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An evolutionary response to selection requires genetic variation; however, even

if it exists, then the genetic details of the variation can constrain adaptation. In

the simplest case, unlinked loci and uncorrelated phenotypes respond directly

to multivariate selection and permit unrestricted paths to adaptive peaks. By

contrast, ‘antagonistic’ pleiotropic loci may constrain adaptation by affecting

variation of many traits and limiting the direction of trait correlations to vectors

that are not favoured by selection. However, certain pleiotropic configurations

may improve the conditions for adaptive evolution. Here, we present evidence

that the Arabidopsis thaliana gene FRI (FRIGIDA) exhibits ‘adaptive’ pleiotropy,

producing trait correlations along an axis that results in two adaptive strategies.

Derived, low expression FRI alleles confer a ‘drought escape’ strategy owing to

fast growth, low water use efficiency and early flowering. By contrast, a dehy-

dration avoidance strategy is conferred by the ancestral phenotype of late

flowering, slow growth and efficient water use during photosynthesis. The

dehydration avoidant phenotype was recovered when genotypes with null

FRI alleles were transformed with functional alleles. Our findings indicate

that the well-documented effects of FRI on phenology result from differences

in physiology, not only a simple developmental switch.
1. Introduction
Populations of a species are frequently distributed across climatic gradients, where

natural selection can lead to adaptation to local conditions. The environmen-

tal conditions that cause local adaptation have been well documented through

reciprocal transplants and studies of clines [1–6]. These experiments show that

divergent patterns of selection cause shifts in the mean values of many traits lead-

ing to a multivariate response. Such a response to selection improves fitness and

promotes successful adaptation to local conditions. Despite a large body of

research, it remains a challenge to determine the specific genetic loci that respond

to selection and confer local adaptation [7–10].

Long-term breeding programmes and quantitative genetic studies have

demonstrated variation in nearly all traits, and thus a simple lack of additive gen-

etic variation is not expected to constrain adaptation [11]. Instead, a limited

amount of genetic variation along vectors of selection has been shown to limit

adaptive evolution [12–14]. Theoretically, independence of all loci and pheno-

types will improve the potential for adaptation by optimizing evolvability [15]

and the response to selection (R) [14,16,17]. However, certain genetic correlations

can disrupt the optimal genetic architecture by reducing the amount of genetic

variation which is available to selection and causing correlated responses of
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non-adaptive traits [12,18]. Although this maladaptive role for

genetic correlations is not universal [19], genetic correlations

may affect R by limiting the dimensionality of the genetic

(co)variance matrix or restricting genetic variation to vectors

which are not aligned with selection [12–13,18,20].

The combined effects of the pleiotropic loci, which cause

genetic correlations, may have a profound impact on patterns

of local adaptation. As pleiotropy can constrain multivariate

adaptation and cause correlated evolution of adaptive and

deleterious phenotypic values, these loci are typically consider-

ed ‘antagonistic’ [21–25]. Adaptation is especially constrained

when pleiotropic gene action limits phenotypic correlations

along a vector orthogonal to that of selection and reduces R

[13]. Antagonistic pleiotropy is well documented and has led

to the belief that all pleiotropy is maladaptive [26]. However,

recent theoretical work has countered this viewpoint by

demonstrating that intermediate levels of pleiotropy may actu-

ally improve the conditions for adaptation and evolution of

complexity [27–29].

To study the adaptive value of pleiotropic loci, it is

necessary to assess the effects of genetic variation on the

structure of many phenotypes which are subject to correla-

tional selection in nature. Adaptation to drought in plants

provides an ideal system to achieve this goal [30–33]. In natu-

ral and agricultural systems, annual plants can be adapted

to local drought conditions by either growing and repro-

ducing before the onset of drought (drought escape)

[31,34–36] or by delaying reproduction, increasing water

use efficiency (WUE) and conserving resources (dehydration

avoidance) [37–39]. For example, accessions which exhibit

early-flowering time (FT) and low WUE were selected for

in consistently wet soil and late-season drought conditions

[36,40], whereas direct selection on increased WUE favoured

a dehydration avoidance strategy in environments with early-

season drought [41]. Therefore, adaptation to different local

soil moisture conditions and seasonal rainfall patterns contrib-

utes to the observed strong correlations between FT, growth

rate and WUE within and among species [6,32,38,41–43].

