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Abstract: Continuous chemical investigation of the gorgonian coral Pinnigorgia sp. resulted in the
isolation of two new sterols, 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9-one (1)
and (22R)-acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2). The structures of sterols 1 and 2 were elucidated
using spectroscopic methods. Sterol 1 displayed inhibitory effects on the generation of superoxide
anions and the release of elastase by human neutrophils with IC50 values of 8.65 and 5.86 µM,
respectively. The structure of a known metabolite, pubinernoid A (3), is revised as (+)-loliolide (4).

Keywords: gorgonian; Pinnigorgia; anti-inflammatory; superoxide anion; elastase; pubinernoid
A; loliolide

1. Introduction

Gorgonian corals belonging to the genus Pinnigorgia have proven to be a rich source of sterols with
unusual structural features [1–6]. In continuation of our effort to discover new natural products of this
organism, its ethyl acetate extract exhibited anti-inflammatory activities by inhibiting the expression
of superoxide anions and elastase by human neutrophils with IC50 values of 1.89 and 1.57 µg/mL,
respectively. Two new sterols, 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9-one
(1) and (22R)-acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2) (Figure 1 and Supplementary Figures S1–S14),
were isolated. The structures of these two sterols were established by spectroscopic analyses and sterol
1 was found to display anti-inflammatory activity.
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Figure 1. Chemical structures of 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9- 
one (1), (22R)-acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2), and 3-O-deacetylluffasterol B (3) [7]. 

2. Results and Discussion 

The new sterol, 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9-one (1), was 
isolated as colorless oil. The high-resolution electrospray ionization mass spectrum (HRESIMS) showed 
a signal at m/z 467.31308 (calcd. for C28H44O4 + Na, 467.31373), and therefore the molecular formula of 
1 was determined to be C28H44O4 (7° of unsaturation degrees). The 13C and distortionless enhancement 
polarization transfer (DEPT) spectrum of 1 showed that this compound has 28 carbons including six 
methyls, seven sp3 methylenes, seven sp3 methines, an sp3 oxygenated tertiary carbon, two sp3 
quaternary carbons, three sp2 methines, an sp2 tertiary carbon and a ketonic carbonyl (Table 1). The 
IR spectrum of 1 revealed the presence of hydroxy (νmax 3398 cm−1) and α,β-unsaturated ketonic 
carbonyl (νmax 1682 cm−1) groups. The latter structural feature was confirmed by the presence of signals 
at δC 201.9 (C-9), 141.4 (C-8) and 139.3 (CH-7) in the 13C-NMR spectrum. A disubstituted olefin was 
identified from the signals of carbons at δC 134.4 (CH-22) and 133.0 (CH-23) and was confirmed by 
two olefin proton signals at δH 5.21 (1H, dd, J = 15.2, 6.4 Hz, H-23) and 5.24 (1H, dd, J = 15.2, 6.8 Hz, 
H-22) (Table 1). Four doublets at δH 1.03 (3H, J = 6.8 Hz), 0.91 (3H, J = 6.8 Hz), 0.83 (3H, J = 7.2 Hz) 
and 0.82 (3H, J = 6.8 Hz) were due to the Me-21, Me-28, Me-26 and Me-27 groups, respectively. Two 
sharp singlets for H3-18 and H3-19 appeared at δH 0.68 and 1.25, respectively. A trisubstituted epoxide 
was elucidated from the signals of an oxygenated tertiary carbon at δC 63.2 (C-5) and an oxymethine 
at δC 53.5 (CH-6); and further confirmed by the proton signal of a methine doublet at δH 3.39 (1H, d,  
J = 4.8 Hz, H-6). On the basis of the unsaturation data overall, 1 was concluded to be a secosterol 
molecule possessing four rings. 

