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Abstract

Objective

To provide an in-depth catalog of the salivary proteome and endogenous peptidome of

healthy dogs, evaluate proteins and peptides with antimicrobial properties, and compare the

most common salivary proteins and peptides between different breed phylogeny groups.

Methods

36 healthy dogs without evidence of periodontal disease representing four breed phylogeny

groups, based upon single nucleotide polymorphism haplotypes (ancient, herding/sight-

hound, and two miscellaneous groups). Saliva collected from dogs was pooled by phylog-

eny group and analyzed using nanoscale liquid chromatography-tandem mass

spectrometry. Resulting tandem mass spectra were compared to databases for identifica-

tion of endogenous peptides and inferred proteins.

Results

2,491 proteins and endogenous peptides were found in the saliva of healthy dogs with no

periodontal disease. All dog phylogeny groups’ saliva was rich in proteins and peptides with

antimicrobial functions. The ancient breeds group was distinct in that it contained unique

proteins and was missing many proteins and peptides present in the other groups.

Conclusions and clinical relevance

Using a sophisticated nanoscale liquid chromatography-tandem mass spectrometry, we

were able to identify 10-fold more salivary proteins than previously reported in dogs. Seven

of the top 10 most abundant proteins or peptides serve immune functions and many more

with various antimicrobial mechanisms were found. This is the most comprehensive
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analysis of healthy canine saliva to date, and will provide the groundwork for future studies

analyzing salivary proteins and endogenous peptides in disease states.

Introduction

Saliva is composed of a complex mixture of enzymes, glycoproteins, immunoglobulins, pep-

tides, inorganic substances, white blood cells, epithelial cells, and microflora, in addition to

water. The substances in saliva originate primarily from salivary glands but also blood and

nasal-bronchial secretions [1–2]. Food digestion and lubrication are well-recognized functions

of saliva; however, this complex fluid also protects the oral cavity against pathogens, maintains

the mouth pH and has a role in taste [3–4].

For many decades saliva has been considered the reflection of health and disease states of

the oral cavity in addition to the whole body [4]. The relatively easy and non-invasive access to

saliva samples compounded with the remarkable advances in the technology to investigate

proteins—a major saliva component—have spiked researchers’ interest in looking at the com-

position of this biological fluid in healthy individuals with the ultimate goal of identifying bio-

markers of diseases [4–9].

Various mass spectrometry methods are currently available and have been widely used to

study the salivary proteins, and smaller, endogenous peptides. However, despite extensive

investigation in humans [2,5,8,10–26], much less work has been done in other species [3,27–

34]. Recently, the protein components of dog saliva were examined using SDS-PAGE-LC cou-

pled to tandem mass spectrometry (MS/MS) [3], but only one dog sample was analyzed.

Hence, a more comprehensive characterization of the salivary proteome and endogenous pep-

tidome of healthy dogs is needed and can provide a valuable groundwork for future studies

searching for specific changes in salivary protein composition associated with oral and sys-

temic diseases.

The primary study aim was to provide an in-depth catalog of the salivary endogenous pepti-

dome and proteome of healthy dogs. Additional aims included an evaluation of proteins and

peptides with antimicrobial properties and comparison of the most common salivary proteins

between different breed phylogeny groups.

Materials and methods

A summary of the study design and methodology used is shown in Fig 1.

Animals

The study was approved by the Institutional Animal Care and Use Committee of the Univer-

sity of Minnesota. Thirty-six clinically healthy dogs owned by faculty, staff and students at the

University of Minnesota, College of Veterinary Medicine, were selected for the study. The

dogs were carefully examined by a veterinarian with experience in dental disease to assure the

absence of any dental abnormalities, especially periodontal disease. Sixteen dogs were males

(11 intact and 5 neutered) and 20 were females (16 spayed and 4 intact). Their age ranged

from 4 to 148 months (mean = 40.58 months; median = 25 months). The following breeds

were represented: Hound cross (n = 6), Labrador Retriever (5), Alaskan Malamute (3), Bernese

Mountain Dog (3), Siberian Husky (3), Golden Retriever (2), German Shepherd cross (2),

American Staffordshire Terrier cross (1), Australian Cattle Dog (1), Belgian Tervuren (1),

Boxer cross (1), French Bulldog (1), German Shorthair Pointer (1), German Wirehair Pointer
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(1), Irish Wolfhound (1), Jack Russell Terrier (1), Mixed breed dog (1), Newfoundland (1),

and Scottish Deerhound (1) (Fig 1).