Several studies have suggested that pleiotropy may also

affect this correlation [38,44,45].

Here, we provide empirical evidence for an adaptive

role of pleiotropy. Using genome-wide approaches, allelic

variants and transgenic manipulation, we demonstrate that

the ‘FT’ gene, FRIGIDA (FRI) pleiotropically affects phenoty-

pic variation in growth rate, WUE and FT. Derived, null FRI
alleles produce a drought escape phenotype (decreased WUE,

increased growth rate, decreased FT) relative to the ancestral

adaptive strategy. This phenomenon, which we term ‘adaptive

pleiotropy’, enhances the likelihood of adaptation by increasing

adaptive responses to selection.
2. Methods
(a) Arabidopsis thaliana genetic resources
We used four sets of genetic variants: TK RILs, a panel of 317

physiologically diverse A. thaliana accessions, a nearly isogenic

line (FRI-NIL) and FRI transgenic overexpression lines (tr-FRI).

The TK RILs are the product of a bi-directional cross between

two physiologically divergent accessions: TSU-1 (low WUE,

short FT) and KAS-1 (high WUE, long FT) [46]. The TK RILs

mapping population consists of 343 F9 lines each genotyped at

166 genomic loci. In addition to the published loci, all RILs
were genotyped at FRI via fragment analysis of PCR product gen-

erated across the promoter (primer F: 50-AGTACTCACAAGTC

ACAAC-30; primer R: 50-GAAGATCATCGAATTGGC-30) [47].

The 317 accession panel was genotyped at this marker (FRIdel1)

and two additional markers: FRIdel2 (primer F: 50-AGATTTGC

TGGATTTGATAAGG-30; primer R: 50-ATATTTGATGTGCTCT

CC-30) and FRIcap (primer F: 50-CCATAGACGAATTAGCTGC-

30; primer R: 50-AGACTCCAGTATAAGAAG-30). The 317 acces-

sions and TK RILs are listed in the electronic supplementary

material, tables S1 and S2 and are available from the Arabidopsis
stock center (http://www.arabidopsis.org/).

The FRI-NIL was generated by introgressing a functional FRI
allele from the Sf-2 line into wild-type (WT) Col-0, the reference

A. thaliana accession with a null FRI allele [47–49]. The tr-FRI

transgenic over expressed line was generated by ligating FRI-

GFP into the XmaI and XhoI sites of 35SpBARN vector and

then transformed a into Col-0 background using the floral dip

method. We used only FRI transgenic lines that exhibited a late

flowering phenotype. The FRI-NIL and the transgenic line

‘FRI-GFP Col T2 #20’ are available from S.D.M. and X.Y. We

also present WUE data from FRI-NIL and Columbia genotypes

with knocked-out FLC alleles. See Michaels & Amasino [50] for

details on these lines.
(b) Plant growth and phenotypic analysis
Phenotypic analyses of the TK RILs, the FRI-NIL, tr-FRI and

Col-0 were conducted in a Conviron ATC60 growth chamber

(Controlled Environments, Winnipeg, MB, Canada) at Colorado

State University (CSU). All plants were grown at 12 h, 40 per

cent humidity, 238C days and 12 h, 50 per cent humidity, 188C
nights. Photosynthetic photon flux density during daylight

was approximately 330 mmol m22 s21. All plants except those

analysed for gas exchange were grown in 20 plastic pots contain-

ing Fafard 4p mix (Conrad Fafard Inc. Agawam, MA). Gas

exchange measurements were taken on plants grown in the

same conditions in modified Cone-tainer pots (Stuewe and

Sons, Tangent, OR). A 195-line subset of the 317 line panel was

grown at University of Texas, Austin in promix BT potting soil

and 164 ml Cone-tainer pots under long-day photoperiod con-

ditions (16 L : 8 D) at approximately 18–218C. Consistent with

previous studies, these long-day environmental conditions

induced flowering much more quickly than the 12/12 h

conditions at CSU.

Gas exchange physiology was measured with an LI-6400

photosynthesis system (LiCor Inc, Lincoln, NB) equipped with a

custom whole-plant gas exchange cuvette. A total of 20 measure-

ments were taken over a 2 min period for each of 20 plants

(10 replicates/genotype) at two time points (14 and 21 days

post-germination). The photosynthetic parameters (A, ci and gs)

were estimated following von Caemmerer & Farquhar [51]. Gas

exchange data were analysed in a mixed-model framework

where genotype was fixed, and measurement and date were

nested within individual as a random effect in JMP GENOMICS v.