From the 1H-NMR coupling information and 1H–1H correlation spectroscopy (COSY) of 1 
(Table 1), the following correlations were revealed: H2-1/H2-2/H-3/H2-4, H-6/H-7, H2-11/H2-12, H-14/ 
H2-15/H2-16/H-17/H-20/H-22/H-23/H-24/H-25/H3-26, H-20/H3-21, H-24/H3-28 and H-25/H3-27. These 
data, together with the key heteronuclear multiple bond coherence (HMBC) correlations between 
H2-1, H2-4, H3-19/C-5; H-6/C-8; H-7, H3-19/C-9; H2-2, H3-19/C-10; and H2-12, H2-15, H3-18/ C-13 (Table 1), 
all the information allowed determination of the carbon skeleton of 1. The stereochemistry of 1 was 
elucidated by analysis of the results of a nuclear Overhauser effect spectroscopy (NOESY) experiment. 
Assuming the β-orientation of H3-18 and H3-19, H-14 was found to exhibit correlations with H-11a 
(δH 3.81) and H-17, but not with H3-18, indicating that this proton was of an α-orientation at C-14. In 
addition, the main NOESY correlation for 1 were interactions between H-3/H-4α, H-4β/H3-19, H-6/H3-19, 
H-17/H3-21 and H3-18/H-20; thus, the 3-hydroxy and 5,6-epoxy groups in 1 should be positioned on 
the β- and α-face, respectively (Figure 2). 
  

Figure 1. Chemical structures of 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9- one
(1), (22R)-acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2), and 3-O-deacetylluffasterol B (3) [7].

2. Results and Discussion

The new sterol, 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9-one (1), was
isolated as colorless oil. The high-resolution electrospray ionization mass spectrum (HRESIMS)
showed a signal at m/z 467.31308 (calcd. for C28H44O4 + Na, 467.31373), and therefore the molecular
formula of 1 was determined to be C28H44O4 (7◦ of unsaturation degrees). The 13C and distortionless
enhancement polarization transfer (DEPT) spectrum of 1 showed that this compound has 28 carbons
including six methyls, seven sp3 methylenes, seven sp3 methines, an sp3 oxygenated tertiary carbon,
two sp3 quaternary carbons, three sp2 methines, an sp2 tertiary carbon and a ketonic carbonyl (Table 1).
The IR spectrum of 1 revealed the presence of hydroxy (νmax 3398 cm−1) and α,β-unsaturated ketonic
carbonyl (νmax 1682 cm−1) groups. The latter structural feature was confirmed by the presence of
signals at δC 201.9 (C-9), 141.4 (C-8) and 139.3 (CH-7) in the 13C-NMR spectrum. A disubstituted olefin
was identified from the signals of carbons at δC 134.4 (CH-22) and 133.0 (CH-23) and was confirmed
by two olefin proton signals at δH 5.21 (1H, dd, J = 15.2, 6.4 Hz, H-23) and 5.24 (1H, dd, J = 15.2, 6.8 Hz,
H-22) (Table 1). Four doublets at δH 1.03 (3H, J = 6.8 Hz), 0.91 (3H, J = 6.8 Hz), 0.83 (3H, J = 7.2 Hz)
and 0.82 (3H, J = 6.8 Hz) were due to the Me-21, Me-28, Me-26 and Me-27 groups, respectively. Two
sharp singlets for H3-18 and H3-19 appeared at δH 0.68 and 1.25, respectively. A trisubstituted epoxide
was elucidated from the signals of an oxygenated tertiary carbon at δC 63.2 (C-5) and an oxymethine
at δC 53.5 (CH-6); and further confirmed by the proton signal of a methine doublet at δH 3.39 (1H,
d, J = 4.8 Hz, H-6). On the basis of the unsaturation data overall, 1 was concluded to be a secosterol
molecule possessing four rings.