To try to investigate the potential effect of genetic lineage on the salivary proteomics and

peptidomics, the dogs were initially selected to represent the four lineages that cluster based on

structure analysis of microsatellite markers: asian/ancient, herding, hunting, and mastiff [35].

Fig 1. Flow chart summarizing the study design.

https://doi.org/10.1371/journal.pone.0191307.g001
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However, more recent analysis of single nucleotide polymorphism haplotypes divides dog

breeds into 10 clusters [36]. Given this newer classification and the inclusion of some dogs

with incomplete parentage information (crossbred dogs), the four groups were renamed as fol-

lows: ancient, herding-sighthound, and miscellaneous 1 and 2 (Fig 1). Saliva was pooled for

dogs within each group.

Saliva collection

Whole saliva was collected without previous stimulation using saliva collection kits (Saliva-

Bio kit; Salimetrics1, State College, PA) according to the manufacturer’s recommendation.

Briefly, dog owners were asked to withhold food and water from their pets for at least 1

hour before sample collection. A cotton swab of 125mm length and 8mm diameter was

placed in each dog’s cheek pouches for 45–60 seconds, with the collector gently holding the

dog’s muzzle to prevent swallowing. Upon removal, the swab was placed in a special tube

(Swab Storage Tube) and the saliva extracted by centrifugation at 685 × g for 15 minutes.

The swab was removed from the tube and the saliva immediately stored at -80˚C freezer

until analysis [37].

Sample preparation (offline high pH reverse phase-liquid chromatography

fractionation)

Saliva samples were thawed on ice and cleared of cells and debris by centrifugation at 3000 × g
for 10 minutes and 16,100 × g for 1 minute at 4˚C. Protein concentrations of the supernatants

were determined by the bicinchoninic acid (BCA) assay. All samples were qualitatively ana-

lyzed by SDS-PAGE prior to being used in the study.

Pools of saliva from each group were prepared for proteomic analysis by combining equal

protein amounts for each sample within a category to a total protein amount of 200 μg per

pool. The pools were digested using the FASP protocol [38] using 10kDa filters (Pall Nanosep

10kDa filters; VWR, OD010C34) and the resulting peptides desalted using silica-based sorbent

cartridges (Sep-Pak tC18 cartridges; Waters, WAT054925).

Endogenous peptides (naturally occurring salivary peptides below 10kDa) were collected

from the flow-through after the initial centrifugation step using the 10kDa filters (prior to pro-

tein alkylation). These peptides were separately reduced using 5 mM tris (2-carboxyethyl)

phosphine (TCEP) and alkylated using 50 mM iodoacetamide. Endogenous peptide samples

were cleaned up on mixed-mode polymeric sorbent cartridges (Oasis MCX cartridges; Waters,

186000253).

The trypsin-digested protein samples were fractionated using high-pH reversed phase with

subsequent concatenation similar to the protocol of Wang et al [39]. The samples were dis-

solved in 200 mM ammonium formate, pH 10 containing 2% acetonitrile (ACN) and loaded

onto a C18 column (Phenomenex Kinetek C18 column; 2.6 μm, 2.1 x 100 mm). Solvents A

and B were 20 mM ammonium formate, pH 10, containing 2 and 90% ACN respectively. A

gradient was run at 200 μL/min with the following steps: 0 min, 2% B; 5 min, 2% B; 5.5 min,

5%B; 28 min, 30% B; 31 min, 60% B; 33 min, 90% B; 40 min, 90% B; 41 min, 2% B; 45 min, 2%

B. The column was heated to 55˚C with a heated sleeve (Analytical Sales & Service, Inc., HSI-

25L). Fractions were collected every minute, and were concatenated by combining a volume

equivalent to 15 mAU from fractions 7 and 21, 8 and 22, etc., until fractions 20 and 34 to pro-

duce 14 concatenated fractions. These were dried in a speed-vac, and re-dissolved in 37.5 μL of

0.1% trifluoroacetic acid (TFA) in 2% ACN load solvent.
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Nano liquid chromatography–tandem mass spectrometry (LC-MS/MS)

analysis

Analysis of the concatenated fractions from the digest proteins, as well as the endogenous pep-

tides, was performed on a mass spectrometer (Orbitrap Fusion Tribrid with Easy-nLC autosam-

pler and LC; Thermo Scientific, Waltham, MA) equipped with an autosampler and LC system.