5.0 (SAS Institute, Cary, NC). We also generated A/ci curves by

measuring photosynthetic rate across nine levels of external CO2

concentrations using a different set of plants grown hydroponically.

We compared A between the FRI-NIL and Col-0 controlling for

variation in ci with a mixed effect ANOVA. The genotype was a

fixed effect, and ci was a continuous, random covariate.

We measured WUE, growth rate and FT for each plant

(n/genotype ¼ 10). Flowering initiation was recorded when a vis-

ible bolting structure first appeared at the apical meristems; FT is

calculated as the number of days between germination and

initiation of flowering. We analysed carbon isotope composition

(d13C), a surrogate measure of WUE [38,52], on lyophilized,

finely ground rosette leaves at the Stable Isotope Facility at Univer-

sity of California, Davis (UCD; http://stableisotopefacility.

http://www.arabidopsis.org/
http://www.arabidopsis.org/
http://stableisotopefacility.ucdavis.edu/
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ucdavis.edu/). Leaves were harvested before the onset of flower-

ing of the earliest accession at a single time-point for all lines.

Using images taken directly over the rosette, we assessed leaf

area in IMAGEJ (http://rsbweb.nih.gov/ij/). These data were used

to calculate relative growth rate of leaf area (GRla¼ [ln(LAt2) –

ln(LAt1)]/(t2 2 t1)), where LA is leaf area at time 1 (t1) and time 2

(t2). We analysed the effect of genotype on WUE, FT and GRla

via one-way ANOVA in JMP GENOMICS v. 5.0.

(c) Quantitative trait locus analysis
We analysed quantitative trait loci (QTL) for WUE and FT in

R/qtl [53] using the following settings: (i) imputations (256

draws) to generate a complete and even genome-wide pseudo-

marker grid of 2 cM for mapping, (ii) 10 000 permutations to

calculate QTL incorporation thresholds at an experiment wise

a ¼ 0.05, (iii) stepwise model selection scanning for epistatic and

additive QTL at each step [54], (iv) iterative position refinement

analysis by holding all but one QTL constant and varying the pos-

ition of the focal QTL and re-calculating the penalized logarithm

(base 10) of the odds (LOD) score for the model and (v) fitting

the refined model via ANOVA to calculate the effect size, per cent

variance explained and LOD score for each QTL. The allelic effect

at FRI was compared via one-way ANOVA in JMP GENOMICS

v. 5.0. To further refine the bi-phenotype QTL position, we standar-

dized the LOD scores by the largest value for each phenotype

(stand. LOD) and summed the bivariate scores for each point on

the genotype grid, then calculated the bivariate QTL interval

as the point where the summed LOD scores decreased to the

average single phenotype odds ratio at a given map position.

(d) Quantification of the FRI-NIL Sf-2 introgression
Whole genome sequence was obtained by paired-end Illumina

sequencing at the UCD Genome Center (http://www.genome

center.ucdavis.edu/). A reference-based assembly of the TAIR 9

Columbia genome was conducted in SHORE (http://1001 genomes.

org/software/shore.html) to call single nucleotide polymorphisms

(SNPs) [55] and identify the size of the introgression.

(e) Gene expression analysis
Genome-wide gene expression was determined via Affymetrix

(Affymetrix Inc. Santa Clara, CA) AthSNPtile arrays for all TK

RILs. We screened for all genes within 50 kb of the QTL point esti-

mate (CH4 237 060–337 060 bp) and compared expression levels

between TSU-1 and KAS-1 alleles at each gene, then corrected

for multiple comparisons via q-value calculations (R package

qvalue http://www.bioconductor.org/packages/release/bioc/

html/qvalue.html).

( f ) Analysis of population structure at FRIGIDA
We conducted three separate population genetic analyses using

the publicly available genome-wide SNP data (http://cynin.

gmi.oeaw.ac.at/home/resources/atpolydb) [56,57]. We imputed

the functionality of FRI for all lines by extracting all SNPs within

100 kb of FRI and training a classification model, support vector

machines (SVMs) with a radial basis function [58], using data on

SNPs and FRI functionality for the 317 genotypes in our panel

that had both SNP and FRI data. After a grid search of tuning

parameter values, our final SVM model predicted FRI func-

tionality with 95 per cent accuracy in fourfold cross-validation.

