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Earthquake lubrication and healing explained
by amorphous nanosilica
Christie D. Rowe 1, Kelsey Lamothe1, Marieke Rempe2,7, Mark Andrews3, Thomas M. Mitchell4,

Giulio Di Toro 2,5, Joseph Clancy White6 & Stefano Aretusini5

During earthquake propagation, geologic faults lose their strength, then strengthen as slip

slows and stops. Many slip-weakening mechanisms are active in the upper-mid crust, but

healing is not always well-explained. Here we show that the distinct structure and rate-

dependent properties of amorphous nanopowder (not silica gel) formed by grinding of quartz

can cause extreme strength loss at high slip rates. We propose a weakening and related

strengthening mechanism that may act throughout the quartz-bearing continental crust. The

action of two slip rate-dependent mechanisms offers a plausible explanation for the observed

weakening: thermally-enhanced plasticity, and particulate flow aided by hydrodynamic

lubrication. Rapid cooling of the particles causes rapid strengthening, and inter-particle bonds

form at longer timescales. The timescales of these two processes correspond to the time-

scales of post-seismic healing observed in earthquakes. In natural faults, this nanopowder

crystallizes to quartz over 10s–100s years, leaving veins which may be indistinguishable from

common quartz veins.
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S lip weakening is fundamental to all earthquakes1, but
there is no known universal mechanism for controlling the
loss of rock strength2,3. The lack of positive heat flow

anomalies around major continental faults suggests that the
shear resistance on faults may be extremely low during
displacement, but paradoxically, stresses near the faults may be
high4. The proposal of “silica gel” lubrication, thought to cause
extreme loss of shear resistance in high velocity friction
experiments on quartz-rich rock, offered a tantalizing explana-
tion for dramatic coseismic weakening which might apply
broadly within continental crust5,6. The weakening effect is
apparently associated with the availability of water, and is
potentially inhibited when experiments are performed under
dry conditions, although the specific dependency may be
complicated7,8. In experiments, the strength of sheared inter-
faces recovers over minutes to hours after shearing5,6,9,10, but
the causes and mechanisms remain enigmatic. We performed
shearing experiments on quartz-rich rock, but did not find
evidence for silica gel, where gel is a “jellylike substance formed
by a colloidal solution in its solid phase”11. Here we show the
composition and structure of the frictional wear material and
propose an alternative explanation for the lubricating and
healing behaviors.

Results
Friction experiments. Novaculite (chert) cores were acquired
from Dan’s Whetstone Company, Percy, Arkansas, USA. The
novaculite occurs in the whetstone quarry as cherty nodules
within low-grade limestone. The novaculite consists of a porous
aggregate of euhedral ∼10 µm quartz grains with traces of calcite
and oxide minerals, and abundant fluid inclusions along grain
boundaries and healed fractures. The friction experiments were
conducted at the Department of Geosciences of the Universit’a
degli Studi di Padova, Padua, Italy, using the ROtary-Shear
Apparatus ROSA. Two cylinders were sheared against each other
at atmospheric humidity. After the experiment, the sample halves
were recovered from the machine as one in order to preserve the
wear material.

Shearing experiments were performed at equivalent velocities
(as defined by 12) of 100 µm/s, 1 mm/s, 1 cm/s, and 10 cm/s at
normal stresses of 2.5 MPa for total displacements of 3 m and
30 m (Table 1). Weakening was observed in every experiment,
and most experiments achieved a steady state friction value after
> 0.3 m of slip. The friction coefficient evolved from ∼0.7
gradually to a steady state value of ∼0.45–0.6 in the 100 µm/s,
1 mm/s, and 1 cm/s experiments, and decreased dramatically to <
0.1 in the 10 cm/s experiments (Fig. 1a).

