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Hubs in biological interaction networks exhibit low
changes in expression in experimental asthma
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Asthma is a complex polygenic disease involving the interaction of many genes. In this study, we
investigated the allergic response in experimental asthma. First, we constructed a biological
interaction network using the BOND (Biomolecular Object Network Databank) database of
literature curated molecular interactions. Second, we mapped differentially expressed genes from
microarray data onto the network. Third, we analyzed the topological characteristics of the
modulated genes. Fourth, we analyzed the correlation between the topology and biological function
using the Gene Ontology classifications. Our results demonstrate that nodes with high connectivity
(hubs and superhubs) tend to have low levels of change in gene expression. The significance of our
observations was confirmed by permutation testing. Furthermore, our analysis indicates that hubs
and superhubs have significantly different biological functions compared with peripheral nodes
based on Gene Ontology classification. Our observations have important ramifications for
interpreting gene expression data and understanding biological responses. Thus, our analysis
suggests that a combination of differential gene expression plus topological characteristics of the
interaction network provides enhanced understanding of the biology in our model of experimental
asthma.
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Introduction

There is currently an epidemic of allergic disorders including
asthma in the US and other developed countries (Braman,
2006). A recent review of the literature identified over 100
genes correlated with asthma in humans by association
studies, and over 150 genes in animal models (Ober and
Hoffjan, 2006). Thus, both human and animal studies indicate
that asthma is a complex polygenic disease (Van Eerdewegh
et al, 2002; Xu et al, 2002). In this study, we performed a
systems analysis of differential gene expression in an experi-
mental model of asthma to investigate the topological
characteristics of modulated genes in a biological interaction
network.

We first constructed a biological network from experimen-
tally documented molecular interactions using the Biomole-
cular Interaction Network Database (BIND), a component
database of BOND (Biomolecular Object Network Databank),
which is the largest available database of murine molecular
interactions. We quantitated differential gene expression with
oligonucleotide microarrays in a model of experimental
asthma that has been well characterized and shown to develop
airway hyperresponsiveness, elevated serum IgE and airway

eosinophilia. Next, we mapped the modulated genes onto the
interaction network. To investigate the relationship between
differentially expressed genes and the interaction network, we
performed topological analyses of the network architecture.
Our results demonstrated that genes with a high level of
change in expression are more likely to be peripheral nodes
(low connectivity) in the network, whereas hubs (nodes with
higher connectivity) and superhubs (nodes that link hubs)
tend to have a lower level of change in expression. The
significance of our observations was confirmed by permuta-
tion tests. To analyze the biological roles of the modulated
genes, we assessed the Gene Ontology (GO) of nodes and
hubs. Our analysis identified different annotations of mole-
cular functions based on the topological classifications.

Result and discussion

Differentially expressed genes in murine asthma

To investigate differential expression of genes in the allergic
immune response that orchestrate asthma, we used oligonu-
cleotide microarrays to quantitate changes in gene expression.
We analyzed a model of asthma previously studied in our
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laboratory in which wild-type (BALB/c) and recombinase
activating gene-deficient (RAG KO) mice were sensitized and
challenged with allergen (ovalbumin, OVA) or saline (PBS)
control (Krinzman et al, 1996; Velasco et al, 2005). Wild-type
mice develop increased serum IgE levels, broncho-alveolar
lavage (BAL) eosinophilia, increased BAL IL-13 and IL-4
secretion and airway hyper-responsiveness. The RAG KO mice
lack an adaptive immune response and do not generate an
allergic asthmatic response (Mombaerts et al, 1992). We
analyzed gene expression of whole lung RNA in each
experimental group in quadruplicate by Affymetrix Mouse
Genome 430 2.0 microarrays. Each array contains over 45 000
probe sets representing approximately 34 000 well-character-
ized mouse genes. Low expressing and constantly expressing
genes were filtered, leaving 11 264 genes subject to analysis.
The expression levels of the genes exposed to the OVA allergen
versus PBS control were compared by t-statistics. After
correcting for false discovery rate (FDR) (Benjamini and
Hochberg, 1995), we identified 710 genes that were signifi-
cantly modulated with FDR adjusted P-value below 0.05
(Supplementary Table I).