We tested the accuracy of the SVM model using n-fold cross-

validation: after selecting n accessions at random, we tested the

accuracy of SVM models in n-fold cross-validation (i.e. leave-

one-out cross-validation) for n ¼ 10, 15, 20, 25, 30, 35 and 40.

For each value of n, we cross-validated the SVM predictions

for 20 random subsets of accessions. For n ¼ 10, SVM models
were on average 87 per cent accurate in cross-validation. By

n ¼ 20, models were 93 per cent accurate in cross-validation.

This signifies that the SNP associations with FRI functionality are

easily observable in even small samples of accessions. Using this

model, we then imputed the allelic state (binned into functional

or null categories) for all accessions in the SNP database.

We calculated genome-wide FST in PLINK [59] by classifying

the accessions as ‘functional’ or ‘non-functional’ FRI and calcu-

lating the molecular variance between and within these allele

classes. We generated 5000 random divisions at the same fre-

quency as the FRI allele classes. These permutations allow us

to assess the significance of the FST measure compared with

random evolution. We conducted two additional analyses with

subsets of the available accessions. Ten of the 574 sites sampled

by Horton et al [57] showed within-population variation at FRI.
Using these populations and geographical clusters at the country

level [57], we calculated an average heterozygosity over SNPs

sampled at 50 kb intervals (Ht). Then, we split the population

based on FRI phenotype, calculated an average heterozygosity

within each subpopulation (Hs) in the same way and took the

mean of those. We used these Ht and Hs values to calculate

genome-wide FST based on the FRI phenotype. We bootstrapped

to calculate significance by dividing the data at a random subset

of 5000 SNPs with similar frequency to FRI and recalculating FST.

(g) Comparison of climatic variables associated with
FRI variation

FRI functionality calls, latitude and longitude for each line were

input into DIVA-GIS (www.diva-gis.org). The 19 BIOCLIM

(www.bioclim.org) climatic variables were extracted for each

point. FRI allelic association with these variables was made via

t-tests with significance corrected for multiple comparisons by

Bonferroni adjustments. The distribution of the climate under

each allele was compared by ranking the climate variables and

plotting the relative position of each allele relative to its rank.
3. Results and discussion
(a) Mapping the water use efficiency – flowering time

correlation
We measured FT and WUE of 195 A. thaliana accessions in a

common garden. The genetic correlation between WUE and

FT is positive and significant: WUE explains nearly 40 per

cent of FT variation (n ¼ 195, r2¼ 0.395, p , 0.0001; electronic

supplementary material, figure S1). If this correlation results

from many loci independently affecting each phenotype,

then recombination between differently adapted lines will

break down this favourable correlation. To test the cause of

the WUE–FT correlation, we used TK RILs from two pheno-

typically divergent accessions, TSU-1 (low WUE, short FT)

and KAS-1 (high WUE, long FT) [46] (see the electronic sup-

plementary material, figure S1). Experimental crosses induce

recombination and break up linkage disequilibrium across

these genomes. Despite a large reduction in linkage dis-

equilibrium, FT and WUE remained significantly correlated

(n ¼ 304, r2¼ 0.138, p , 0.0001; figure 1a) in the TK RILs,

demonstrating that either tight genetic linkage or pleiotropy

caused WUE and FT to covary.

To determine the genetic basis of the remaining WUE–FT

correlation in the RILs, we conducted a QTL analysis by sim-

ultaneously scanning for genomic loci significantly associated

with both phenotypes. Stepwise model selection (a ¼ 0.05)

revealed a total of 11 different QTLs across both traits (see

http://stableisotopefacility.ucdavis.edu/
http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
http://www.genomecenter.ucdavis.edu/
http://www.genomecenter.ucdavis.edu/
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http://1001genomes.org/software/shore.html
http://www.bioconductor.org/packages/release/bioc/html/qvalue.html
http://www.bioconductor.org/packages/release/bioc/html/qvalue.html
http://www.bioconductor.org/packages/release/bioc/html/qvalue.html
http://cynin.gmi.oeaw.ac.at/home/resources/atpolydb
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http://www.bioclim.org
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the electronic supplementary material, table S3). Only

one QTL was found that affected both phenotypes and this

QTL was the largest for each individual trait (figure 1b and

electronic supplementary material, table S3). Lines with the

KAS-1 QTL allele had later FT (d.f. ¼ 1, F338.8, p , 0.0001),

and higher WUE (d.f. ¼ 1, F19.14, p , 0.0001) than TSU-1

alleles (figure 1c). The genetic correlation between WUE

and FT is well documented in agricultural breeding popu-

lations and studies of local adaptation in nature [38,44–45].