Table 1 Summary of friction experiments and calculated temperature rise from FEM model

Sample run Equivalent velocity (m/s) Total slip
(m)

Normal stress
(MPa)

Bulk ΔT (°C) from
FEM model

Bulk ΔT (°C) from half-space
analytical solution

Peak ΔTflash
(°C)

94 (failed) 0.1 m/s in 10 s (velocity ramp) 1 5 – – –
95* 0.1 m/s in 2 s (velocity ramp) 1 2.5 – – –
96 0.1 3 2.5 28.5 42.5 1006
97* 0.1 3 2.5 23.6 45 1006
98* 0.1 30 2.5 – – 1006
99 0.1 3 2.5 – – 1006
100 0.1 3 2.5 – – 1006
101* 0.1 3 2.5 – – 1006
102* 0.1 30 2.5 – – 1006
110 (failed) 0.001 3 2.5 – – –
111* 0.01 3 2.5 38.0 60 318.2
112* 0.0001 3 2.5 2.8 7 31.8
123* 0.001 3 2.5 7.5 18 100.6

*denotes runs whose wear material was characterized in detail with one or more of TEM, SEM, FT-IR, and Raman Spectroscopy
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Fig. 1 Results of friction and numerical experiments. a Coefficient of friction vs. displacement in novaculite friction experiments. b Temperature distribution
from finite element model at the end of the experiments for fastest slip rate (10 cm/s, experiment 96) and c slower experiment (1 mm/s, experiment 123)
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We estimated the bulk temperature rise of the slipping zone
during the experiments using two methods: a finite element model
with Comsol Multiphysics and a half-space analytical solution13.
Fig. 1b, c show the geometry of the half-model, with novaculite in
the center (density= 2750 kgm−3, thermal diffusivity= 5m2s−1,
heat capacity= 0.75 × 105 J (kg°C)−1); steel frame (density= 8000
kgm−3, thermal diffusivity= 16m2s−1, heat capacity= 0.5 × 105 J
(kg°C)−1), in contact with air (density= 0 kg/m3, thermal diffusiv-
ity= 1m2s−1, J (kg°C)−1). The Comsol model incorporated time-
varying friction measured during the experiment as an input.
Both approaches show average slipping zone temperature rises
of ≤ 60° in every experiment (Table 1). We also estimated the
peak temperature at asperities during flash heating using the
approach of Violay et al.14 for a range of slip rates and asperity
sizes. The results of temperature calculations are presented in
Figs. 1, 2 and Table 1.

Microstructure and composition of wear material. The starting
material (novaculite) is composed mostly of ∼10–50 µm quartz
with trace amounts of calcite and has rough-walled pores about
100 µm in diameter (Fig. 3a). In all experiments, wear material on
the sheared interface formed a ∼5–30 µm-thick layer of < 1 µm
ellipsoidal particles (Fig. 3b, c, Fig. 4). High sphericity is char-
acteristic of amorphous silica nanoparticles15, so rolling is not
required to explain their shape. The particles form clusters up to
100–1000 nm across (Fig. 3) which explode under the electron
beam, suggesting the presence of volatiles (Fig. 3c; compare to16).
The nanopowder layer is cut by discrete slip surfaces ∼1 µm thick
(Fig. 3b, white arrows). When the novaculite cores are opened to
expose the sliding surface in plan view (Fig. 3c–f), the thin
localized shears are revealed to be formed of discrete dense plates
with smooth surfaces marked by slip-parallel striations, inter-
layered within the nanopowder layer (Fig. 3e–f). We interpret
these plates as the remnants of discrete slip surfaces. Fragments of
plates are found in the inter-plate nanopowder (Fig. 3f), showing

that development, breaking and reforming of striated plates
occurred during a single experiment. The sliding surface of the
novaculite underneath the wear material displays a shiny polish
(Fig. 3d, ss). This polish is due to smoothing of the novaculite
surface by initial abrasion, as well as by smearing and adhesion of
nanopowder across the novaculite to fill surface pores. We
observe no evidence of viscous fluids on the slip surfaces, so no
evidence supports the formation of gel or melt during the
experiments (consistent with9, c.f 3).