From the 1H-NMR coupling information and 1H–1H correlation spectroscopy (COSY) of 1
(Table 1), the following correlations were revealed: H2-1/H2-2/H-3/H2-4, H-6/H-7, H2-11/H2-12,
H-14/H2-15/H2-16/H-17/H-20/H-22/H-23/H-24/H-25/H3-26, H-20/H3-21, H-24/H3-28 and
H-25/H3-27. These data, together with the key heteronuclear multiple bond coherence (HMBC)
correlations between H2-1, H2-4, H3-19/C-5; H-6/C-8; H-7, H3-19/C-9; H2-2, H3-19/C-10; and H2-12,
H2-15, H3-18/ C-13 (Table 1), all the information allowed determination of the carbon skeleton of
1. The stereochemistry of 1 was elucidated by analysis of the results of a nuclear Overhauser effect
spectroscopy (NOESY) experiment. Assuming the β-orientation of H3-18 and H3-19, H-14 was found
to exhibit correlations with H-11a (δH 3.81) and H-17, but not with H3-18, indicating that this proton
was of an α-orientation at C-14. In addition, the main NOESY correlation for 1 were interactions
between H-3/H-4α, H-4β/H3-19, H-6/H3-19, H-17/H3-21 and H3-18/H-20; thus, the 3-hydroxy and
5,6-epoxy groups in 1 should be positioned on the β- and α-face, respectively (Figure 2).
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Table 1. 1H- and 13C-NMR data, 1H-1H COSY, and HMBC correlations for secosterol 1 and the 1H-
and 13C-NMR data for 3-O-deacetylluffasterol B (3).

Position
1 3

δH (J in Hz) a δC
b 1H-1H HMBC δH (J in Hz)c δC

c

1a/b 2.09 m; 1.72 m 27.8, CH2 H2-2 C-5 27.8, CH2
2a/b 2.09 m; 1.65 m 30.5, CH2 H2-1, H-3 C-10 2.09 m; 1.68 m 30.5, CH2

3 3.98 m 68.3, CH H2-2, H2-4 n. o. d 3.98 m 68.3, CH
4α 1.57 m 37.4, CH2 H-3, H-4β C-2, -3, -5 1.56 m 37.5, CH2
β 2.18 dd (12.8, 11.6) H-3, H-4α C-3 2.18 m
5 63.2, C 63.5, C
6 3.39 d (4.8) 53.5, CH H-7 C-7, -8 3.40 d (4.6) 53.5, CH
7 6.81 d (4.8) 139.3, CH H-6 C-5, -6, -9, -14 6.84 dd (4.6, 1.0) 139.7, CH
8 141.4, C 140.5, C
9 201.9, C 200.6, C
10 45.6, C 45.4, C

11a 3.81 ddd (10.4, 10.4, 6.0) 59.1, CH2 H-11b, H2-12 n. o. 9.88 dd (3.8, 1.7) 203.4, CH
b 3.68 ddd (10.4, 8.8, 6.0) H-11a, H2-12 n. o.

12a 1.61 m 40.4, CH2 H2-11, H-12b n. o. 2.27 dd (15.9, 3.8) 50.8, CH2
b 1.12 m H2-11, H-12a C-11, -13, -17 2.00 dd (15.9, 1.7)
13 46.1, C 46.3, C
14 3.37 dd (10.8, 8.0) 43.8, CH H2-15 n. o. 3.51 dd (10.3, 9.2) 45.0, CH

15a/b 1.69–1.56 m 26.9, CH2 H-14, H2-16 C-13, -14 1.78 m; 1.71 m 26.7, CH2
16a/b 1.69 m; 1.44 m 25.4, CH2 H2-15, H-17 n. o. 25.8, CH2

