
REVIEW
published: 02 September 2020

doi: 10.3389/fimmu.2020.02022

Frontiers in Immunology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 2022

Edited by:

Nicolaus Martin Kröger,

Medizinische Fakultät, Universität

Hamburg, Germany

Reviewed by:

Elizabeth Oaks Krieger,

Virginia Commonwealth University,

United States

Ismael Buño,

Instituto de Investigación Sanitaria

Gregorio Marañón, Spain

*Correspondence:

He Huang

huanghe@zju.edu.cn

Yanmin Zhao

yanminzhao@zju.edu.cn

Specialty section:

This article was submitted to

Alloimmunity and Transplantation,

a section of the journal

Frontiers in Immunology

Received: 27 May 2020

Accepted: 27 July 2020

Published: 02 September 2020

Citation:

Gao F, Ye Y, Gao Y, Huang H and

Zhao Y (2020) Influence of KIR and NK

Cell Reconstitution in the Outcomes of

Hematopoietic Stem Cell

Transplantation.

Front. Immunol. 11:2022.

doi: 10.3389/fimmu.2020.02022

Influence of KIR and NK Cell
Reconstitution in the Outcomes of
Hematopoietic Stem Cell
Transplantation
Fei Gao 1,2,3, Yishan Ye 1,2,3, Yang Gao 1,2,3, He Huang 1,2,3* and Yanmin Zhao 1,2,3*

1 Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,

China, 2 Institute of Hematology, Zhejiang University, Hangzhou, China, 3 Zhejiang Engineering Laboratory for Stem Cell and

Immunotherapy, Hangzhou, China

Natural killer (NK) cells play a significant role in immune tolerance and immune

surveillance. Killer immunoglobin-like receptors (KIRs), which recognize human leukocyte

antigen (HLA) class I molecules, are particularly important for NK cell functions. Previous

studies have suggested that, in the setting of hematopoietic stem cell transplantation

(HSCT), alloreactive NK cells from the donor could efficiently eliminate recipient

tumor cells and the residual immune cells. Subsequently, several clinical models were

established to determine the optimal donors who would exhibit a graft-vs. -leukemia

(GVL) effect without developing graft-vs. -host disease (GVHD). In addition, hypotheses

about specific beneficial receptor-ligand pairs and KIR genes have been raised and the

favorable effects of alloreactive NK cells are being investigated. Moreover, with a deeper

understanding of the process of NK cell reconstitution post-HSCT, new factors involved

in this process and the defects of previous models have been observed. In this review,

we summarize the most relevant literatures about the impact of NK cell alloreactivity on

transplant outcomes and the factors affecting NK cell reconstitution.
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective therapy for patients
with hematological malignancies. However, relapse, graft-vs. -host disease (GVHD), and infections
remain the main causes of treatment failure (1–4). Potential strategies to prevent GVHD and even
infections while sparing the graft-vs. -leukemia (GVL) effect have attracted extensive attention.
Natural killer (NK) cells, which are a major type of innate lymphocytes, are being researched in
this context.

NK cells constitute 5–15% of human peripheral blood lymphocytes (5, 6) and possess the abilities
of cytotoxic lysis and rapid cytokine secretion without prior antigen presentation (7, 8). These
functions are regulated by various types of receptors expressed on NK cells manifesting multiple
functions either activating or inhibitory (9–11) (Table 1). Among the NK cell receptors, the killer
immunoglobin-like receptor (KIR) is one of the major factors that mediate self-tolerance and
anti-tumor/infection responses.
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TABLE 1 | NK cell receptors and their ligands.

Inhibitory receptors

and their ligands

Activating receptors

and their ligands

Coreceptors and

their ligands

KIR2DL1 HLA-C2 KIR2DS1 HLA-C2 2B4 CD48

KIR2DL2 HLA-C1 KIR2DS2 HLA-C1 NTB-A NTB-A

KIR2DL3 HLA-C1 KIR2DS3 Unknown CS1 CS1

KIR2DL4 HLA-G KIR2DS4 HLA-A11 NKp80 AICL

KIR2DL5 Unknown KIR2DS5 Unknown TLR TLRL

KIR3DL1 HLA-Bw4 KIR3DS1 HLA-F DNM-1 PVR,

Netcin-2

KIR3DL2 HLA-A3/A11 NKG2C HLA-E CD96 PVR

KIR3DL3 Unknown NKG2D MICA, MICB,

ULBP1-4

NKG2A HLA-E NKp30 B7-H6, BAT3,

CMV pp65

LIR-1 HLA class I NKp44 Viral

hemagglutinins

NKp46 Viral

hemagglutinins

CD16 IgG-1, 3, 4

It is well established that KIR genes are located on
chromosome 19q13.4 (12). Based on their various structures
(the number of extracellular immunoglobulin domains (D) and
the long (L) or short (S) tails), 16 KIR genes (including two
pseudogenes (P), KIR2DP1 and KIR3DP1) have been classified
into four groups (KIR2DL1-5, KIR3DL1-3, KIR2DS1-5, and
KIR3DS1). Six genes with short tails are activating KIR genes
that encode activating receptors, while the eight genes with long
tails are inhibitory KIR genes encoding inhibitory receptors.
KIRs could be divided into haplotype A and B according
to the activating genes on them. Haplotype A has only one
activating gene, KIR2DS4, whereas haplotype B possesses up to
five activating KIR genes, including KIR2DS1, 2, 3, 5, and 3DS1
(Figure 1). Thus, the A/A genotype is defined as homozygous
for A haplotypes, and the B/x genotype consists of at least one
B haplotype. Finally, according to the specific KIR gene locus
on the chromosome, a centromeric (Cen) and telomeric (Tel)
KIR haplotype and genotype are further determined (13–15).
Five inhibitory and three activating KIRs recognize specific
class I HLA (A, B, or C) ligands, with the inhibitory KIR2DL1
recognizes group 2 HLA-C alleles, KIR2DL2 and KIR2DL3
recognize group 1 HLA-C alleles, KIR3DL1 recognizes HLA-Bw4
alleles, and KIR3DL2 recognizes HLA-A3/-A11 alleles.Moreover,
activating KIR2DS1, KIR2DS2, and KIR2DS4 recognize HLA-C2,
C1, A11, respectively (15). The ligands of the remaining KIRs
remain unknown.