We used transmission electron microscopy (TEM) to examine
the crystallinity and nanostructure of the wear material (Fig. 4).
The nanopowder is predominantly composed of 100–1000 nm
clumps of rounded to ellipsoidal amorphous nanoparticles,
∼10–100 nm in diameter, and chips of quartz (Fig. 4, similar
to9). The relict quartz grains are larger (≤1 µm; Fig. 4a, b, white
arrows), and have stepped, fractured edges showing damage
caused by comminution and frictional wear. The powder layer
contains angular fragments of more densely packed particles
(Fig. 4c) which correspond to the shiny striated plates (Fig. 3e–f).
At the sub-micron scale, it is clear that the sharp shiny plate is
formed from gradational packing of the same amorphous
nanoparticles, with increasing packing density toward the shiny
slip surface (along white arrows in Fig. 4c). The fragments of
broken slip surfaces are rotated relative to one another (as
demonstrated by opposite directions of gradational packing in the
two fragments of Fig. 4c), confirming that the slip surfaces
formed and were broken up into fragments during sliding.

Raman spectroscopy was employed to characterize Si–O
bonding in the nanopowder for comparison to crystalline and
amorphous species of silica, and investigate the form of any water
present. We used a 633 nm He–Ne excitation laser Raman
microprobe spectrometer in the Materials Chemistry lab at
McGill University. Spectra were collected from the powdered
novaculite (starting material), the wear material, and a control
nanosilica (a lab-made 2 µm nanosilica powder, Nyacol Nyasil 5;
Fig. 5a). Shear-related structures were also interrogated without
physical disturbance by using Confocal Raman microspectro-
scopy in situ (Fig. 6). Spectra were collected at evenly spaced
points along transects from core to rim across the samples
(Fig. 6).

The novaculite is an exact match for α-quartz17. The wear
material spectra show a broad peak with weak structure in the
region 100–600 cm−1 punctuated by sharp peaks due to minor
contributions from E (phonon) and A1 modes in α-quartz from
the exposed patches of novaculite beneath the wear layer (Fig. 3c,
ss; Fig. 5a; Fig. 6). Compared with typical signatures of
amorphous silica, the classic modes associated with oligomeric
ring structures are absent in our wear material (red bands in
Fig. 5a), indicating that a variety of Si–O species are present with
no dominant modes (see Supplementary Discussion for addi-
tional description). The strong polarization-dependence across all
wavelengths (Fig. 5a) indicates that the wear material displays
anisotropy, perhaps related to the shear-parallel smearing
observed in the striated plates and on the slip surface (Fig. 3d–e).
No silanol (Si–OH) or adsorbed water were observed by Raman
(scans out to 4000 cm−1, not shown in Fig. 5a; 18). This spectrum
is unlike previously published Raman spectra of glassy silica15 or
commercial nanosilica we analyzed (see Supplementary Discus-
sion for details). In summary, the nanosilica wear material
formed by shearing of quartz-rich rocks is amorphous but
anisotropic, is anhydrous within the detection limit of Raman
spectroscopy, and has a unique Raman fingerprint, distinguish-
able from amorphous silica from other sources.

The quantity of wear material on the slip surface varied with
slip rate (Fig. 6), for experiments with the same amount of slip
(Table 1). Some wear material was ejected and lost during the
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experiments and during sample unloading, so our observation is
only qualitative. However, comparing Experiments 111 (1 cm/s)
and 112 (100 µm/s) shows that more of the surface is covered
with wear material and the layer is thicker in the faster
experiment (Fig. 6). On sample 111, which displayed extreme
weakening (Fig. 1), in situ Raman transects across the sliding
surface shows quartz peaks across the center ∼30% of the
diameter, while amorphous wear material covers the outer ∼70%,