17 1.74 m 49.6, CH H2-16, H-20 n. o. 51.9, CH
18 0.68 s 17.8, CH3 C-12, -13, -14, -17 0.76 s 17.1, CH3
19 1.25 s 21.4, CH3 C-1, -5, -9, -10 1.21 s 20.0, CH3
20 2.15 m 38.8, CH H-17, H3-21, H-22 n. o. 2.18 m 43.0, CH
21 1.03 d (6.8) 21.4, CH3 H-20 C-17, -20, -22 1.00 d (6.8) 19.7, CH3
22 5.24 dd (15.2, 6.8) 134.4, CH H-20, H-23 C-20, -24 5.20 dd (17.6, 7.4) 133.4, CH
23 5.21 dd (15.2, 6.4) 133.0, CH H-22, H-24 C-20, -24 5.24 dd (17.6, 7.4) 134.0, CH
24 1.86 m 43.0, CH H-23, H-25, H3-28 C-22, -23, -25 1.87 m 38.8, CH
25 1.47 m 33.1, CH H-24, H3-26,

H3-27
C-23, -24, -28 1.47 m 33.2, CH

26 0.83 d (7.2) 20.0, CH3 H-25 C-24, -25, -27 0.82 d (6.8) 21.9, CH3
27 0.82 d (6.8) 19.7, CH3 H-25 C-24, -25, -26 0.83 d (6.8) 21.1, CH3
28 0.91 d (6.8) 17.5, CH3 H-24 C-23, -24, -25 0.91 d (7.0) 17.8, CH3

a Spectra recorded at 400 MHz in CDCl3. b Spectra recorded at 100 MHz in CDCl3. c Selected 1H-NMR and
13C-NMR data were reported by Rueda et al. (see ref. [7]). These data were recorded at 400 MHz for 1H and
100 MHz for 13C in CDCl3. d n. o. = not observed.
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Figure 2. Selected NOESY correlations observed for 1. 

A large coupling constant observed between H-22 and H-23 (J = 15.2 Hz) supported a trans 
relationship between H-22 and H-23. The configuration of C-24 was suggested to be R on the basis of 
the 13C-NMR chemical shift of C-28 (δC 17.5). It was reported that the 13C-NMR value of C-28 resonates 
at δC 17.68 ppm in the 24R epimer of a known sterol, (22E,24R)-24-methylcholesta-5,22-dien-3β-ol, 
with the same chain, and the 24S epimer, (22E,24S)-24-methylcholesta-5,22-dien-3β-ol, has a relative 
0.4 ppm downfield chemical shift (Figure 3) [8]. 

Figure 2. Selected NOESY correlations observed for 1.

A large coupling constant observed between H-22 and H-23 (J = 15.2 Hz) supported a trans
relationship between H-22 and H-23. The configuration of C-24 was suggested to be R on the basis of
the 13C-NMR chemical shift of C-28 (δC 17.5). It was reported that the 13C-NMR value of C-28 resonates
at δC 17.68 ppm in the 24R epimer of a known sterol, (22E,24R)-24-methylcholesta-5,22-dien-3β-ol,
with the same chain, and the 24S epimer, (22E,24S)-24-methylcholesta-5,22-dien-3β-ol, has a relative
0.4 ppm downfield chemical shift (Figure 3) [8].
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Figure 3. The 13C-NMR chemical shifts of the side-chain of secosterol 1, (22E,24R)-24-methyl-cholesta-
5,22-dien-3β-ol (A) and (22E,24S)-24-methylcholesta-5,22-dien-3β-ol (B) [8].

It was found that the NMR data of 1 were similar to those of a known 9,11-secosterol derivative,
3-O-deacetylluffasterol B (3) (Figure 1), isolated from the sponge Spongia agaricina [7], except that the
signals corresponding to the 11-hydroxy group in 1 were replaced by signals for an aldehyde group in
3 [7] (Table 1). Furthermore, by comparison of the NMR data of 1 with those of 3, we found that the
13C NMR chemical shifts of methines C-20 and C-24 for 3 (δC 43.0 and 38.8, respectively) should be
interchangeable by comparison with those of 1 (δC 38.8 and 43.0, respectively) (Table 1), which was
further confirmed by 2D NMR experiments. In a previous study, the structure of 1 as presented in this
paper had been reported [9]. However, by comparison of the NMR data of 1 with those of reported
data, we found that the NMR data (1H and 13C) for this compound differ significantly from those of 1
that reported herein (Table 1), because the structure of 1 has been established by extensive spectroscopic
analysis, particularly with 2D NMR experiments. The authors suggested that the compound which
was reported to possess the same structure as that of 1 in Reference [9] should be re-examined.