As KIR genes and human leukocyte antigen (HLA) genes
are located on different chromosomes, autologous KIR receptor-
ligand mismatch may exist (16). Normally, NK cells acquire
self-tolerance and functional competence through the education
process, in which inhibitory KIRs could be inhibited by self-
HLA ligands and activated in a non-self HLA environment.
Besides, the decreased responsiveness of activating KIRs in the
presence of their cognate ligands also prevents autoimmunity

(17–23) (Figure 2A). Importantly, infected and/or tumor cells
may express inhibitory KIR ligands insufficiently or express
activating ligands that may activate NK cells (24–31).

As the first reconstituted lymphocyte subset after
transplantation (32, 33), NK cells play a critical role in
controlling early relapse and infections. They also possess the
ability to eliminate recipient T cells and antigen-presenting cells
(APCs), to prevent graft failure and GVHD (34–38) (Figure 2B).
Three models were established historically in an attempt to
optimize donor selection for HSCT based on KIR (Figure 2A).
The Perugia group in Italy firstly proposed the donor-recipient
KIR ligand-ligand model (also known as KIR ligand model)
solely based on the HLA phenotype of the donor and recipient.
The KIR ligand incompatibility in the GVH direction was
defined as the absence in recipients of donor class I allele
group(s) recognized by KIRs. Those authors observed that the
HLA haplotype-mismatched transplants reduced the rejection
and relapse rate and prevented GVHD in patients with acute
myeloid leukemia (AML) (36). Subsequently, the second model
(named receptor-ligand model or missing ligand model) was
raised by Leung et al. based on the compatibilities between the
recipient HLA and donor inhibitory KIR. This model focused on
donor KIR instead of donor HLA and could, therefore, be used
in both HLA-matched and HLA-mismatched transplants. The
results of that study suggested that the receptor-ligand model
better predicted the risk of primary disease relapse, especially
for lymphoid malignancies, compared with the ligand-ligand
model (39). Subsequently, with a deeper understanding of KIR
haplotypes, the third model analyzed and compared the KIR
genotypes of different donors. Cooley et al. showed that unrelated
donors with KIR-B haplotypes conferred a significant relapse-
free survival (RFS) benefit to patients with AML undergoing T
cell-replete HSCT (40). Based on the three models described
above, numerous studies have been carried out to explore the
impact of NK cell alloreactivity. Clinical results obtained from
KIR ligand model, receptor ligand model and KIR haplotype
and gene model were summarized in Tables 2–4, respectively.
Nevertheless, the results were controversial, and several key
questions remained regarding NK cell biology post-HSCT. What
are the exact effects of NK cell alloreactivity on patients after
HSCT? How do NK cells reconstitute post-HSCT and which
factors may interfere with the reconstitution process? This
review summarizes the latest literature on this important topic
and offer some instructive hypothesis.

KIR AND TRANSPLANT OUTCOMES

NK Cell Alloreactivity and GVHD
GVHD is an important complication of HSCT with high
morbidity and mortality in which allogeneic donor immune cells
are activated by APCs and then recognize and attack the host
tissue (105). Removing donor T cells from grafts reduces the
occurrence of GVHD, while it also elevates the risk of graft failure
and disease relapse (106–108).

As another component of immune cells, previous murine
studies suggested that adoptive transfer of interleukin-2 (IL-
2)-activated SCID NK cells with donor bone marrow cells
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FIGURE 1 | Simplified genomic maps of KIR. Inhibitory KIR genes are color-coded in blue, activating KIR genes in orange, and pseudogenes in gray. KIR haplotype A

has only one activating KIR gene: KIR2DS4, KIR B haplotype has fixable content of activating KIR genes. KIR haplotype could be further determined as Cen haplotype

and Tel haplotype.

promoted engraftment in allogenic hosts with no signs of GVHD
(109). Later, Asai et al. reported that hosts receiving MHC-
incompatible bone marrow and spleen cells (as a source of
T cells) rapidly succumbed to acute GVHD, while hosts who
additionally received IL-2-activated donor NK cells on day 0
experienced a significant improvement in survival because of the
lower incidence of severe GVHD. They further demonstrated
that that the protective effect on GVHD was dependent on the
transforming growth factor-beta (TGF-β) and could be abrogated
by an anti-TGF-β antibody (35). Moreover, Ruggeri et al. showed
that pre-transplant alloreactive Ly49 (Ly49 receptors recognize
major histocompatibility complex (MHC) class I molecules in
mice, which is analogous to KIR in humans) ligand-mismatched
donor NK cell transfusion successfully eliminated host tumor
cells and protected against GVHD by depleting host APCs.
In contrast, hosts receiving bone marrow grafts without NK
cell infusion died of GVHD, and non-alloreactive Ly49 ligand
matched NK cell infusion did not provide protection against
GVHD (36). Consistently, subsequent studies also found that

donor alloreactive NK cells suppressed GVHD by inhibiting
T cell proliferation and activation (37, 110). However, the
protective role of NK cells in GVHD pathogenesis has also
been challenged. Pre-clinical evidence from a xenogeneic model
showed that an in vitro IL-2-activated human NK cell infusion
promoted GVHD in SCID mice via the production of cytokines
such as IFN-γ and tumor necrosis factor-α (TNF-α) (111, 112).
Accordingly, GVHD was inhibited after the administration of
anti-IFN-γ and depletion of Poly I:C-activated NK cells in
murine studies (113, 114).

In patients with hematological malignancies, a purified (115,
116) or cytokine-induced (117–121) donor NK cell transfusion
was also well tolerated and seldom induced severe GVHD (grade
III-IV acute GVHD or moderate-to-severe chronic GVHD).
More recently, a pilot study suggested that, after haplo-HSCT,
patients with refractory AML who received a donor NK cell
infusion experienced a significantly lower grade II-IV GVHD
than did those without NK cell infusion (122). In contrast,
Shah et al. observed that patients who received a donor
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FIGURE 2 | KIR models (A) and NK cell-mediated killing (B). APC, antigen presenting cell. (A). Donor NK cell is tolerant to self because donor inhibitory KIR is

inhibited by its cognate HLA ligand; donor NK cell might kill recipient cell because HLA ligand for donor inhibitory KIR presents in donor but absents in recipient (KIR

ligand model); donor NK cell could kill recipient cell because recipient HLA ligand does not inhibit donor inhibitory KIR (receptor ligand model); donor NK cell could kill

recipient cell because donor activating KIR is activated by recipient (KIR B haplotypes and KIR B genes). (B). Alloreactive donor NK cell could kill recipient leukemia

cell to prevent relapse; it could kill recipient T cell to prevent graft rejection; and it could kill recipient APC to prevent GVHD.