Construction of a murine interaction network of an
allergic response

We compared six broadly used databases of known murine
molecular interactions. We analyzed the databases for their

screening and inclusion criteria of interactions as well as the
size of the databases (Supplementary Table II). These analyses
indicate that BIND is the largest currently available database of
murine interactions. Hence, we constructed a mouse biological
interaction network using the BIND database, and visualized it
with Cytoscape v2.3 software (Figure 1). Our initial interaction
network contained all interactions documented in BIND;
however, our preliminary analysis focused on 2054 genes that
were present in both the Affymetrix Mouse Genome 430 2.0
microarray and the BIND database. There were 2584 molecular
interactions between these 2054 genes. In the mouse gene
network, our analysis showed a power law decay of
connectivity, which is consistent with a ‘scale free network’
reported for most biological networks analyzed to date
(Barabasi and Oltvai, 2004) (Supplementary Figure 1). To
investigate the relationship between differentially expressed
genes and the network, we labeled the up- and downregulated
genes by red and blue, respectively (Figure 1).

Degree of differential expression is negatively
correlated with connectivity

In our network, we identified 106 genes that were significantly
modulated. To investigate the topology of the differentially
expressed genes, we plotted the scatter plot of the t-statistics
versus connectivity (Figure 2A). Interestingly, we found that
genes with higher connectivity tend to have a lower dynamic

Figure 1 Mouse gene network from BIND. Red and blue spots represent genes that were significantly up- or downregulated.
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range of t-statistics, and conversely, genes with lower
connectivity tend to have higher dynamic range of t-statistics.
As expected, no correlation was detected in the RAG KO mice
lacking the adaptive immune response (Figure 2B). By
integrating gene expression data with the interaction network,
our analysis demonstrated that genes exerting major biological
roles in general (based on a higher level of connectivity)
(Jeong et al, 2001; Haynes et al, 2006) have lower levels of
differential expression in the allergic immune response and
thus are unlikely to be identified solely by expression
measurements.

To determine the significance of our observations, we
grouped the genes with the same connectivity, averaged the
top 20% of the highest absolute t-statistics in each group and
calculated the rank correlation between the average t-statistics
and the connectivity. There are 24 groups of genes with
connectivity ranging from 1 to 191; however, only gene groups
with connectivity below 13 having more than five genes per
group were used in the analysis. We then tested the
significance of the negative correlation by four permutation
tests. In the first permutation test, we randomly shuffled the
t-statistics among genes, averaged the top 20% of the highest
absolute t-statistics for each connectivity group and then
calculated the rank correlation to connectivity. In the second
test, we randomly picked eight microarrays from the original
16 including data from both the wild-type and knockout mice,
split them into two groups and calculated the t-statistics for
each gene. Subsequently, for each group, we averaged the top
20% of the highest absolute t-statistics and calculated the rank
correlation to connectivity. In the third test, we randomly
picked eight microarrays from the original 16, split them into
two groups and calculated the t-statistics for each gene.
Subsequently, for each connectivity group, we averaged the
t-statistics of the genes that belong to the top 20% in the
original data set and then calculated the rank correlation
between the average t-statistics and the connectivity. The first
three permutations all randomized the differential expression
while still using the original gene network topology. In the
fourth permutation test, we used the original differential
expression data but created a random network by randomly

re-assigning edges between nodes while maintaining the same
number of nodes and edges as original network, and then
calculated the correlation between connectivity and the
average of top 20% highest absolute t-statistics in each
connectivity group. As the degree of connectivity in a random
network has a much smaller dynamic range than a scale free
network, we cannot directly compare the rank correlations as
performed in the previous three permutation tests. Therefore,
we used the corresponding null distribution as a control, that
is, we calculated the P-value for rank correlation and then
compared the P-value of our interaction network with the
P-value of the random network.

We performed each of the four permutation tests 1000 times
and compared the rank correlation of these permutations to
the rank correlation calculated from the original data of wild-
type and knockout mice (Table I). We found that the rank
correlation for wild-type mice was significantly lower than the
permutations, with all four P-values below 0.05. As expected,
the rank correlation for the RAG KO mice was not significant.
We also averaged the top 10 or 30% of each connectivity
group, or pooled all genes with connectivity greater than 13 as
the 14th group in our analysis, and obtained similar results
(data not shown).

