
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where we have assumed two-photon resonance where δ = δ21 =
−δ32 (note that δ is negative for the Morse oscillator example).
Unlike the two-state model described by eq 16, with three
states there are two terms that affect each phase difference.

To understand the phase relationships in the two-photon
absorption, we examine the motion of two points in the
complex a2 plane. Complex amplitudes were obtained
numerically for the first three states of the Morse oscillator
from the numerical results was used to produce Figure 6. In
Figure 7 we plot d21 and d23 as a function of time. In Figures 8

and 9, r2eid21 and r2eid23 are plotted in the complex plane to show
the relative phases. Since δ is negative, d21 and d23 have general
negative slope (see Figure 7) in a time plot. For the same

Figure 7. Phase difference d21 (black line) and d23 (red line) versus
time for the same calculation as Figure 6. Note the phase reversals
twice each Rabi cycle.

Figure 8. Geometric phase difference plot of z21 for the same
calculation as in Figures 6 and 7. Points labeled a−h correspond to
maxima similarly labeled in Figure 6. Motion in time describes a
clockwise circling with a superimposed counterclockwise precession.
Note the shift in phase by nearly π between d and e.
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reason, d21 and d23 generally circle clockwise in the complex
plane (Figures 8−9). Whenever r2 approaches zero, d21 and d23
have a simultaneous positive jump in the time plot (Figure 7).
However, eq 25 has an additional coupling term not found in
the corresponding eq 16. If it were not for the term in eq 25,
line 2, involving d23, r2eid21would continue to execute a closed
circle in the complex plane. The additional term causes the
circle to precess in a direction dependent on the sign of sin d23.
The motion of d23 is likewise affected by the term involving d21.
The result of these coupling terms in the complex plane is a
precession of the circling motion in the positive direction
through which the positive jumps by approximately π more
than offset the negative drift and the resultant clockwise
circling.

A third type of motion occurs when either r1 or r3 approach
zero. When this occurs, it causes a jump by π in the
corresponding phase difference and reverses the relationship of
the two interlevel phase differences. When state 2 is absorbing
from state 1 and emitting into state 3, d21 remains + π/2 ahead
of d23. When the system changes from stimulated absorption
into the third state to stimulated emission from the third state
(at t ≈ 940 time units in Figures 6−9), the relationship
between d21 and d23 changes. Where d21 had lead by π/2, it
jumps + π and then trails d23 by π/2, and d23 now leads. This is
clearly illustrated by the graph of the difference in phase
differences (see Figure 10), where d21 − d23 − π is plotted as a
function of time. In Figure 10, it is easy to see that the
difference between the phase differences oscillates between +
π/2 and − π/2 just as d21 − π/2 does in the one-photon case
shown in Figure 3. During absorption into the third state, the
difference d21 − d23 − π is negative and near − π/2. This plot
shows, now for a two-photon absorption, the clear
correspondence with classical beats reviewed in Supporting
Information, Section 4. When P3(t) nears its maximum of unity
and stimulated emission begins, the difference d21 − d23 − π
jumps by π and oscillates around + π/2. Throughout the cycle,
the two phase differences remain π/2 out of phase, and only
one of the states is in phase to absorb probability from the
intermediate state. The oscillations in r2 stay in phase because

the angle drift term is the same for both points, δ. Thus, the
fact that δ21 = −δ32 = δ keeps the absorption-emission cycle in
phase until a π shift occurs to reverse the phase relationship.

When the laser frequency is not adjusted to the resonant
frequency for two-photon absorption then a second detuning
may be defined as

= E E1
2

( )3
0

1
0

(26)

When δ̃ is positive, the system tends to act more and more like
a two level system since δ21 is closer to zero (for negative
detuning), increasing the maximum probability in state 2. At
the same time, δ32 gets larger so the probability in state 3
quickly decreases. Because δ21 is still negative, d21 drifts
downward in time, but at a different rate than d23. The overall
phase angle difference, d21 − d23, drifts upward in time and
makes more and more π shifts as drift due to δ̃ allows less and
less probability to be absorbed into the third state (see Figure
11). Because P3(t) does not come close to one as δ̃ increases,
the π shifts in d21 do not occur. The effects of the third state,
however, do cause the phase plots in the complex plane to go
more gradually through + π/2 or − π/2.

Figure 9. Geometric phase difference plot of z23 for the same
calculation as Figures 6−7. Points labeling a−j correspond to maxima
similarly labeled in Figure 6. Motion in time describes a clockwise
circling with a superimposed counterclockwise precession. Note the
shift in phase by nearly π between h and i.

Figure 10. Quantity d21 − d23 − π versus time for the numerical
integration in Figures 6 and 7 showing the phase reversal behavior
between quantum state phase differences that allows the coherent
two-photon absorption process to occur.