For protein samples, 2.5 μL of each concatenated fraction was injected directly onto an in-house

packed, 10 cm x 75 μm column packed with 3 μm C18 particles. Separation was achieved by a

gradient from 2–30% B over 50 min, followed by a 2 min ramp to 90% B and 8 min hold at 90%

B. The flow rate was 200 nL/min. The MS operated in a top speed, data-dependent mode with a

cycle time of 3 s. MS1 scans were performed in the Orbitrap at 120k resolution from 400–1500

m/z with an AGC target of 4E5. Percursor isolation took place in the quadrupole with an isola-

tion width of 1.6 m/z. CID was performed at 35% NCE and MS2 spectra were collected in the

ion trap. Dynamic exclusion used a repeat count of 1 for a duration of 30 s.

Sequence database search for proteins and peptides

The data were searched against a RefSeq Canis familiaris database with common contaminant

proteins, containing 47336 entries, using protein analysis software (Sequest HT node in Pro-

teome Discoverer 2.0; Thermo Scientific, Waltham, MA). Search parameters used included

trypsin enzyme specificity with�2 missed cleavages for analysis of intact proteins, carbamido-

methyl as a fixed modification on cysteine and variable modification of methionine oxidation

and protein N-terminal acetylation. Precursor and product ion mass tolerances of 35 ppm and

0.6 Da were used. For identification of endogenous peptides, all parameters were the same as

above, except that no enzyme was specified.

Criteria for protein identification

MS/MS based peptide and inferred protein identifications were validated using proteomic analy-

sis software (Scaffold; version Scaffold 4.6.1; Proteome Software Inc., Portland, OR). For the anal-

ysis of intact salivary proteins, peptide identifications were accepted if they could be established

at greater than 92.0% probability by the Scaffold Local FDR algorithm. Peptide identifications

were also required to exceed specific database search engine thresholds. Sequest identifications

required at least deltaCn scores of greater than 0.0 and XCorr scores of greater than 1.8, 2.2, 2.5

and 3.5 for singly, doubly, triply and quadruply charged peptides. Protein identifications were

accepted if they could be established at greater than 5.0% probability to achieve an estimated

FDR less than or equal to 1.0% and contained at least 1 identified peptide. Protein probabilities

were assigned by the Protein Prophet algorithm [40]. Proteins that contained similar peptides

and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the prin-

ciples of parsimony. Proteins sharing significant peptide evidence were grouped into clusters.

Collectively, the above criteria resulted in an estimated peptide FDR of 0.2% and an estimated

protein FDR of 1.0%, both estimated using the target-decoy method. S1 Appendix contains all

information on identified proteins and peptides for the analysis of intact salivary proteins.

For the identification of endogenous salivary peptides, accepted peptide identifications

were stringently filtered to an estimated FDR level of 0.0% using the target-decoy method for

estimation. S2 Appendix contains all information on identified endogenous peptides.

Bioinformatics analyses

The semi-quantitative protein data from the dog saliva was measured via protein spectral

counts from the MS-based proteomics data. Normalized spectral counts were assigned to each
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identified protein using the “Quantitative Value” assignment tool within the Scaffold software

used for organizing protein identifications and comparing spectral counts across samples.

Quantitative values for identified proteins and endogenous peptides were compared across the

four groups.

To be included in the analyses each specific protein and peptide had to meet at least one of

the following criteria: (i) an assigned normalized spectral count value of 5 or higher in at least

one group or (ii) a normalized spectral count value of 1 or more in at least two groups. After

application of the criteria in the dataset, the gene symbols of included proteins were imported

into a web-based program (Venny 2.1) for construction of Venn’s diagram [41] with the goal

of comparing the protein and peptide content among groups. A two dimensional Principle

Component Analysis (PCA) and Heatmap were also generated using a web tool for visualizing

multivariate data (ClustVis) [42] to further evaluate similarities and differences in the salivary

proteomics and peptidomics among the four groups.

Search of proteins and peptides with immune functions

Papers on salivary proteomics/peptidomics were reviewed to identify proteins and peptides

with antimicrobial functions that are reported to be abundant in human saliva (specific pro-

teins and references are provided in the results); our database was then searched for these pro-

teins and peptides.