Characterization of hub and superhub genes

To better understand the function of the hubs in our interaction
network, we next determined if the topology of our network
was consistent with a hierarchical structure. First, we plotted
connectivity versus average clustering coefficient, which
showed a power law decay (Supplementary Figure 2), which
is the signature of a hierarchical network. In addition, the
average clustering coefficient was 0.15, which is approxi-
mately an order of magnitude greater than for a random
network and consistent with a hierarchical network (Ravasz
et al, 2002). In our interaction network, we defined ‘hubs’ as
nodes with connectivity greater than 5 as reported previously
(Han et al, 2004; Patil and Nakamura, 2006), and a clustering
coefficient below 0.03. When identifying ‘hub’ genes, our
objective was to select nodes that were candidates to function
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Figure 2 Scatter plot of t-statistics versus connectivity for genes modulated in OVA-specific allergic immune response. (A) Wild-type mice. (B) RAG KO mice. X-axis
is the log 2 of connectivity (no. of genes directly connected) and Y-axis is the absolute of t-statistics. Red and blue spots represent genes upregulated or downregulated,
respectively, in response to OVA sensitization and challenge with individual P-values below 0.05. Empty circles correspond to non-differentially expressed genes.
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as signaling centers while simultaneously excluding ‘molecu-
lar machines.’ Therefore, we used high connectivity and low
clustering coefficient as our criterion. We also analyzed our
network using a hub definition of connectivity greater than
5 without considering the clustering coefficient; the results
were similar (data not shown). In our analysis, we identified
88 hubs of which seven (B8%) were significantly modulated.

Our next objective was to analyze the interconnections
among the hubs. We postulated that the hubs were linked in a
hub network that was connected via a core of ‘superhubs.’ For
this analysis, we found the weighted shortest paths connecting
every pair of hub genes to generate a hub network (see
Materials and methods), identified nodes with connectivity
greater than 5 in the shortest-path hub network and termed
these nodes as ‘superhubs’. We identified 16 superhubs
(Supplementary Table III). Consistent with our previous
observation that genes with high connectivity tend to have
low levels of change in expression, none of the superhubs were
significantly modulated. A box plot of the t-statistics of
superhub, hub and peripheral node genes showed that the
superhub genes have a smaller dynamic range than other
genes (Supplementary Figure 3). To test the significance, we
compared the variation of t-statistics of the three groups of
genes by F-statistics. Our analysis showed that the variation of
t-statistics of superhub was significantly lower than that of hub
genes and non-hub genes, with P-value 0.05 and 0.03,
respectively. The difference between hub genes and other
non-hub genes was not significant (P¼0.38).

After identifying superhubs in the hierarchical architecture
of the network based on topological criteria, we next
investigated the GO annotations of the superhubs compared
to the peripheral nodes using GeneNotes software (see
Materials and methods). We determined if specific molecular
functions were significantly overrepresented in the superhubs
versus the peripheral nodes of the network. Consistent with
our hypothesis, our analysis showed that GO molecular
functions in the superhubs included evolutionarily ancient
processes such as nucleic binding and transcription regulation
(Supplementary Table IV). In contrast, overrepresented
annotations in the peripheral nodes included more specialized
functions (e.g., cytolysis, lipid modification, response to
hormone stimulus and induction of apoptosis) (Supplemen-
tary Table V). Thus, the relevance of our investigation of the
hubs and superhubs is supported by our analysis showing that
they have significantly different molecular functions. Further-
more, our results suggest a modular structure to the
hierarchical architecture of the network (Ravasz et al, 2002),
with the highly connected superhubs performing the most
basic biological functions (evolutionarily early), and the more
specialized functions (evolutionarily late) performed by the

peripheral nodes. Furthermore, changes in gene expression
occurred predominantly in the genes (nodes) with low
connectivity, but not in the superhubs.

Conclusion

Network analysis has been shown to be a powerful tool to
understand biological responses (Sharan and Ideker, 2006). In
this paper, we used microarrays to analyze gene expression of
allergen-treated mice in experimental asthma. To investigate
the regulation of the allergic response, we constructed a murine
interaction network from curated data in BIND and mapped the
expression profile onto our interaction network. Interestingly,
we found an inverse correlation between the level of change of
expression and the connectivity of a gene. This observation has
both methodological and biological implications.