IL-15/4-1BBL-activated NK cell infusion after T cell-depleted
(TCD) stem cell transplantation experienced a high risk of
GVHD (123).

In addition to the technique of adoptive transfer, many studies
have analyzed the effects of innate donor-recipient NK cell
alloreactivity on GVHD in a clinical setting. The majority of
studies did not report a significant association between these
parameters (41–44, 46, 47, 50, 51, 54–56, 59, 65, 66, 79, 81,
83, 87–89, 91–93, 97, 98, 102, 104), while some reported a
protective effect (70, 74, 76). Moreover, several studies found
that KIR ligand mismatch or receptor-ligand mismatch increased
the risk of GVHD (45, 57, 60, 64, 68, 80). Accordingly, two
studies performed in China that applied the ‘Peking protocol’
for HSCT using the granulocyte-colony stimulating factor (G-
CSF)-mobilized graft containing a high dose of T cells observed
promotive effects of NK cell alloreactivity on GVHD (48, 49).

It is not entirely clear why the reconstituted alloreactive
NK cells were unable to prevent GVHD as the adoptively
transferred NK cells. Studies have indicated that this discrepancy
was probably attributable to the impaired function of early
reconstituted NK cells. Shilling et al. first observed that a period

of several months or even years was required for the recipient
to reconstitute an NK cell repertoire resembling that of the
donor (124). Vago et al. also suggested that the NK cells that
were reconstituted early after transplantation were immature and
exhibited compromised cytotoxicity (125). In addition, NK cell
reconstitution is affected by graft composition. Patients receiving
more T cells in grafts experience a faster T cell reconstitution
(126, 127), while the absolute number of reconstituted NK cells
and KIR expression are impaired by the co-grafted T cells (127–
130). Other than NK cells, nearly 5% of CD8+ T cells, 0.2% of
CD4+ T cells, and 10% of γδ T cells in the peripheral blood also
express KIRs (131–133). Therefore, it is possible that the potential
beneficial effects of alloreactive NK cells are overwhelmed by the
strong alloreactive T cell response. In addition, it was observed
that NK cells generated more IFN-γ in the presence of T
cells in grafts, leading to a higher occurrence of acute GVHD
(aGVHD) (130). Moreover, post-transplant immune suppression
also exerted negative effects on NK cell reconstitution (134, 135).

Regarding specific genotypes, some studies have reported
that KIR haplotype B donors afforded a significantly reduced
risk of GVHD (60, 63, 86, 96). Consistent with these findings,
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TABLE 2 | Impact of KIR on clinical outcomes in KIR ligand model.

References N Disease Donor Graft

manipulation

Clinical outcomes

Ruggeri et al. (36) 92 AML, ALL HRD TCD* KIR ligand mismatch: higher EFS and OS, lower relapse (AML)

KIR ligand mismatch: lower aGVHD2−4

Davies et al. (41) 175 Mixed URD TCD*, TCR KIR ligand mismatch: lower OS (myeloid cohort)

Giebel et al. (42) 130 Mixed URD TCD# KIR ligand mismatch: higher OS and DFS, lower TRM

Schaffer et al. (43) 190 Mixed URD TCD*, TCD# KIR ligand mismatch: higher IRM and TRM, and lower OS

Elmaagacli et al. (44) 236 CML MSD, URD TCR KIR ligand mismatch: lower molecular relapse

Yabe et al. (45) 1489 Mixed URD TCD#, TCR KIR ligand mismatch: higher aGVHD2/3−4 and lower OS (HLA-C

mismatched transplants)

Verneris et al. (46) 716 Pediatric AL URD TCD#, TCR KIR ligand mismatch: no significant impact on OS, DFS, relapse,

TRM, or aGVHD.

Ruggeri et al. (47) 112 AML HRD TCD* KIR ligand mismatch: lower relapse (CR group), higher EFS, and

lower risk of relapse or death

Huang et al. (48) 116 Mixed HRD TCD# KIR ligand mismatch: higher aGVHD2−4 and relapse, lower OS

Zhao et al. (49) 64 Mixed HRD TCD# KIR ligand mismatch: higher aGVHD;

Michaelis et al. (50) 57 Mixed HRD TCD* KIR ligand mismatch: lower EFS (AML)

Mancusi et al. (51) 161 AML, ALL HRD TCD*

TCD*+Treg/Tcon

NK-alloreactive donors: lower relapse and higher EFS (AML)

Yahng et al. (52) 100 AML HRD TCD# KIR ligand mismatch (HVG): higher relapse and CMV reactivation,

lower DFS

Zhao et al. (53) 180 Mixed HRD TCD# KIR ligand match: lower CMV reactivation rate and higher IFN-γ

expression

Wanquet et al. (54) 144 Mixed HRD TCD# KIR ligand mismatch: lower relapse and higher PFS (no CR group)

Shimoni et al. (55) 444 AML, ALL HRD TCD# KIR ligand mismatch: a trend of higher relapse (AML), lower OS

MSD, matched sibling donor; URD, unrelated donor; HRD, haploidentical related donor; AML, acute myeloid leukemia; ALL, acute lymphoid leukemia; CML, chronic myeloid leukemia;

TCD, T cell depleted; TCR: T cell replete; Treg, regulatory T cells; Tcon, conventional T cells; aGVHD: acute graft vs. host disease; cGVHD: chronic graft vs. host disease; OS, overall

survival; RFS, relapse free survival; DFS, disease free survival; EFS, event free survival; IRM: infection related mortality; TRM: transplant related mortality; CMV, cytomegalovirus.

TCD*: ex-vivo TCD.

TCD#: in-vivo TCD.

Sivori et al. suggested that donor NK cells expressing KIR2DS1
were efficient in killing allogenic dendric cells in the setting
of haplo-HSCT, thus leading to a better GVHD control (136).
However, several studies also found that donors with KIR-B/x led
to higher GVHD occurrence in recipients compared with donors
with A/A, probably because of the more potent production of
IFN-γ by alloreactive NK cells (40, 45, 76, 77, 94, 95).