High WUE decreases photosynthetic assimilation rates and

the amount of fixed carbon available for flowering. As the

initiation of flowering is affected, in part, by resource avail-

ability [60,61], a physiological connection between WUE

and FT is plausible.
(b) Cloning the water use efficiency – flowering time
quantitative trait locus

To identify all possible causal variants underlying the main

QTL, we re-sequenced both parents and analysed gene

expression in the TK RILs for loci within a 100 kb region sur-

rounding the QTL. Within this region, only FRI (FRIGIDA) is

differentially expressed between TSU-1 and KAS-1 (figure

1d). Re-sequencing of both parents revealed a 376 bp deletion

within the promoter of the TSU-1 FRI allele, but a functional

allele in KAS-1. We genotyped the FRI deletion in all TK

RILs (see the electronic supplementary material, table S2).

After adding the FRI polymorphism to the linkage map, we

conducted a multi-trait position refinement analysis. The
QTL maps to a single pleiotropic locus at the nearest pseudo-

marker to FRI: chromosome 4, position 4.0 cM (figure 1e).

FRI is a particularly good candidate gene underlying the FT

QTL. Derived mutations that reduce expression have been

involved in the evolution of spring annual types from the ances-

tral state of a fully functional FRI and a winter annual life

history [47,62]; allelic variation at FRI contributes to variation

in FT across diverse accessions [49,63–65]. FRI is also a candi-

date for WUE [38,66]. Biogeographic analyses have associated

lines with functional FRI alleles, such as KAS-1, to regions

with lower precipitation; these environments would favour

drought adaptation via dehydration avoidance [6,67,68].

To further assess the pleiotropic effects of the FRI locus,

we also genotyped 195 A. thaliana accessions at FRI to

determine functionality (see the electronic supplementary

material, table S1). Consistent with pleiotropy and our obser-

vation in the TK RILs (figure 2a), phenotypic variation in

both WUE (ANOVA d.f.¼ 1, F51.705, p , 0.0001) and FT

(ANOVA d.f. ¼ 1, F34.643, p , 0.0001) is predicted by functional

variation at FRI in natural populations (figure 2b). In the 195

accessions, FRI explains 30.2 per cent and 24.7 per cent of the

total phenotypic variation of WUE and FT, respectively. Inter-

estingly, this ‘FT’ gene explains less phenotypic variation in FT

than WUE in wild accessions. Null FRI alleles represent a

derived state of early FT and lower WUE relative to functional

alleles; a drought escape strategy.

(c) Physiological pleiotropy of FRI
To test for the phenotypic effects of FRI, we compared the

phenotypes of a near isogenic line with a functional FRI
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allele (FRI-NIL) to the wild-type progenitor Col-0 (WT)

which contains a null fri allele. We phenotyped the three

major physiological determinants of WUE: photosynthetic

rate (A), leaf internal CO2 concentration (ci) and stomatal con-

ductance (gs). Stomatal conductance, which directly alters

leaf water-loss dynamics, also affects A by regulating the

supply of CO2 and thus, ci. For example, low gs reduces A
by limiting ci, resulting in increased WUE, decreased

growth rate and delayed FT [43] (figure 3a).

The FRI-NIL (functional FRI) had decreased gs (contrast

d.f. ¼ 1, F208.48, p , 0.0001), marginally lower ci (contrast d.f. ¼

1, F3.28, p¼ 0.072) and significantly lower A (contrast d.f. ¼ 1,

F255.23, p , 0.0001) relative to WT (null fri), indicating stomatal

limitation to growth through A (figure 3b). Additionally, WUE

(d.f. ¼ 1, F43.14, p , 0.0001), GRla (d.f. ¼ 1, F22.47, p , 0.0001)

and FT (d.f. ¼ 1, F125.22, p , 0.0001) all significantly differ

between FRI-NIL and WT (figure 3c). To determine the physio-

logical mechanism for increased WUE, we modulated ci and

repeatedly measured A. Supporting a decrease in gs as the

basis for increased WUE, no significant difference in photo-

synthetic capacity was found between the WT and FRI-NIL

while controlling for ci (d.f. ¼ 288, F1.701, p ¼ 0.1932; electronic

supplementary material, figure S2).