First, a major challenge in the analysis of microarray data is
interpreting the biological relevance of changes in expression.
Common approaches rely on fold change or statistics (e.g.,
t-statistic). As both approaches preferentially select genes with
large changes in expression, our analysis suggests that many
genes with important biological functions would not be
detected. Specifically, hub and superhub genes, which have
high connectivity and putatively high biological importance,
may not be detected. Thus, our study indicates that biological
understanding is enhanced by combining information includ-
ing levels of change in gene expression plus topological criteria
from the analysis of interaction networks.

Second, the mechanisms of regulation of biological
responses by webs of molecular interactions remain poorly
understood. Our study indicates that at least some biological
responses, for example, an allergic immune response, are
mediated by larger changes in nodes with low connectivity and
smaller changes in the hubs and superhubs. Our observations
suggest the hypothesis that ‘fine-tuning’ or regulating an
immune response is facilitated by modulating genes with low
connectivity. This notion is indirectly supported by previous
studies showing that the deletion of ‘hub’ genes, which tend to
encode proteins with greater intrinsic disorder in yeast,
produced a higher frequency of synthetic sick phenotype or
lethal effects (Jeong et al, 2001; Haynes et al, 2006) than the
deletion of genes with low connectivity (Barabasi and Oltvai,
2004). Therefore, we postulate that the negative correlation we
observed in this allergic immune response analysis may be a
general characteristic of gene regulation in other biological
responses.

Our study was restrained to the correlation between the
regulation of mRNA levels and molecular interactions
obtained from the BIND database, with observations obtained
from a murine experimental model of asthma. Thus, there are
several potential caveats to our observations. For example,
additional important regulatory events might not be detected
due to experimental conditions, experimental noise or the
limited power of the study. In addition, although BIND remains
the largest currently available database of murine interactions,
this knowledge is incomplete and potentially biased by
experimental techniques or research interests.

Future studies combining more information into our
experimental approach should be able to provide a more
complete view of the correlation between gene regulation and

Table I P-value of the rank correlations by permutation tests

Permutation method P-value for
wild-type mice

P-value for
RAG KO mice

1 0.025 0.424
2 0.048 0.382
3 0.003 0.125
4 0.013 0.261
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network topology. For example, it will be important to
determine if other biological responses, in addition to the
allergic immune response, are similarly regulated. Interest-
ingly, our study shows the limitations of interpreting levels of
change in gene expression in isolation, and that concomitant
analysis of gene expression data and topologic interaction
networks may provide critical insights into biological pro-
cesses. In conclusion, we demonstrate that hubs, and to a
greater degree superhubs, exhibit low levels of change in gene
expression during an allergic immune response, but based on
topological analysis of interaction networks, are likely to play
an important role in regulating the biological response.

Materials and methods

Protocol for murine experimental asthma

Six- to eight-week-old BALB/c and RAG KO murine strain (which
generates only an innate immune response owing to the absence of
functional T and B lymphocytes) mice were purchased from Jackson
Laboratory (Bar Harbor, ME, USA). The mice were maintained according
to the guidelines of the Committee on Animals and the Committee on the
Care and Use of Laboratory Animals of the Institute of Laboratory
Animal Resources National Research Council. Mice were sensitized and
challenged with the allergen chicken OVA. Briefly, mice were sensitized
via intraperitoneal injection with 10mg OVA (Sigma, St Louis, MO, USA)
and 1 mg Al(OH)s (alum) (Sigma, St Louis, MO, USA) in 0.2ml of PBS,
followed by a boosting injection on day 7 with the identical reagents.
Control mice received 1 mg alum in 0.2 ml of PBS without OVA. On days
14–20, mice received aerosolized challenges with 6% OVA or PBS for
20 min/day via an ultrasonic nebulizer (Model 5000; DeVilbiss,
Somerset, PA). All groups were killed at day 21. Each experiment was
repeated in quadruplicate on different mice independently.

RNA preparation

Total RNA was isolated using TRIZOL reagent (Gibco-BRL Life
Technologies) according to the manufacturer’s protocol. RNA purity
was initially determined by spectroscopy with a 260/280 ratio¼1.85–
2.01 and then by scanning with an Agilent 2100 Bioanalyzer using
the RNA 6000 Nano LabChips. Samples not meeting these basic
parameters of quality were excluded from microarray analysis.