Other factors, such as HLA mismatch, disease type, patient
age, GVHD prophylaxis, and graft source, were also reported
to interfere with GVHD occurrence in these studies (44, 45,
63, 66, 87, 92, 93, 104). Collectively, the manner in which
the reconstituted NK cells affect the risk of GVHD remains
largely unknown, and the relationships between NK and T
cells during the initiation and process of GVHD warrant
further investigation.

NK Cell Alloreactivity and Infection
Infections are especially challenging for patients after HSCT
because of the immunological derangement caused by
multiple factors, including an intensive conditioning regimen,
immunosuppressive agents, and other complications, such as
GVHD (137, 138).

Several studies have reported that patients receiving KIR
ligand-mismatched transplants are more vulnerable to infections.
Schaffer et al. first reported that KIR ligand mismatch was

associated with an increased infection-related mortality (43).
Similarly, results from Zhao et al. showed that recipients from
the KIR ligand-mismatched group experienced a significantly
higher cytomegalovirus (CMV) reactivation rate. Moreover, the
percentage of interferon-gamma (IFN-γ)-expressing NK cells in
the peripheral blood was significantly higher in the KIR ligand
matched group 30 and 100 days post-HSCT compared with the
KIR ligand-mismatched group (53). The higher level of IFN-γ
secretion from theNK cells might trigger Th1 immune responses,
antigen presentation cell activation, and macrophage killing (7,
8), leading to lower infection rate. While, KIR ligand mismatch
may increase the risk of infection by eliminating recipient APCs
by donor alloreactive NK cells (36).

Many studies have found that KIR-B genes protect patients
with HSCT against infections and most of them were
predominantly T cell replete (TCR) transplants (81, 84, 87,
96, 139, 140). Cook et al. first observed that KIR haplotype B
donors exhibited a significant reduction in the rate of CMV
reactivation in sibling allo-HSCT (139). Wu et al. and Zaia et al.
reported that donors expressing higher numbers of activating
KIRs were associated with a lower CMV reactivation rate (62, 84).
Specifically, activating KIR2DS2 and KIR2DS4 may play a major
protective role (84, 140). Importantly, transplantations from
donors with KIR2DS1 correlated with better infectious control
(51, 96). Mancusi et al. further demonstrated that the binding
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TABLE 3 | Impact of KIR on clinical outcomes in receptor ligand model.

References N Disease Donor Graft

manipulation

Clinical outcomes

Leung et al. (39) 36 Mixed HRD TCD* Receptor ligand mismatch: lower relapse

Cook et al. (56) 220 Mixed MSD / HLA-C2C2 patients vs. HLA-C1/x patients: lower OS (myeloid cohort)

Verheyden et al. (57) 65 Mixed MSD TCD*, TCR HLA-C1C2 patients vs. HLA-C1C1 or C2C2 patients: lower aGVHD

Hsu et al. (58) 1770 Mixed URD TCR Missing ligand for donor iKIR: lower relapse (HLA

mismatched transplants)

Clausen et al. (59) 43 Mixed MSD TCR Ligand missing to KIR3DL2 plus one other iKIR vs. others: lower

relapse and higher OS

Ludajic et al. (60) 124 Mixed URD TCD#, TCR Missing ligand for donor KIR2DL1: higher aGVHD2−4;

Linn et al. (61) 151 Mixed MSD TCR Missing ligand for donor iKIR: no impact on OS and RFS

Wu et al. (62) 48 Mixed URD TCD# HLA group C1 vs. C2: higher CMV reactivation rate

Gagne et al. (63) 264 Mixed URD TCR Missing HLA-C1 ligand: lower OS (myeloid cohort)

Clausen et al. (64) 100 Mixed MSD TCR HLA-C1C2 patients vs. HLA-C1C1 or C2C2 patients: lower relapse

and aGVHD2−4, higher RFS

Björklund et al. (65) 105 AML, MDS MSD TCD#, TCR Receptor ligand mismatch: no significant impact on OS, relapse

and GVHD

Wu et al. (66) 116 Mixed URD TCD#, TCR Missing ligand for donor iKIR: lower relapse, higher OS and DFS

(myeloid cohort);

Zhou et al. (67) 219 Mixed MSD / HLA-C1C1 patients vs. HLA-C2/x patients: lower aGVHD2−4

Sobecks et al. (68) 909 AML, MDS URD TCD#, TCR Missing ligand for donor iKIR: higher aGVHD3−4 and TRM (AML);

Missing HLA-C2 for donor KIR2DL1: higher aGVHD2/3−4 (AML)

Park et al. (69) 59 Mixed MSD, URD TCD#, TCR Receptor ligand mismatch: higher OS, DFS and lower relapse

Cardozo et al. (70) 50 Mixed MSD TCR Patients with all ligands present vs. missing ligand for donor iKIR:

higher aGVHD;

Missing ligand for donor iKIR: higher OS (myeloid cohort)

Faridi et al. (71) 281 Mixed MSD, URD TCD# Missing ligand for donor iKIR: lower relapse and better RFS (URD)

Neuchel et al. (72) 1446 Mixed URD TCR HLA-C2C2 vs. HLA-C1/x patients: lower OS, DFS, higher relapse

(myeloid cohort)

Arima et al. (73) 10638 Mixed MSD, URD TCD*, TCD#

TCR

HLA-C1C1 patients vs. HLA-C1C2 patients: lower relapse and higher

RFS (AML and CML);

HLA-C1C1 patients vs. HLA-C1C2 patients: higher relapse (ALL)

Gaafar et al. (74) 87 Mixed MSD TCR KIR2DL1: HLA-C2 match: higher aGVHD2−4 (AML)

Arima et al. (75) 2884 ALL MSD, URD TCD, TCR HLA-C1C1 patients vs. HLA-C1C2 patients: higher relapse

Chen et al. (76) 84 Mixed HRD TCD# Missing HLA-C2 ligand for donor KIR2DL1: higher OS and lower RRM

(myeloid cohort);

Missing HLA-C for donor iKIR: lower aGVHD2−4 (lymphoid cohort);

Zhao et al. (77) 97 CML HRD TCD# Receptor ligand match: lower relapse

Zhao et al. (78) 188 Mixed HRD TCD# Receptor ligand match: lower relapse and higher LFS