Results

Dog saliva proteomic and peptidomic profile

Using nanoscale LC MS/MS 2,491 proteins and endogenous peptides were identified in the

dog saliva (S3 Appendix), and 1,588 of those met the defined quantitative criteria for further

analysis. The top 10 most abundant proteins and their function are provided in Table 1; 7 of

the 10 have immune functions. Table 2 additionally shows salivary proteins and peptides with

various antimicrobial properties that have been reported to be abundant in previous studies.

Most of these proteins and peptides were present in all four groups.

Table 1. Most abundant canine salivary proteins and their functions.

Protein name Gene name Total normalized

spectral counts

Function [reference]

Fc fragment of IgG binding protein FCGBP 797 Binds to IgG on mucosal surfaces [43]

Polymeric immunoglobulin

receptor (precursor)

PIGR 571 Transports IgA across epithelial cells [44]

BPI fold-containing family A

member 2

BPIFA2 466 Key components of the innate immune response against Gram-negative bacteria [45]

BPI fold-containing family B

member 1 isoform X2

BPIFB1 352 Key components of the innate immune response against Gram-negative bacteria [45]

Albumin ALB 296 Serum-derived protein believed to passively enter saliva. Saliva-specific functions include

binding to hydroxyapatite and lubrication of oral tissues [46]

Ovostatin homolog 2-like LOC611455 270 GO: serine-type endopeptidase inhibitor activity

Mucin 19 MUC19 264 Gel-forming mucin that lubricates saliva and plays a role in reducing adherence and

increasing clearance of bacteria [47]

Angiopoietin-related protein 5-like LOC607055 261 Not reported

Actin gamma 1 ACTG1 244 Cytoskeletal protein with multiple functions in the defense against intracellular

pathogens [48]

Ig lambda chain V-I region BL2 LOC607368 219 Component of immunoglobulin light chains

https://doi.org/10.1371/journal.pone.0191307.t001
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The salivary proteomic and peptidomic content of the Ancient group

stands out from other breed groups

Comparative analyses using a Venn diagram showed that the four groups shared 614 proteins

and peptides representing 38.7% of the analyzed proteins/peptides (Fig 2). In contrast to the

other three groups, unique proteins (SPTBN2 (normalized spectral count = 7), TMOD3 (6)

and PSMC4 (5)) were identified only in the Ancient group. In addition, there were 245

Table 2. Canine salivary proteins and peptides with antimicrobial properties.

Protein name Gene name Normalized spectral

counts per dog group�
Function [reference]

Antileukoproteinase or secretory

leukocyte protease inhibitor (precursor)

SLPI 4-2-2-1 The N-terminal cationic domain has an antibacterial, antifungal and antiviral

effect [49–51]

Beta 2 microglobulin (precursor) B2M 0-1-2-2 Agglutinates bacteria (e.g. Streptococcus mutans) [50–52]

BPI fold-containing family A member 2 BPIFA2 41-136-103-186 Key components of the innate immune response against Gram-negative

bacteria [45]

BPI fold-containing family B member 1

isoform X2

BPIFB1 42-96-67-147 Key components of the innate immune response against Gram-negative

bacteria [45]

Carbonic anhydrase 6 isoform X1 CA6 16-42-50-69 Binds to Staphylococcus aureus [53]

Cathelicidin antimicrobial peptide

(precursor)

CAMP 1-1-1-2 Antibacterial and antifungal effects by disruption of cell membrane. It also

binds and neutralizes lipopolysaccharide from Gram-negative bacteria

[50,54,55]

Cystatin-M CST6 2-7-9-8 Cystatins block the action of bacterial proteases [49,50,56]

Cystatin-A CSTA 2-2-0-1

Deleted in malignant brain tumors 1

protein isoform X1

DMBT1 7-27-27-44 Known as salivary agglutinin and is identical to Gp-340 expressed in lungs.