Microarray methods

The DNA microarray studies were performed in collaboration with the
Partners Genetics & Genomics Core Facility of the Harvard Medical
School and Partners Healthcare Center for Genetics and Genomics. All
protocols were performed according to the Affymetrix GeneChips

Manual. The cDNA synthesis was performed using 100 pM of the T7 dT
primer 50-GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGG
(dT)24. The cDNA and double-stranded product were processed using
the GeneChip Cleanup Module kit. In vitro transcription (IVT) and
preparation of labeled RNA was performed using the ENZO BioArray
High Yield RNA Transcription Labeling Kit. The IVT sample was
quantified on a Bio-Tek UV Plate Reader. Twenty grams of the IVT
material was hybridized to the Affymetrix Mouse Genome 430 2.0
array (Affymetrix, Santa Clara, CA). The arrays were incubated in a
model 320 hybridization oven at a constant temperature of 451C
overnight. The microarray was washed on a Model 450 Fluidics station
and scanned on an Affymetrix Model 3000 scanner with autoloader.

Microarray data analysis

Raw microarray data were normalized and gene expression levels were
calculated by the GCRMA algorithm (Wu and Irizarry, 2004) using R
language (http://cran.r-project.org/) and Bioconductor project
(http://www.bioconductor.org/). The expression data were deposited

in GEO database (accession number GSE6858). The expression levels
were log 2 transformed before any analysis. To eliminate genes with
low levels of expression or constant expression, a filtering process was
applied to the whole data set of 45 000 probe sets. For each gene, we
calculated the average expression levels of the four replicates in OVA
treatment and control groups, and included one with the maximum
across conditions. We eliminated genes with low expression (max-
imum conditional mean of gene expression below 20), and genes with
coefficient of variation across samples below 0.05. The remaining
subset of genes was subjected to later analysis.

The mean of log-transformed expression level of each gene under
different conditions (control and OVA stimulated) was compared by
t-statistics and raw P-values were calculated. In order to correct
for multiple hypothesis tests, these raw P-values were adjusted to
control FDR (Benjamini and Hochberg, 1995). We selected a set of
differentially expressed genes with the criterion of FDR adjusted
P-values below 0.05.

Gene interaction network analysis

We compared six broadly used databases of known murine molecular
interactions. We analyzed the databases for their screening and
inclusion criteria of interactions as well as the size of the database
(Supplementary Table II). Molecular interaction data were down-
loaded from the BIND (http://bond.unleashedinformatics.com/),
analyzed by R language and visualized by Cytoscape v2.3 software
(http://www.cytoscape.org/). (The Cytoscape file of interaction net-
work and annotations of gene symbol as well as up- or downregulated
genes are in Supplementary information.) In order to map the mRNA
expression data onto gene interaction network, we used Entrez Gene
ID as the unique identifier for genes. When there are multiple probe
sets corresponding to the same gene, we used the one with the
maximum t-statistic as a representative.

Finding a unique shortest path between a pair of
genes

A shortest path represents the minimum requirement for the
transduction of a response from one molecule to another. Also, the
molecules involved in multiple shortest paths may be the important
upstream regulators that control many downstream effectors. Because
the BIND database is an assembly of information from various sources,
simply counting the number of intermediate genes as the length of the
shortest path will often generate multiple shortest paths with the same
length. Also, the total number of shortest paths or the number of
molecules involved in these shortest paths will grow exponentially
with the increase in the number of starting nodes. We addressed this
issue by weighting the edges based on the clustering coefficient of
nodes. We calculated clustering coefficient of each node, and assigned
weight to an edge based on the sum of the clustering coefficient of the
two genes being connected by the edge. Therefore, the length of the
paths became the sum of edge weights along the path instead of simply
counting the number of genes.

Gene ontology analysis

GO provides three structured, controlled vocabulary (ontology) to
describe gene and gene product attributes in any organism, in terms of
their associated biological processes, cellular components and
molecular functions. After selecting differentially expressed genes,
we employed GeneNotes software (http://combio.cs.brandeis.edu/
GeneNotes/index.htm) to identify the enriched GO terms associated
with subsets of nodes. The GeneNotes software uses a hyper-geometric
test to compare the number of genes in the experimental group within
each GO term with the total number of genes in that term, and reports a
P-value for each GO term. In the GO reports listed in Supplementary
Tables IV and V, we reported P-values for each GO term. Because GO
annotation has a hierarchical structure and the GO terms are correlated
with P-values but not independent, we did not adjust P-values for
multiple hypothesis testing.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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