Solomon et al. (79) 208 Mixed HRD TCD# Receptor ligand mismatch: higher OS and DFS, lower relapse

Willem et al. (80) 51 Mixed HRD TCD# KIR2DL/HLA mismatch: higher GVHD and lower relapse

AL, acute leukemia; MDS, myelodysplastic syndromes; iKIR, inhibitory KIR; LFS, leukemia-free survival.

of KIR2DS1 to HLA-C2 triggered pro-inflammatory cytokine
production by alloreactive NK cells (51). Moreover, without a
cognate ligand (HLA-C1) in recipients, donor KIR2DS2 was
associated with a higher CMV reactivation rate after HLA-
identical sibling HSCTs (81). Apart from CMV reactivation,
the incidence of bacterial infections was also reduced when
patients had KIR-B/x donors (87). In contrast with previous
results, KIR2DS2 gene and Cen-B/x donors related to a higher
incidence of CMV reactivation and infection-related mortality in
TCD transplants (53, 100). The reasons for these differing results
may be due to the different graft composition. As previously
described, NK cells generate more IFN-γ in TCR transplants,

which may benefit the infection control (130). Of notice, the
activating KIR targets outside of HLA are largely unknown, and
these clinical observations still need to be confirmed by definitive
functional analysis in the future.

NK Cell Alloreactivity and Relapse/Survival
Primary disease relapse remains the main obstacle that
hampers the long-term survival of patients with hematological
malignancies. Previous experience showed that adoptive
transfer of autologous NK cell for patients with tumors was
safe but inefficient (141–145), probably because autologous
NK cells could not overcome the inhibition mediated by
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TABLE 4 | Impact of KIR on clinical outcomes in KIR haplotype and gene model.

References N Disease Donor Graft

manipulation

Clinical outcomes

Cooley et al. (40) 448 AML URD TCR KIR B/x donor: higher RFS and cGVHD

Cook et al. (56) 220 Mixed MSD / KIR2DS2: lower OS (HLA-C2C2 patients with myeloid diseases)

Verheyden et al. (57) 65 Mixed MSD TCD*, TCR Donor co-presenting KIR2DS1 and 2DS2: lower relapse

Chen et al. (81) 131 Mixed MSD TCR KIR2DS2: higher CMV reactivation (HLA-C2C2 patients);

Additional activating KIR genes in donor: higher OS and lower

CMV reactivation

Yabe et al. (45) 1489 Mixed URD TCD#, TCR KIR2DS2: higher aGVHD3−4 (HLA-C mismatched transplants)

Schellekens et al. (82) 83 Mixed MSD TCR KIR2DS1: higher OS (HLA-C1C1 patients);

More activating KIRs in donor or patients: higher relapse;

KIR2DS5 in patients or both in donor and patients: higher relapse

van der Meer et al. (83) 70 Mixed MSD TCD* KIR2DS5: higher LFS and lower relapse (HLA-C1C1 or HLA-C2C2

patients);

KIR2DS5: lower LFS and higher relapse (HLA-C1C2 patients)

Ludajic et al. (60) 124 Mixed URD TCD#, TCR KIR2DS2: lower aGVHD2−4 (HLA-C1C2 patients)

Zaia et al. (84) 211 Mixed MSD, URD TCR Donor co-presenting KIR 2DS2 and 2DS4: lower CMV reactivation;

Donor aKIR gene content ≥5: lower CMV reactivation

Wu et al. (62) 48 Mixed URD TCD# High aKIRs group: lower CMV reactivation rate

Gagne et al. (63) 264 Mixed URD TCR KIR B/x donor: lower aGVHD3−4 (HLA identical pairs with

myeloid disease)

Bao et al. (85) 75 Mixed URD TCD# KIR B/x donor: higher OS

Venstrom et al. (86) 1087 Mixed URD TCD*, TCR KIR3DS1: lower aGVHD2−4;

KIR3DS1: lower aGVHD2−4, TRM and mortality (AML, CML and ALL)

Wu et al. (66) 116 Mixed URD TCD#, TCR KIR2DS3: higher relapse, lower OS and DFS (myeloid cohort);

More numbers of activating KIR genes in donor: higher relapse

Tomblyn et al. (87) 116 Mixed URD TCD*, TCR KIR B/x donor: lower bacterial infections by day 180

Cooley et al. (88) 1409 AML, ALL URD TCR KIR B/x donor: lower relapse and higher DFS (AML);

Cen-BB vs. Cen-BA or AA: lower relapse and higher DFS (AML);

Tel-B/x vs. Tel-AA: lower relapse (AML);

B content ≥ 2: lower relapse (AML)

Venstrom et al. (89) 1277 AML URD TCD*, TCR Donor KIR2DS1 with HLA-C1/x patients vs. with HLA-C2C2 patients:

lower relapse;

KIR3DS1: higher OS

Zhou et al. (67) 219 Mixed MSD / Cen-B/x donor: higher OS, RFS and lower relapse

Impola et al. (90) 134 Mixed MSD / KIR 2DL2 or KIR 2DS2: better RFS (AML)

Bao et al. (91) 210 Mixed URD TCD# KIR B/x donor: higher OS, RFS and lower NRM (AML and MDS);

Cen-B/x donor: higher OS, RFS (AML and MDS at standard risk)

Cardozo et al. (70) 50 Mixed MSD TCR KIR2DS2: lower OS and EFS

Bachanova et al. (92) 614 NHL URD TCD#, TCR KIR B/x donor: lower relapse and better PFS (HLA matched transplants)

Kamenaric et al. (93) 111 Mixed MSD, URD TCD# KIR2DS4 (neg vs. pos): no impact on GVHD (MSD)

Hosokai et al. (94) 106 Mixed MSD, URD TCR KIR B/x donor: higher aGVHD3−4 (more evdient in HLA

mismatched transplants)

Neuchel et al. (72) 1446 Mixed URD TCR KIR2DS2: higher OS and DFS (HLA-C2C2 patients);

KIR2DS1: lower relapse but higher TRM (HLA-C2C2 patients);

KIR2DS5: lower relapse (HLA-C2C2 patients)

Gaafar et al. (74) 87 Mixed MSD TCR KIR2DS2: HLA-C1 match: higher aGVHD2−4 (AML);

KIR2DS1: HLA-C2 match: higher cGVHD (AML);

Donor presenting KIR2DL1 or 2DS2: higher cGVHD (AML)