Binds to a wide variety of microorganisms [49,50,53,57]

Elafin/skin-derived antileukoproteinase

(SKALP) (precursor)

PI3 1-1-0-0 Kills Gram-negative and Gram-positive bacteria [50,58]

Fibronectin (partial, predicted) FN1 6-12-20-8 Agglutinates bacteria and prevents its adhesion to oral surfaces [50,57]

Immunoglobulin J chain isoform 1

(predicted)

IGJ 0-3-10-4 Binds to Staphylococcus aureus [53]

Lactotransferrin (Precursor) LTF 8-43-52-80 Bacteriostatic due to its iron-depriving effects [49,50]

Lactoperoxidase isoform 2 LPO 3-41-37-63 Catalysis the formation of bactericidic compounds [49,50]

Lysozyme C, milk isozyme-like (predicted) LYZF2 3-55-72-63 Defense response to bacterium; regulation of macrophage activation; lysis

bacteria cell wall polysaccharides; activates bacterial autolysins [49,50,53]Lysozyme precursor (cluster) LYZ 28-24-19-28

Mucin-5B (predicted) MUC5B 14-46-69-72 Modulates the microbial colonization of oral epithelial surfaces [49]

Mucin-7 (predicted) MUC7 0-0-1-2 Binds to a variety of bacteria [49,50,59–61]

Mucin-19 (predicted) MUC19 0-65-93-106 Gel-forming mucin that lubricates saliva and plays a role in reducing adherence

and increasing clearance of bacteria [47]

Myeloperoxidase MPO 6-3-7-4 Catalyses the hydrogen peroxide oxidation of thiocynate ions which forms the

bactericidal product, hypothiocyanite [50]

Peptidoglycan recognition protein 1 PGLYRP1 4-3-2-2 It binds to the bacterial cell wall peptidoglycans to exert the bactericidal effect,

but do not permeabilize bacterial membranes. They are bactericidal for Gram-

positive bacteria and bacteriostatic for Gram-negative bacteria [50,62,63]

Polymeric immunoglobulin receptor

(precursor)

PIGR 2-164-204-201 Transports IgA across epithelial cells [44]

Serpin B10 (predicted) SERPINB10 3-8-9-14 Positive regulation of defense response to virus by host

S100-A8 S100A8 2-5-5-11 Also known as calgranulin A (S100-A8) and B (S100-A9). The dimer of

calgranulin A and B is called calprotectin is expressed in neutrophils,

macrophages and keratinocytes cytosols. They inhibit bacterial growth by

scavenging divalent cation [50,64]

S100-A9 isoformX3 S100A9 2-4-1-8

Zymogen granule protein 16 homolog B ZG16B 1-5-6-15 Binds to Staphylococcus aureus [53]

� Groups are sequentially as follows: Ancient, Herding-Sighthound, Miscellaneous-1,Miscellaneous-2

https://doi.org/10.1371/journal.pone.0191307.t002

Canine salivary proteomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0191307 January 12, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0191307.t002
https://doi.org/10.1371/journal.pone.0191307


(15.5%) proteins that were shared by the Herding-Sighthound and Miscellaneous 1 and 2

groups, but not the Ancient group (Fig 2).

The unique protein profile in the Ancient group was also reflected in the PCA analysis (Fig

3). The Ancient group nested distant from the other three groups at the far end of PC1 (X-

axis), which explained 47.6% of the total variance. When taking into consideration PC2 (Y-

axis), which explained 26.8% of total variance, Herding-Sighthound and Miscellaneous group

2 clustered more closely than Miscellaneous group 1 and Ancient group.

The intergroup relationship in the PCA analysis is also confirmed by the dendrogram in

Fig 4, which shows the relationship of the four groups. The predominance of blue color in the

Ancient group indicates relatively less abundance of specific proteins and peptides in this

group compared to the other groups.

Discussion

Using nanoscale LC–MS/MS we identified 2,491 proteins and peptides in the saliva of healthy

dogs with no periodontal diseases. In contrast, a recent study described only 244 proteins in

dog saliva [3]. The substantially higher number of proteins identified in this study could be

partially explained by differences in sample collection but a main contributor is most likely the

mass spectrometer instrumentation used. For our study, we used a sophisticated mass spec-

trometer (Orbitrap Fusion Tribrid with Easy-nLC autosampler and LC (Thermo Scientific,

Waltham, MA) for LC-MS/MS analysis which provides some of the highest sensitivity cur-

rently available for analysis of complex protein mixtures [65]. The prior study by de Sousa-Per-

eira and colleagues utilized an older generation MALDI-TOF/TOF instrument [3], which

most likely explains the order of magnitude difference in proteins identified. It also highlights

the depth of our study in terms of proteins and endogenous peptides identified, which pro-

vides a much more comprehensive view of the salivary proteome and peptidome in healthy

dogs.