(22R)-Acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2) was isolated as a colorless needles and its molecular
formula was established as C30H50O4 (6◦ of unsaturation) by HRESIMS at m/z 497.36015 (calcd. for
C30H50O4 + Na, 497.36193). The IR spectrum of 2 indicated the presence of hydroxy (νmax 3414 cm−1)
and ester carbonyl (νmax 1730 cm−1) groups. The whole series of spectroscopic data obtained from 1D
and 2D NMR experiments (Table 2) clearly indicated that sterol 2 had the same core rings A−D and side
chain as those of known sterols, 22(R),28-oxido-24ξ-methylcholest-5-en-3β,25,28-triol (lobophytosterol)
and (22R)-5β,6β-epoxy-24ξ-methylcholestan-3β,22(R),25-triol diacetate, respectively [10]. The 1H-1H
COSY and HMBC correlations observed fully supported the locations of the functional groups, and,
hence, (22R)-acetoxy-(24ξ)-ergosta-5-ene-3β,25-diol (2) was assigned as structure 2, with the same
relative configurations as 22(R),28-oxido-24ξ-methylcholest-5-en-3β,25,28-triol in the core rings A–D.
The configuration of the C-22 stereogenic center was assigned as R on the basis of the NMR chemical
shifts of C-22 oxymethine (δH 5.02, 1H, ddd, J = 10.8, 2.8, 2.4 Hz, H-22; δC 78.3, CH-22). It was reported
that the 1H- and 13C=NMR values of C-22 oxymethine (δH 4.99, 1H, dt, J = 10.2, 2.5 Hz, H-22; δC

78.3, CH-22) in a 22R epimer of a known sterol, 5β,6β-epoxy-24ξ-methylcholestan-3β,22(R),25-triol
diacetate [10], was found to possess the same side chain as that of 2. The proton coupling constants
and NMR chemical shift data also further supported these findings, though the configuration of C-24
was not determined at this stage.

The sterol analogues isolated from Pinnigorgia sp. were found to display interesting
anti-inflammatory activities [1–3,5,6]. Based on these findings, the anti-inflammatory testing of sterols
1 and 2 were assayed and 1 showed inhibitory effects on the generation of superoxide anions and the
release of elastase, respectively, by human neutrophils (Table 3).
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Table 2. 1H (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) NMR data and 1H-1H COSY and HMBC
correlations for sterol 2.

Position δH (J in Hz) δC, Multiple 1H-1H COSY HMBC

1a/b 1.84 m; 1.06 m 37.2, CH2 H2-2 C-2, -5
2a/b 1.84 m; 1.51 m 31.6, CH2 H2-1, H-3 n. o. a

3 3.52 m 71.8, CH H2-2, H2-4 n. o.
4a/b 2.30 m; 2.24 m 42.3, CH2 H-3 C-2, -3, -5, -6, -10

5 140.7, C
6 5.35 d (5.2) 121.6, CH H2-7 C-4, -7, -8, -10

7a/b 1.97 m; 1.53 m 31.8, CH2 H-6, H-8 C-6, -14
8 1.46 m 31.9, CH H2-7, H-9, H-14 C-14
9 0.92 m 50.1, CH H-8, H2-11 C-7, -8
10 36.5, C

11a/b 1.50–1.40 m 21.1, CH2 H-9, H2-12 C-9
12a/b 1.97 m; 1.17 m 39.7, CH2 H2-11 n. o.

13 42.7, C
14 0.98 m 56.3, CH H-8, H2-15 n. o.