Sahin et al. (95) 96 AML, CML MSD TCR KIR B/x donor: higher cGVHD

Heatley et al. (96). 152 Mixed MSD TCR KIR2DS2: higher OS (AML);

Cen-B/x donor: higher OS (AML) and lower aGVHD2−4 (AML);

Tel B/x donor: lower CMV reactivation

Babor et al. (97) 317 Pediatric ALL MSD, URD TCD#, TCR Higher ct-KIR score: lower relapse

Tordai et al. (98) 314 Mixed MSD, URD / The combination of KIR2DS1 donor with HLA-C2 pos patients:

higher OS

(Continued)
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TABLE 4 | Continued

References N Disease Donor Graft

manipulation

Clinical outcomes

Nakamura et al. (99) 288 AML MSD, URD TCD*, TCD# CMV reactivation: lower relapse and higher NRM (more evident in KIR

B/x donor or when donor presenting KIR2DS1)

Bultitude et al. (100) 119 AML URD TCD, TCR Cen-B/x donor: lower OS and NRM, higher IRM

Weisdorf et al. (101) 2662 AML URD TCD#, TCR KIR B/x donor: lower relapse and higher LFS (RIC)

Verneris et al. (46) 716 Pediatric AL URD TCD#, TCR KIR gene content: no significant impact on OS, DFS, relapse, TRM,

or aGVHD

Zhao et al. (49) 64 Mixed HRD TCD# KIR2DS3: higher aGVHD and cGVHD;

KIR2DS5: higher aGVHD

Symons et al. (102) 86 Mixed HRD TCD# KIR B/x donor: lower NRM and higher OS, EFS (KIR AA patients)

Chen et al. (76) 84 Mixed HRD TCD# KIR2DS2: higher OS (lymphoid cohort);

KIR2DS1: higher GVHD (lymphoid cohort)

Michaelis et al. (50) 57 Mixed HRD TCD* KIR B/x donor: lower relapse

Zhao et al. (77) 97 CML HRD TCD# KIR2DS3: lower EFS and OS, higher TRM;

KIR2DS5: higher EFS and OS, lower TRM;

KIR B/x donor: higher aGVHD3−4

Oevermann et al. (103) 85 Pediatric ALL HRD TCD* KIR B/x donor: lower relapse and better EFS;

High donor KIR-B content: lower relapse and better EFS

Mancusi et al. (51) 161 AML, ALL HRD TCD*

TCD*+Treg/Tcon

Tel B/x vs. Tel AA: lower NRM and higher EFS (NK-alloreactive donors)

KIR2DS1/3DS1: lower NRM and higher EFS (NK-alloreactive donors)

KIR 2DS1 binding to HLA C2: increased inflammatory cytokine

Zhao et al. (53) 180 Mixed HRD TCD# KIR2DS2: higher CMV reactivation

Solomon et al. (79) 208 Mixed HRD TCD# KIR B/x donor with 2DS2 vs. KIR B/x donor without 2DS2: higher OS

and DFS, lower relapse and NRM;

KIR B/x donor with 2DS2 vs. KIR A/A donor: higher OS and DFS,

lower NRM

Perez-Martinez et al.

(104)

192 Pediatric

mixed

HRD TCD*, TCD# KIR AA donor: higher relapse and lower DFS

pos: positive; neg: negative; NHL, non-Hodgkin lymphoma; PFS, progression-free survival; NRM: non-relapse mortality. TCD*: ex-vivo TCD; TCD#: in-vivo TCD.

tumor cells expressing self-HLA. In contrast, allogenic (117),
especially haploidentical, donor NK cell infusion demonstrated
wide prospects in the salvage treatment (115, 120, 121)
and prophylactic treatment (118, 119) of patients with
hematological malignancies. In allo-HSCT, whether the
reconstituted alloreactive NK cells prevent the disease relapse
remains controversial.

In HLA-mismatched transplants, the Perugia group first
observed that, in the context of T cell depletion, high stem
cell dose, and absence of post-transplant immune suppression,
KIR ligand mismatch reduced the risk of relapse and markedly
improved survival in patients with AML, but not in those with
acute lymphoblast leukemia (ALL) (36). This protective effect
on relapse or survival was supported by many clinical studies
(42, 44, 47, 51, 54), especially in myeloid disease (44, 47, 51) and
transplants with TCD grafts (42, 47, 51, 54). However, conflicting
results stemmed from many studies that failed to replicate these
results (39, 46, 58, 102), and some even reached the opposite
conclusions (41, 43, 45, 48, 50, 55).

Studies using the receptor-ligand model including HLA-
matched donor-recipient pairs also reported conflicting results.
Leung et al. first reported that the receptor-ligand model was
more accurate than the KIR ligand model when predicting the
risk of relapse, especially for lymphoid malignancies. Moreover,

the potency of the relapse protection positively correlated
with the number of receptor-ligand mismatch pairs (39).
Subsequently, the protective effect of receptor-ligand mismatch
has been confirmed by many investigations (58, 59, 66, 69, 71, 73,
76, 79, 80). Moreover, a survival advantage was also observed in
patients with receptor-ligand mismatch compared with receptor-
ligand matched pairs (59, 66, 69–71, 73, 76, 79). However, several
other studies described opposite results (63, 64, 75, 77, 78). Of
notice, two studies from Japan observed that the lack of the HLA-
C2 ligand for donor inhibitory KIR afforded relapse protection in
patients with AML and chronic myeloid leukemia, but increased
the relapse rate in patients with ALL (73, 75). To date, no
plausible explanation has been put forward for this disparity
in relapse.

In contrast to the controversial results described above,
transplantations from KIR haplotype B donors achieved greater
agreement. Cooley et al. observed that patients with AML
with KIR-B/x donors experienced a 30% improvement in RFS
compared with those with A/A donors (40). Subsequently,
many further investigations confirmed this beneficial effect of
the KIR-B haplotype on relapse and survival in patients with
hematological malignancies (50, 51, 57, 67, 72, 76, 79, 81, 85, 88–
92, 96, 98, 101–104). Five of these studies reported that the
protection effects mainly existed in the KIR Cen-B locus (67,
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88, 91, 92, 96). Babor et al. further suggested that the presence
of Cen-B with absence of Tel-B improved leukemia control
in pediatric patients with ALL (97). At the genetic level, the
KIR2DS2 gene, which is located on the Cen-B motif (72, 76, 79,
90, 92, 96), and the KIR2DS1 gene, located on the Tel-B motif
(51, 72, 82, 98), were found to be related to a decreased relapse
rate or an improved survival. However, several studies found that
Cen-B donors indicated a lower OS (56, 70, 100). Meanwhile,
Verneris et al. did not find any association between transplant
outcomes and NK cell alloreactivity or KIR gene content in
pediatric patients with acute leukemia (46).

