
Correspondence
Input precision, output excellence: the importance of data
quality control and method selection in disease risk mapping
Shirin Taheri,a,∗ María José Ruiz-López,a,b Sergio Magallanes,a,b and Jordi Figuerolaa,b

aDepartamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
bCIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
The Lancet Regional
Health - Europe
2024;42: 100944

Published Online xxx

https://doi.org/10.
1016/j.lanepe.2024.
100944
The transmission system of vector-borne diseases is
highly complex, involving the interaction between
various species of vectors and reservoirs (vertebrate
hosts) that affect pathogen transmission. Different
abiotic factors modulate these biotic interactions. For
instance, climate change can accelerate the reproductive
and developmental cycles of vectors, increase their
abundance, expand their geographic range, and change
their biting behaviour.1 These changes can also affect
the abundance, reproduction, and migratory behaviour
of natural hosts,2 or increase the replication rate of the
pathogens.3 This scenario may alter the transmission risk
of some pathogens, concerning citizens, epidemiologists,
public health officials, and authorities worldwide (Fig. 1a).
To study abiotic factors’ impact on vector-borne diseases,
predictive modelling is frequently used. In particular,
machine learning and artificial intelligence (AI) methods
are becoming increasingly popular to identify high-risk
pathogens and their diversity, abundance, and distribu-
tion across various scales.

In a recent study, Farooq et al. (2022)5 applied a
component-based approach to analyse the predictive po-
tential of eco-climatic factors for predicting West Nile
Virus (WNV) outbreaks across Europe from (2010–2019).
The study incorporated human WNV cases, vectors, and
avian host abundance, using AI for data analysis. Their
findings indicate that temperature anomalies, lower wa-
ter index, and drier winter conditions are the deter-
mining factors for WNV outbreaks across Europe. While
vector abundance (Culex pipiens and Culex modestus) and
the 61 passerine species identified as potential reservoir
hosts did not contribute to the model. This contradicts
previous reports establishing a clear association between
avian and vector abundance and WNV incidence.6,7

Upon reviewing the dataset provided by the authors,
we detected that data on Culex species between 2011
and 2019 were only documented in 28% of the NUTS3
regions (See Fig. 1). Among these 562 NUTS3, only
14% were assigned a value for C. pipiens and 24.3% for
C. modestus, with the remaining areas imputed as
0 (Fig. 1b and c). This contradicts the widespread
presence of these vectors across Europe.8 Although the
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vectors distribution in Farooq et al. (2020) closely aligns
with the ECDC database, ‘0’ typically indicates missing
data rather than vector absence. The presence of vector
data in ECDC databases is not independent of pathogen
incidence, as Culex sp. distribution data is more likely to
be collected where WNV cases have been reported. In
addition, the study suggests a link between the 2018
WNV outbreak and Cx. modestus abundance. However,
this is surprising as the original dataset shows
Cx. modestus was absent from Europe that year, what is
clearly wrong. This highlights the risk of confirmatory
bias when using AI methods on biased and incomplete
datasets.9

Similar data deficiencies were observed in the
61-bird species designated as reservoir hosts, with a
distribution that does not match real-world observa-
tions. For example, Turdus merula (common blackbird),
highly susceptible to WNV infection and abundant
across Europe, was only recorded in (n = 11) NUTS3
regions in southern Spain, contradicting its known
widespread presence (Fig. 1d). Additionally, the authors
do not clarify the selection criteria for the 61 birds listed,
omitting highly susceptible species such as Passer
domesticus and Corvids that are not included in the risk
model. Twenty species such as Aegypius monachus
(a vulture) and Pandion haliaetus (a raptor), were incor-
rectly classified as passeriformes.

The bias in the data may explain why the authors
found no clear link between human WNV cases and the
vectors or reservoir hosts in Europe. This implies that
their conclusions might be substantially influenced by
uncertainties or flawed distribution patterns of key
components for assessing the risk of WNV.

Despite numerous studies attempting to document
disease risk maps, challenges persist across multiple
fronts. Like it happens when mapping biodiversity,
when mapping pathogens spatio-temporal sampling
biases hinder accurate disease risk assessment. This
challenge is particularly pronounced in vector-borne
diseases, which involve multiple species that host, vec-
tor, and disseminate pathogens. Therefore, prioritizing
data quality assessment and expert knowledge should be
://doi.org/10.1016/j.lanepe.2024.100947
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Fig. 1: a) A conceptual framework illustrating complex interactions between vectors and human as primary host, as observed in diseases like
Malaria (black line on left), and the triangle analogy among, vector, reservoir host (e.g., birds) and accidental host, such as West Nile Virus
(purple line on right). b) Abundance and distribution of Culex pipiens in Europe for 2018 & 2019 according to Farooq et al. (2022)’ dataset for
NUTS3 regions (Nomenclature of territorial units for statistics). c) Abundance and distribution of Culex modestus in Europe for 2018 & 2019 also
based on Farooq et al. (2022)’ dataset. d) Distribution and abundance comparisons of Turdus merula, with the left panel based on Farooq et al.
(2022), and the right panel on the Second Atlas of European birds (EBBA24).
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the initial step in disease risk mapping. While advanced
data analysis techniques like AI are valuable tools, they
cannot perform magic in the modelling calibration
process. Failure to address biases and errors in the input
will directly impact the outputs. This complex process
adheres to the principle of “garbage-in, garbage-out”.10

The climate and health crises are converging, yet
disease outbreaks cannot occur in the absence of bridge
vectors, reservoir hosts, pathogens and the interaction
among them. Their surveillance and management
require “One Health” approaches integrating reliable
information on biological, social, and climatic factors.
Misinterpreted or inaccurate data can result in
misguided decisions regarding public health strategies,
resource allocation, and treatment protocols.
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