15a/b 1.56 m; 1.07 m 24.3, CH2 H-14, H2-16 C-14
16a/b 1.81 m; 1.53 m 27.2, CH2 H2-15, H-17 n. o.

17 1.15 m 53.1, CH H2-16, H-20 C-12, -20
18 0.67 s 11.9, CH3 C-12, -13, -14, -17
19 1.00 s 19.4, CH3 C-1, -5, -9
20 1.75 m 39.8, CH H-17, H3-21, H-22 n. o.
21 0.93 d (7.2) 13.0, CH3 H-20 C-17, -20, -22
22 5.02 ddd (10.8, 2.8, 2.4) 78.3, CH H-20, H2-23 n. o.

23a/b 1.84 m; 1.15 m 29.3, CH2 H-22, H-24 C-20, -22
24 1.43 m 43.1, CH H2-23, H3-28 n. o.
25 73.6, C
26 1.13 s 25.0, CH3 C-24, -25, -27
27 1.20 s 28.4, CH3 C-24, -25, -26
28 0.91 d (7.2) 16.9, CH3 H-24 C-23, -24, -25

22-OAc 171.0, C
2.04, s 21.6, CH3 Acetate carbonyl

a n. o. = not observed.

Table 3. Inhibitory effects of sterols 1 and 2 on superoxide anion generation and elastase release by
human neutrophils in response to fMet-Leu-Phe/Cytochalastin B.

Compound Superoxide Anions Elastase Release

IC50 (µM) a IC50 (µM)

1 8.65 ± 0.19 5.86 ± 0.95
2 > 10 > 10

LY294002 b 1.06 ± 0.06 3.85 ± 1.25
a Concentration necessary for 50% inhibition (IC50); results are presented as mean ± S.E.M. (n = 3). b LY294002
(2-morpholin-4-yl-8-phenylchromen-4-one) was used as a reference compound.

In a previous study, we reported the isolation and structure elucidation of a natural product,
pubinernoid A (3), from Pinnigorgia sp. [11] and this compound which has been previously isolated
from a traditional Chinese medicinal plant Schisandra pubescens var. pubinervis [12]. Based on the
detailed spectroscopic analysis and by comparing the 1H- and 13C-NMR chemical shifts in 3 with those
of known carotenoid metabolites, (±)-loliolide, [13–19], the structure of pubinernoid A (3) should be
revised as (+)-loliolide as presented in 4 (Figure 4). Because (±)-loliolide were synthesized by chemical
methods [18] and the structure of (–)-loliolide was established by X-ray diffraction analysis [19],
the structure of pubinernoid A (3) should be revised as (+)-loliolide (4).
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3.1. General Experimental Procedures 
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Spectroscopic Corporation); peaks are reported in cm–1. The NMR spectra were recorded on a 400 MHz 
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signal (δH 7.26 ppm) as an internal standard for 1H-NMR and CDCl3 (δC 77.1 ppm) for 13C-NMR; 
coupling constants (J) are given in Hz. ESIMS and HRESIMS were recorded using a Bruker 7 Tesla 
solariX FTMS system (Bruker, Bremen, Germany). Column chromatography was performed on silica 
gel (230–400 mesh, Merck, Darmstadt, Germany). TLC was carried out on precoated Kieselgel 60 F254 
(0.25 mm, Merck); spots were visualized by spraying with 10% H2SO4 solution followed by heating. 
Normal-phase HPLC (NP-HPLC) was performed using a system comprised of a Hitachi L-7110 pump 
(Hitachi Ltd., Tokyo, Japan) and a Rheodyne 7725 injection port (Rheodyne LLC, Rohnert Park, CA, 
USA). A semi-preparative normal-phase column (Supelco Ascentis Si Cat #:581515-U, 25 cm × 21.2 mm, 5 
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was performed using a system comprised of a Hitachi L-2130 pump (Hitachi Ltd., Tokyo, Japan), a 
Hitachi L-2455 photodiode array detector (Hitachi Ltd., Tokyo, Japan) and a Rheodyne 7725 injection 
port (Rheodyne LLC., Rohnert Park, CA, USA). A reverse phase column (Luna 5 μm C18(2) 100 Å, 
AXIA Packed, 25 cm × 21.2 mm, Phenomenex Inc., Torrance, CA, USA) was used for RP-HPLC. 