Recently, Krieger et al. developed a scoring system, in which
interactions of multiple KIR genes and HLA ligands were
quantitatively analyzed. This comprehensive method raised an
improved strategy to select a donor and exhibited great potential
in the future (146).

Collectively, it is still controversial to determine an optimal
donor who exhibits the best NK cell function using the
three established KIR models. A better knowledge of NK cell
reconstitution after HSCT may promote a better understanding
of how NK cells affect the transplant outcomes in these patients.
More in-depth studies focusing on “functional changes in NK
cells” rather than “match or mismatch” may help us get closer to
an optimal donor.

NK CELL RECONSTITUTION AFTER
TRANSPLANTATION

Maturation and Differentiation of NK Cells
NK cells are derived from the CD34+ hematopoietic stem and
precursor cells in the bone marrow, which then migrate to the
periphery (147). Recent evidence suggested that not only the
bone marrow, but also secondary lymphoid tissues contribute
to the development of NK cells (148). According to the surface
expression of CD56, NK cells could be divided in two main
subtypes: CD56bright and CD56dim NK cells. CD56bright NK
cells exist mainly in lymph nodes and tonsils, while CD56dim

NK cells, the more mature subset transformed from CD56bright

NK cells, are dominant in the peripheral blood (7, 147, 149,
150). CD56bright and CD56dim NK cells are equipped with
distinct functions. The former population responds rapidly to
interleukin-mediated stimulation with proliferation and cytokine
secretion, while the latter population displays higher cytolytic
capacity and lower proliferation (7, 8, 149). During the process of
maturation, CD94/NKG2A is the first receptor that is expressed
on immature NK cells. Together with the downregulation of
CD56 expression, NK cells upregulate CD16 expression, lose
NKG2A, and acquire KIR receptors. Finally, a subset of CD56dim

cells continue to differentiate and express CD57, together
with an increased KIR expression and a completely abolished
proliferative ability (150, 151).

In HSCTs with post-transplant cyclophosphamide (PT-Cy) as
GVHD prophylaxis, NK cells experience two waves of expansion.
After graft infusion, peripheral NK cells and T cells (mainly
mature cells from the donor) were detectable at very low levels.
PT-Cy administration results in a further decrease in T cells and

NK cells, and NK cells are barely detectable in the peripheral
blood. Subsequently, the reconstituted NK cells gradually recover
and express high levels of CD56 and NKG2A. Around 60 days
after transplantation, the KIR expression returns to normal.
The expression of CD56 and NKG2A gradually decreases and
becomes stable at 9–12 months post-transplantation. Other
receptors expressed on NK cells, such as DNAM-1and 2B4,
also require several months to return to normal (152). In
summary, post-transplantation NK cell reconstitution is a long-
term process (124, 125, 152).

KIR Education: From Anergic to
Responsive
As described earlier, the random combination of KIR receptor
and HLA ligand can exist in healthy individuals. However, the
autoimmune attack is inhibited because each NK cell expresses
at least one self-inhibitory receptor. To avoid autoreactivity, NK
cells must undergo an education process: NK cells expressing
inhibitory KIR for self-HLA ligand (self-KIR) are educated,
which means that these cells can be inhibited by self-inhibitory
signals and become alloreactive against self-HLA-deficient
targets. In contrast, NK cells expressing an inhibitory KIR that
lacks a self-HLA ligand (non-self KIR) are uneducated, which
means that they are tolerant to the self but also to infected or
malignant cells (19, 21).

In the last decades, studies on KIR education have
much extended our knowledge of NK cell function. After
transplantation, most reconstituted NK cells express a donor-
like KIR repertoire that is significantly different from that
of recipient NK cells prior to transplantation (124, 151).
Therefore, reconstituted NK cells expressing donor KIR may
exert alloreactivity in recipients, or become anergic, as recipients
may not present the cognate HLA (Figure 3). Foley et al. and
Björklund et al. observed that reconstituted NK cells with non-
self KIR remained tolerant, while those with self KIR acquired
better functions after transplantation (65, 153). However, Yu
et al. reached the opposite conclusion that alloreactive NK cells
broke the self-tolerance and displayed functional capacities in the
first 3 months, then gradually acquired self-tolerance by day 100
post-transplantation (154). Rathmann et al. also suggested that
alloreactive NK cells were increased in the peripheral blood and
exhibited a GVL effect in the early period after transplantation
(155). One possible explanation for this observation is that the
infusion of a megadose of donor CD34+ cells may create a
transient donor dominant HLA environment in recipient bone
marrow, and the early reconstituted NK cells expressing non-
self KIR for the recipient may become educated by donor HLA
and acquire functions (156). After migration to a recipient-
dominant environment, reconstituted NK cells may gradually
lose their responsiveness.

In murine studies, it was observed that mature NK cells
from major histocompatibility complex (MHC) class I-sufficient
mice become hyporesponsive after transfusion into MHC class
I-deficient mice. Conversely, anergic NK cells from MHC
class I-deficient mice acquired functions after exposure to the
MHC class I-sufficient environment (157, 158). Using a murine
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FIGURE 3 | Self KIR and non-self KIR.

transgenic model of HLA-B∗27:05 exhibiting the Bw4 ligand
for KIR3DL1, Boudreau et al. observed similar results in stem
cell transplantation. CD34+ cells from KIR3DL1+ donors were
transfused to B27 Tg+ and Tg− mice, respectively. A functional
analysis suggested that the most cytotoxic responsive cells were
KIR3DL1+ NK cells from Bw4+ donors and developed in
B27 Tg+ mice (Bw4+ donors and Tg+ mice), while the least-
responsive cells were KIR3DL1+ NK cells from Bw4− donors and
developed in Tg− mice (Bw4− donors and Tg− mice). Recipients
with the other two combinations (Bw4+ donors and Tg− mice
and Bw4− donors and Tg+ mice) displayed a medium level of
responsiveness. The stepwise escalation of NK cell responsiveness
suggested that both the donor and recipient MHC environments
are critical for the maintenance and adjustment of NK cell
education (159).