Fig 2. Venn diagram displaying the overlapped and unique proteins among the four groups. H-S = Herding-

Sighthound.

https://doi.org/10.1371/journal.pone.0191307.g002
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One of the most important functions of saliva is to protect the oral cavity and indirectly

other organs against infections. In this study, 7 of the top 10 most abundant proteins have

immune functions. Additionally, we identified 26 peptides and proteins (as well as some iso-

forms) that have been reported to have antimicrobial functions in human saliva; 4 of these

were also in the top 10 most abundant in canine saliva. Six of the 26 proteins and peptides

were not present in all four breed groups indicating the variability among individual dogs or

dog breeds. There are likely many additional proteins and peptides with antimicrobial func-

tions in the 2,491 identified in the study.

Antimicrobial peptides (AMP) are small molecular weight, typically cationic peptides that

have a broad spectrum of action against bacteria, fungi, parasites and some viruses [66]. They

are an important part of the innate immune response of almost all living organisms including

plants, invertebrates and vertebrates and generally function by forming holes in the microor-

ganisms’ cell membrane. Various AMP such as, alfa and beta defensins, cathelicidin, adreno-

medullin, histatins, elafin, secretory leukocyte protease inhibitor (SLPI) and lysozyme have

been found in human saliva [49,50,67]. Of these, we identified precursors of elafin, SLPI,

Fig 3. Two dimensional principal coordinate analysis showing the salivary protein and peptide profile relationship among the groups.

https://doi.org/10.1371/journal.pone.0191307.g003
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cathelicidin and lysozyme and, de Sousa-Pereira and collaborators listed lysozyme in the saliva

of the dog included in their study [3]. β-defensins are expressed in many epithelial tissues and

have been identified in the skin of healthy dogs [68–70]. The absence of this category of AMP

in the dog saliva was, to some extent, unexpected but, defensins were not reported in the saliva

of dog, cattle, sheep, horse, rabbit and rat in a recent study [3]. Moreover, the lack of identifica-

tion could be explained by their presence below the limit of detection of the method used. Dif-

ferences in the expression of proteins and peptides in the saliva of humans and dogs could be

partially explained by phylogenetic and dietary variations between these species. However,

additional studies including a large number of dogs will be needed to corroborate our

findings.

The dogs in this study were selected to represent diverse ancestral lineages both to provide

a comprehensive dataset of the canine salivary proteome and peptidome and to determine if

there were clear differences between breed groups. While only two of the four groups ulti-

mately represented distinct genetic clusters based on the most recent canine genomics data,

differences were evident, with only 38.7% of the analyzed proteins and peptides shared by all

groups. The Ancient group, which included Siberian Huskies and Alaskan Malamutes, was the

most distinct, and the only one with unique proteins. This parallels genetic differences in the

Fig 4. Heatmap showing the relative abundance (color) and relationship (dendogram) of salivary proteins and peptides among the groups.

https://doi.org/10.1371/journal.pone.0191307.g004
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breed groups; the breeds within the ancient group have a high level of divergence from other

breeds. It cannot be determined from this data whether the unique proteins identified in the

Ancient group are specifically characteristic of the northern group (the clade comprising the

Siberian Husky and Alaskan Malamute) or if they are also a feature of saliva from other ancient

breeds [36]. Future studies including a larger breed representation in the various phylogenic

groups and a larger number of dogs per breed will help answer this question. Interestingly, a

recent study showed unique proteins in the saliva of Korean people when compared to a com-

prehensive database of human salivary proteins indicating ethnic differences in the human

saliva proteome [71].

In addition to genetic differences, other factors not investigated in this study could have

also played a role in variations noted between the dog groups. Age, diurnal variation, health

status and individual variation have all been shown to influence the composition of proteins in

the saliva in humans [72–78]. These variables, and possibly others, most likely also impact the

salivary protein and peptide profiles of dogs and need to be carefully and urgently investigated

before we can obtain accurate information on changes in saliva protein and peptide compo-

nents in disease states.

This study provides a comprehensive catalog of the proteins and endogenous peptides pres-

ent in canine saliva. We included 36 dogs and divided them in groups based on breed phylog-

eny which revealed differences that parallel genetic clusters. Samples were pooled within each

group, and this could have masked any inter-individual or gender variances in the salivary

protein composition of the dogs. An important next step is to evaluate any possible influence

of age, gender, breed and individual in the composition of proteins and peptides of the dog

saliva.
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