Many functional analyses have found that FRI produces a

transcription factor that induces expression of FLC, inhibiting

floral development [50,62,63,65,69,70]. To place our analyses

in the context of these results, we analysed WUE for WT

and FRI-NIL lines which have knocked-out FLC alleles.
Consistent with the epistasis observed to affect FT, FRI con-

fers increased WUE only in the presence of a functional

FLC (contrast d.f. ¼ 1, F44.77, p , 0.0001), but not the when

associated with a null flc allele (contrast d.f. ¼ 1, F0.79, p ¼
0.38; electronic supplementary material, figure S3).

The FRI-NIL (also referred to as ‘Sf-2 FRI in Col’ or ‘Col-

FRI’) is one of the most used genetic resources in the FT litera-

ture [38,49,71]. These studies assume that the FRI-NIL carries

a single, narrow, introgression of the Sf-2 genome which con-

tains a functional FRI allele; however, this assumption has

never been tested. To assess the size of the Sf-2 introgression,

we re-sequenced the FRI-NIL, aligned the reads to the TAIR 9

Columbia genome, called SNPs and mapped SNP density to

the reference genome. Many SNPs exist between Sf-2 and Col-0

(data are publically available at http://mus.well.ox.ac.uk/

19genomes [72]). High SNP density between the FRI-NIL

and Col-0 exists solely on proximate Chr. 4 (see the electronic

supplementary material, figure S4a,b). The region of elevated

SNP density represents a single 1.070 Mb (+10 kb) Sf-2 intro-

gression that contains FRI as well as the other 325 gene

models between AT4G00005 and AT4G02710. Although most

studies that use the FRI-NIL assume the only genotypic

divergence exists at FRI, this is obviously not the case.

To unambiguously determine whether the effects

observed in the FRI-NIL were due to FRI, we compared

WUE, FT and GRla between WT Col-0 and transgenic lines

(Col-0 overexpressing FRI: tr-FRI). Under well-watered con-

ditions, tr-FRI had greater WUE (d.f. ¼ 1, F57.25, p , 0.0001),

decreased GRla (d.f. ¼ 1, F22.32, p , 0.0001) and later FT

(d.f. ¼ 1, F179.1, p , 0.0001) than WT (figure 3d ). As FRI func-

tionality is the only DNA sequence difference between these

lines, FRI is pleiotropic and controls covariation of three traits
along a vector shown to be adaptive. Our conclusion is supported

by QTL, natural accession, NIL and transgenic comparisons.
(d) The population genetics of adaptive pleiotropy
Population genetic models are at odds about the role of

pleiotropy in maintaining variation within and among popu-

lations. Pleiotropic gene action may cause non-adaptive and

adaptive phenotypes to covary, thus reducing the efficacy of

correlational selection and permitting the persistence of mul-

tiple allelic states within populations [73]. However, where

the effects of pleiotropy are more aligned with the direction

of selection, within-population variation can be purged by

strong directional selection [74]. Therefore, we predicted low

levels of within-population variation at FRI, because multi-

variate selection would favour either a functional (drier

habitats) or non-functional allele (wetter habitats). In addition,

if variation at FRI can lead to local adaptation, then we

predicted increased population structure (across the entire

genome) between functional and non-functional FRI classes.