Recently, the Nowak team proposed that inhibitory KIR
(iKIR)-HLA pairs could predict the post-HSCT NK cell

education status, i.e., donors presenting cognate HLA for donor
iKIR and recipients lacking it predict a downward education
level; in contrast, recipients presenting cognate HLA for donor
iKIR and donors lacking it predict an upward education level.
Those authors found that the decrease in iKIR–HLA pairs post-
transplantation is associated with a higher relapse and poorer
survival (160–162), indicating that reconstituted NK cells acquire
better functions after interaction with more cognate HLA class
I ligands in recipients. Zhao et al. also observed that, when
the donors and recipients expressed three major HLA ligands
(HLA-C1, C2, Bw4), patients with AML and myelodysplastic
syndrome (MDS) experienced the lowest relapse rate, and
NK cells expressing three inhibitory receptors exhibited the
greatest cytotoxicity and cytokine responsiveness against K562
targets (163).

Based on the findings described above, it is likely that
three factors (donor KIR, donor HLA, and recipient HLA) all
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contribute to the variation in NK cell function. Therefore, the
KIR ligand and receptor-ligand models, which only take two
factors into account, may not accurately predict donors that
exhibit the greatest NK cell function post-transplantation.

Factors That Affect NK Cell Reconstitution
Although CMV reactivation suggests an immune-compromised
state, patients who experienced CMV reactivation had a lower
relapse rate or better survival (70, 98, 99, 164). This protective
effect might be attributed to the rapid maturation of NK
cells. During CMV reactivation, NK cells that express NKG2C
rapidly expand and continue to increase for 1 year (165). The
number of CD56dim NK cells in the peripheral blood, their KIR
expression, and IFN-γ production in response to K562 cells
were also elevated in patients who developed CMV reactivation
(165–173). Furthermore, nearly 60% of NKG2C+ NK cells
achieved complete differentiation and expressed CD57 after
CMV reactivation. These cells were termedmemory-like NK cells
and could be detected long after the primary CMV infection,
offering a long-lasting protection (147, 166). In contrast, for
non-CMV-infected patients, a higher proportion of NKG2A+

NKG2C− KIR− NK cells in the peripheral blood indicates a
slow NK cell maturation. Interestingly, CMV antigen exposure to
recipients also leads to an increased frequency of NKG2C+ NK
cells, accompanied by increased KIR expression and decreased
NKG2A expression (174).

As mentioned above, T cells in the graft impair the recovery
of NK cells and KIR reconstitution (127–130). A possible
explanation for this observation is that T cells compete with NK
cells for IL-15, a cytokine that regulates immune cell survival
and development (175, 176). Unlike ex-vivo TCD grafts, pre-
transplant anti-thymocyte globulin (ATG) administration results
in partial T cell depletion. Two recent studies found that ATG
administration promoted NK cell recovery and delayed the
reconstitution of CD4+ and CD8+ T cells, while sparing the
effector memory T and regulatory T cells (Tregs) (177, 178).
Compared with ATG, PT-Cy is more efficient in eliminating NK
cells, with a higher residual ratio of CD4+ T cells and Tregs
(179). Of note, several studies showed that T cells in the graft
may contribute to a better NK cell function (153, 180). Several
studies reported that CD56bright NK cells in lymph nodes could
be stimulated by IL-2-producing T cells, resulting in NK cell
maturation with higher IFN-γ secretion and cytotoxic functions
(181, 182).

The relationship between GVHD and NK cell reconstitution
remains controversial. Previous studies demonstrated that
GVHD correlated with an impaired NK cell reconstitution and
KIR expression (183–185). Ullrich et al. found that CD56bright

NK cells were dramatically decreased in patients with GVHD,
while CD56dim NK cells, the more mature subtype, did not show
significant changes (185). In addition, Hu et al. found that the
NKG2A subset of CD56dim NK cells was significantly decreased
in patients with GVHD. Remarkably, a functional analysis
showed that NKG2A+ NK cells from GVHD and non-GVHD
patients exhibited a comparable GVL effect. Furthermore, the
co-culture of donor T cells with NKG2A+ cells from non-
GVHD patients suggested that NKG2A+ NK cells inhibit

T cell proliferation and activation, indicating that the decreased
number of NKG2A+ NK cells might be a cause, rather than a
consequence, of GVHD (186). In addition, the administration of
immunosuppressive agents could also affect immune recovery.
Both Ullrich et al. and Giebel et al. suggested that steroid
treatment, rather than GVHD, was related to the delayed NK cell
reconstitution (184, 187).

FUTURE DIRECTIONS

Numerous studies have found that alloreactive NK cells affect
treatment outcomes. Although great progress has been made
through both pre-clinical and clinical investigations based on the
three KIR models, the controversy remains, especially regarding
the benefits of KIR alloreactivity on relapse control. Recent
findings showed that donor KIR, donor HLA, and recipient HLA
environment all contribute to the variation of NK cell function.
The newly proposed iKIR-HLA pair model needs to be further
examined in the future.

NK cells, the lymphocytes that are reconstituted first after
transplantation, could be negatively affected by the T cells in the
graft. However, NK cell function could also be promoted through
T-cell-mediated activation. The exact interactions between NK
and T cells, as well as the strategy to trigger a potential synergistic
NK and T cell effect remains to be investigated.

It is noteworthy that the protective role of NK cell
alloreactivity in relapse protection mostly exists in myeloid
disease; in fact, some studies even found that NK cell
alloreactivity increased the risk of relapse for patients with
lymphoid disease. The discrepancy between expressing ligands
among different diseases and their binding affinity to KIR should
raise more attention. In this way, we might identify which
patients would benefit from the KIR-based donor selection.

CONCLUSION

In the early period after transplantation, reconstituted
alloreactive NK cell may not directly influence GVHD
occurrence, as it is immature and it could be affected by T
cells and immunosuppressive agents. The compatibility between
donor KIR and the recipient HLA ligand may protect patients
from infection. In the late period after transplantation, the
iKIR-HLA pair model may reflect the variation in NK cell
function, and quantitative analysis of KIR-HLA interactions
may provide more convincing results regarding relapse
and survival.
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