Figure 11. Quantity d21 − d23 − π versus time showing the phase
relationships between quantum state phases when the field is slightly
detuned from the two-photon absorption resonance. The upward drift
is due to detuning from the 2-photon maximum. The field frequency
is 0.937148 ω0.
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If δ̃ is negative (not shown), the response is similar. The π
jumps in d21 stop and those in d23 become more frequent.
Because the detuning δ is already large for the one photon
absorption into the second state, P2(t) drops off quickly as
does the radius of the real-imaginary plane plot of d21. It circles
close to zero in a negative direction. This behavior corresponds
again to that of classical oscillators as reviewed in Supporting
Information, Section 4.

The frequency of beating and the maximum probability in
state 3 have behavior similar to the two-state Rabi frequency
defined eq 13 and eq 14. For two-photon resonance, however,
the frequency half-width at half-height of the maximum value
of P3 is approximately V1V2/δ, and the period of low-frequency
oscillation as a function of driving frequency has half-width at
half height approximately (3)1/2V1V2/δ. Even though classical
systems do not exhibit “multiphoton transitions”, the
resonance analogy to classical beats is still clear in the phase
reversals and resonance shapes of both period and excitation
probability plots. Moreover, the analogy to classical beats can
be generalized to systems with more than three levels, For
example, in preliminary calculations, we have found that four-
state three-photon absorption also shows equally strong
correspondence with classical coupled oscillator beats. In this
case, the overall phase angle showing the beats is d21 − d23 −
d34.

IV. DISCUSSION AND COMPARISON WITH OTHER
MULTIPHOTON MODELS

The possibility for multiphoton absorption is often presented
using a conservation of energy argument stating that the sum
of the energies of the two photons must add up to the total
energy difference between the initial and final energy levels.
Because the energy of a quantum state controls the phase of
the Schrödinger amplitudes (eq 2 or 5), we have recast this fact
as an argument in terms of frequency and phase differences.
The proper phase relationship is maintained only when the
driving frequencies are adjusted to maintain proper phase.
Thus, the geometrical phase difference we have defined does
not contain any new physics; rather it is a conceptual tool to
aid in heightening intuition concerning the processes.

The Feynman−Vernon−Hellwarth (pseudospin vector)
treatment26 is a common, useful picture that describes the
absorption of light between two levels in terms of a three-
dimensional vector precessing and nutating under the
perturbation resulting from the radiation. Hioe and Eberly27

have generalized the Feynman−Vernon−Hellwarth picture
from the SU(2) picture appropriate for a two level system to
the full SU(N) picture for an N-level system. This picture
requires an 8-dimensional space for three levels and N2 − 1
dimensions for the general N-level system. Many elegant
results may be derived using this formalism,28 but the phase
difference construction defined here may be advantageous in
that it requires only two or three (if time is included)
dimensional constructions more amenable to graphical
presentation and is more intuitive than the coherence vectors
defined by Hioe and Eberly.

The description of multiphoton absorption described here is
consistent with the time-dependent Schrödinger equation but
may be claimed to be inconsistent with the granularity of
radiation fields as described as a collection of discrete photons.
The common perception of multiphoton processes is that of
several discrete photons being absorbed more or less
simultaneously. The picture described here is of a continuous

process taking place over a relatively long time, perhaps
hundreds or thousands of field oscillations�and which
requires suitable phase relationships to be maintained
throughout. If the physics described by the phase difference
picture is correct, the phase stability of radiation fields that
induce multiphoton transitions must be maintained through-
out the excitation process to induce population inversion. A
phase change in either the field or the system will upset the
phase relationship required to continue the process and inhibit
excitation to the highest state. However, if multiphoton
processes can be detected experimentally in a system with
short phase coherence time (whether limited by the phase
coherence time of the field or by collisions that destroy the
phase of system states) compared to the time for population
inversion, our picture may need revision. However, experi-
ments by Zou et al.29 have shown the importance of phase
relationships in laser fields, and calculations by Pollnau30 show
phase relationships in emission and absorption similar to our
results. In addition, experiments by Minov et al.3 and many
others1,2 and can often be interpreted in terms of a
deterministic dynamics for quantum transitions similar to
those we have demonstrated here.

Electron shelving experiments on trapped, single atoms rely
on interrupted fluorescence seen at right angles to the exciting
field’s propagation. This fluorescence is at least partially due
spontaneous emission because conservation of momentum
arguments confine stimulated emission to the direction of the
field propagation. Thus, our analysis concerning stimulated
emission has little application to such experiments. In addition,
phase information is much more difficult to access
experimentally than energy level information. However, our
analysis may be more directly useful for those exploring
numerical simulation of quantum dynamics for which phase
information is accessible.
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