A population genetic test for adaptive pleiotropy is compli-

cated in our study as FRI may cause population structure

through both adaptive pleiotropy and allochrony: FRI-NILs

and tr-FRI lines flowered at least 28 and 32 days later than

Col-0, respectively. All main-raceme Col-0 flowers had been

pollinated and produced fruits before any FRI-NIL or tr-FRI

lines produced open flowers. In the greenhouse environment,

single mutations at FRI can produce a reproductive isolation

index near 1.0. However, assortative mating owing to variation

at FRI may be tempered in nature as the environment has

a profound effect on phenology [71].

http://mus.well.ox.ac.uk/19genomes
http://mus.well.ox.ac.uk/19genomes
http://mus.well.ox.ac.uk/19genomes
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To test for evidence of reproductive isolation between

accessions and populations that differ at FRI, we first imputed

FRI functionality of 1188 accessions [57], then compared the

group of individuals with derived, weak alleles (i.e. null

Col-0 missense and Ler deletion alleles) to the group of individ-

uals with functional, ancestral-type FRI. We then calculated FST

between FRI allele functional classes in PLINK [59]. FST values

averaged across 216 130 SNPs are significantly greater between

the FRI functionality classes than is expected from genome-

wide subsampling ( p , 0.0001; electronic supplementary

material, figure S5). To control for geographical population

structure, we divided the global sample into 11 geographical

regions according to Horton et al. [57]. Ten of 11 geographi-

cal regions showed elevated FST at FRI compared with a

genome-wide sample of sites with the same allele frequencies

as the FRI functional variants (see the electronic supplementary

material, table S5). These results show that elevated global FST

when sorting by FRI is due to a lack of within-population vari-

ation in FRI. Less than 2 per cent of 574 local populations

harboured functional variants at FRI.
While extremely low within-population variation is present

at FRI, functionally divergent alleles have gone to fixation in

geographically proximate populations. Several authors have

shown that an abundance of derived null FRI alleles are present

in nature, far more than would be expected by chance [75,76].

Here, we demonstrate that these mutations cause a phenotypic

leap between drought adaptation strategies which may pro-

mote adaptation to novel ecological conditions. Combined,

the strong signature of selection, high levels of population

structure and lack of within-population variation observed at

FRI suggests an adaptive role of this pleiotropy.
(e) FRI and drought adaptation
Previous studies have found that the early flowering, low

WUE phenotypes associated with drought escape are adap-

tive in sites without consistent low soil moisture [36].

Although we did not directly measure selection in this

study, we used the large body of work on drought adaptation

to infer the adaptive value of specific trait combinations. We

predicted that due to the drought escape strategy conferred

by derived loss of function mutations at FRI, accessions with

these alleles would inhabit environments with consistently
wetter growing seasons, relative to accessions with functional

FRI alleles. To confirm the allelic association with drought,

we generated a climate envelope for both FRI allele classes

(see the electronic supplementary material, table S5). Func-

tional alleles tend to be present in areas with lower growing

season precipitation than non-functional alleles (t ¼ 23.68,

p ¼ 0.0003; electronic supplementary material, figure S6).

We have demonstrated that lines that diverged only at FRI
exhibit altered positions along an adaptive phenotypic corre-

lation. Scarcelli et al. [25] found antagonism between the

floral morphology traits affected by FRI, and we cannot

rule out that a portion of FRI’s pleiotropic gene action is

maladaptive. However, analyses presented here demonstrate

a strong adaptive role of the physiological and phenological

phenotypic correlations conferred by FRI. Given our results,

it is not surprising that FRI is associated with strong popu-

lation genetic signatures of diversifying selection [65,75,76].

Studies demonstrating historical selection on FRI invoke the

timing of flowering as the phenotype under selection [65].

Our results indicate that the observed signature of selection

is not only an effect of FT variation, but may also be due to

upstream physiological effects.
4. Conclusions
We have presented a mechanistic understanding of how FRI
alters physiology, phenology and confers local adaptation.

Phenology, growth rate and water-use physiology have

been mapped to similar genomic loci or correlated in natural

or experimental populations [31,38,46,52,66]. Here, we have

demonstrated that FRI causes these adaptive correlations to

be heritable. Although we present a situation where pleio-

tropy controls phenotypic variation along a vector known

to be adaptive, we have not measured the efficacy of or

response to selection in the field. Fitness measures in diverse

common gardens with watering treatments would allow for

direct inference of the adaptive value of FRI.
To date, most gene annotation and characterization is

conducted by forward or reverse genetics whereby a single

gene or trait is under consideration. Our results indicate

that a more holistic approach to phenotyping and whole

plant, integrative approaches for annotating gene function
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may reveal complex patterns of pleiotropy among ecologically

correlated phenotypes. It is possible that many trait associ-

ations are not purely a product of correlational selection, but

also affected by adaptive pleiotropy.
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