3.2. Animal Material 

Specimens of the gorgonian corals Pinnigorgia sp. were collected by hand using scuba off the 
coast of Green Island, Taiwan in August 2012 and stored in a freezer until extraction. A voucher 
specimen (NMMBA-TW-GC-2012-130) was deposited in the National Museum of Marine Biology & 
Aquarium, Taiwan. This organism was identified by comparison with previous descriptions [20].  

3.3. Extraction and Separation 

Sliced bodies of Pinnigorgia sp. (wet weight 1.98 kg; dry weight 0.86 kg) were extracted with ethyl 
acetate (EtOAc) at room temperature. The EtOAc extract (84.9 g) was partitioned between methanol 
(MeOH) and n-hexane. The MeOH layer (12.6 g) was separated on Sephadex LH-20 and eluted 
using a mixture of dichloromethane (DCM) and MeOH (1:1) to yield 7 subfractions A–G. Fraction F was 
separated by silica gel column chromatography and eluted using n-hexa ne/acetone (stepwise, 1:1–pure 
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Fraction F2H was purified by NP-HPLC using a mixture of n-hexane/EtOAc (1:1) to afford 14 
subfractions F2H1–F2F14. Fraction F2H12 was re-purified by RP-HPLC using a mixture of MeOH/H2O 
(90:10, 4.0 mL/min flow rate) to yield 1 (2.8 mg). Fraction F2D was purified by NP-HPLC using a 
mixture of n-hexane/EtOAc (3:1) to afford 17 subfractions F2D1–F2D117. Fraction F2D12 was re-purified 
by RP-HPLC using MeOH (1.5 mL/min flow rate) to yield 2 (2.6 mg). 
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3. Experimental Section

3.1. General Experimental Procedures

Optical rotations were measured on a Jasco P-1010 digital polarimeter (Japan Spectroscopic
Corporation, Tokyo, Japan). Infrared spectra were recorded on a Jasco FT/IR-4100 spectrometer (Japan
Spectroscopic Corporation); peaks are reported in cm–1. The NMR spectra were recorded on a 400 MHz
Varian Mercury Plus NMR spectrometer (Varian Inc., Palo Alto, CA, USA), using the residual CHCl3
signal (δH 7.26 ppm) as an internal standard for 1H-NMR and CDCl3 (δC 77.1 ppm) for 13C-NMR;
coupling constants (J) are given in Hz. ESIMS and HRESIMS were recorded using a Bruker 7 Tesla
solariX FTMS system (Bruker, Bremen, Germany). Column chromatography was performed on silica
gel (230–400 mesh, Merck, Darmstadt, Germany). TLC was carried out on precoated Kieselgel 60 F254

(0.25 mm, Merck); spots were visualized by spraying with 10% H2SO4 solution followed by heating.
Normal-phase HPLC (NP-HPLC) was performed using a system comprised of a Hitachi L-7110 pump
(Hitachi Ltd., Tokyo, Japan) and a Rheodyne 7725 injection port (Rheodyne LLC, Rohnert Park, CA,
USA). A semi-preparative normal-phase column (Supelco Ascentis Si Cat #:581515-U, 25 cm × 21.2 mm,
5 µm, Sigma-Aldrich, St. Louis, MO, USA) was used for NP-HPLC. Reversed-phase HPLC (RP-HPLC)
was performed using a system comprised of a Hitachi L-2130 pump (Hitachi Ltd., Tokyo, Japan), a
Hitachi L-2455 photodiode array detector (Hitachi Ltd., Tokyo, Japan) and a Rheodyne 7725 injection
port (Rheodyne LLC., Rohnert Park, CA, USA). A reverse phase column (Luna 5 µm C18(2) 100 Å,
AXIA Packed, 25 cm × 21.2 mm, Phenomenex Inc., Torrance, CA, USA) was used for RP-HPLC.

3.2. Animal Material

Specimens of the gorgonian corals Pinnigorgia sp. were collected by hand using scuba off the coast
of Green Island, Taiwan in August 2012 and stored in a freezer until extraction. A voucher specimen
(NMMBA-TW-GC-2012-130) was deposited in the National Museum of Marine Biology & Aquarium,
Taiwan. This organism was identified by comparison with previous descriptions [20].

3.3. Extraction and Separation

Sliced bodies of Pinnigorgia sp. (wet weight 1.98 kg; dry weight 0.86 kg) were extracted with
ethyl acetate (EtOAc) at room temperature. The EtOAc extract (84.9 g) was partitioned between
methanol (MeOH) and n-hexane. The MeOH layer (12.6 g) was separated on Sephadex LH-20 and
eluted using a mixture of dichloromethane (DCM) and MeOH (1:1) to yield 7 subfractions A–G.
Fraction F was separated by silica gel column chromatography and eluted using n-hexa ne/acetone
(stepwise, 1:1–pure acetone) to afford 8 subfractions F1–F8. Fraction F2 was purified by silica gel
column chromatography and eluted using n-hexane/acetone (stepwise, 9:1–pure acetone) to yield 13
subfractions F2A–F2M. Fraction F2H was purified by NP-HPLC using a mixture of n-hexane/EtOAc
(1:1) to afford 14 subfractions F2H1–F2F14. Fraction F2H12 was re-purified by RP-HPLC using a
mixture of MeOH/H2O (90:10, 4.0 mL/min flow rate) to yield 1 (2.8 mg). Fraction F2D was purified by
NP-HPLC using a mixture of n-hexane/EtOAc (3:1) to afford 17 subfractions F2D1–F2D117. Fraction
F2D12 was re-purified by RP-HPLC using MeOH (1.5 mL/min flow rate) to yield 2 (2.6 mg).
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5α,6α-Epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9-one (1): colorless oil; [α]25
D −35 (c 0.9,

CHCl3); IR (neat) νmax 3398, 1682 cm−1; 1H (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) NMR
data (see Table 1); ESIMS m/z 467 [M + Na]+; HRESIMS m/z 467.31308 (calcd. for C28H44O4 + Na,
467.31373).

(22R)-Acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2): colorless needles; mp. 130−132 ◦C; [α]27
D −111 (c 0.7,

CHCl3); IR (neat) νmax 3414, 1730 cm−1; 1H (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) NMR
data (see Table 2); ESIMS m/z 497 [M + Na]+; HRESIMS m/z 497.36015 (calcd. for C30H50O4 + Na,
497.36193).

3.4. Generation of Superoxide Anions and Release of Elastase by Human Neutrophils

Human neutrophils were obtained by means of dextran sedimentation and Ficoll centrifugation.
Measurements of superoxide anion generation and elastase release were carried out according to
previously described procedures [21,22]. Briefly, superoxide anion production was assayed by
monitoring the superoxide dismutase-inhabitable reduction of ferricytochrome c. Elastase release
experiments were performed using MeO-Suc-Ala-Ala-Pro-Valp-nitroanilide as the elastase substrate.

4. Conclusions

Our further studies on Pinnigorgia sp. for the extraction of natural substances have led to
the isolation of two new marine sterols, 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-
en-9-one (1) and (22R)-acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2), and 1 showed potentially anti-
inflammatory activity. These results suggested that continuing investigation of new secondary
metabolites together with the potentially useful bioactive substances from Pinnigorgia sp. are
worthwhile for future drug development.

Supplementary Materials: Supplementary materials Figure S1–S14 are available online.
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