and the wear material is collected into dense smooth packs or
plates which are concentrically smeared in the slip direction (Figs.
3, 6). On sample 112, which did not display substantial weakening
(Fig. 1a), quartz peaks appear in the Raman transect in the center
∼50% of the diameter, and in the outer rim of wear material, the
powder is more evenly distributed. This observation of increased
wear and amorphization at higher slip speeds is similar to
previous experiments on clay-quartz mixtures19.
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Fig. 3 Secondary electron images of microstructures in novaculite and wear material, collected with JEOL 8900 microprobe at McGill University (beam
current= 20 kV). Images a and c–f are of experiment 97. Image b is of experiment 101. a Surface of unsheared novaculate (starting material) with empty
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plates (sp) parallel to slip direction. e Broken fragments of striated plates, interlayered with nanopowder, displaying development and cataclasis of multiple
slip surfaces during single shear experiment. f Closeup on wear powder showing quartz chips, 10 µm clumps, and 1 µm particles. Bright clusters show debris
from clumps which exploded during observation
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In order to look for the presence of silanol (–Si–O–H), Fourier
Transform Infrared (FT-IR) spectroscopy was collected using a
PerkinElmer Spectrum TWO FT-IR instrument with a single-
bounce diamond ATR crystal. The wear material displays FT-IR
absorption band patterns distinct from both powdered novaculite
(which matches α-quartz20) and commercial amorphous nano-
silica (Fig. 5b; Supplementary Note 1). The wear material spectra
display features absent in the powdered novaculite, indicative of
adsorbed H2O and silanol bending (Fig. 5b, Table 2), consistent
with Hayashi et al.9, and the absorbances for stressed Si–O–Si
bonds are more pronounced than in the powdered novaculite. We
observe water and silanol in the FT-IR spectra, but no evidence of
silanol or hydroxyl was detected in the Raman spectra. As the
detection limits of the FT-IR are ∼10,000× lower than the Raman
for hydroxyl and silanol, this result is consistent with a
nanoparticle structure characterized by a thin hydrated silica
layer rim surrounding an anhydrous amorphous silica core.

Discussion
We have shown that the lubricating wear material produced in
moderate to fast slip rate experiments on novaculite consists of
spherical nanoparticles of amorphous silica with hydrated sur-
faces. Quartz can be amorphosed by high isotropic pressures
(∼15–25 GPa), comminution in a mortar and pestle at room

conditions, or shock pressurization21,22. At similar normal load to
our experiments (5 MPa), prepared quartz surfaces showed fractal
distribution of contact size with an average contact stress on the
order of 5 GPa23, similar to the estimated contact stresses which
generated amorphous wear material in previous experiments10. It
follows that the smaller contacts would experience stresses above
the isotropic amorphization stress (∼15–25 GPa) even under
static loading conditions. Experiments on nanocrystalline silicon
showed that pressure induced amorphization (at 19 GPa) pro-
duced meta-stable supercooled glass which persisted after
depressurization24, potentially analogous to production of our
amorphous particles. It is not clear whether comminution causes
amorphization due to creating highly variable stress conditions
resulting in locally reaching the isotropic amorphization stress, or
whether an additional mechanical or thermal effect lowers the
amorphization threshold22,25. In the case of comminution, high
sphericity of wear particles appears to be a result of strain
minimization in the material25. Amorphous silicate has been
produced in other experiments at lower slip rates26 and at lower
slip rates with higher temperatures27, without significant weak-
ening, so it may be necessary for sufficient slip to form a con-
tinuous amorphous layer for weakening to occur5.

Comparison of the wear material from experiments at different
slip rates showed that the nanopowder was indistinguishable in
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Fig. 4 Transmission Electron Microscope images of wear material from experiment 101 (brightfield). a Quartz grain (Q) with rough fractured surface (white
arrow). Clumps of amorphous silica particles (as) surround quartz grain. b Chips of crystalline quartz (top selected area electron diffraction pattern) and
rounded clumps of amorphous particles (middle selected area electron diffraction pattern). At the scale of this image, nearly all amorphous silica grains are
composites of smaller particles and fragments. c Broken fragments of striated plates composed of amorphous nanoparticles. Sharp slip surface composed
of gradationally increasing packing density of particles toward slip surface (white arrows). Fragments are floating in loosely packed amorphous
nanopowder. d Wear powder of rounded to elongate particles with grain size 10−100 nm that show no crystal structure (bottom selected area electron
diffraction pattern)
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grain size, structure, composition and water content. The lack of
discernible difference between the wear material formed in dif-
ferent experiments requires that the differences in shear resis-
tance between the moderate slip rate (100 µm/s–1 cm/s) and fast

slip rate (>1 cm/s) experiments (Fig. 1) must be explained by
velocity-dependent properties, not just the presence of the wear
material. The post-shearing strengthening5,6,9 is dependent on
the evolution of material properties during the static hold periods,
potentially by time-dependent bonding5,6. We explain the rheo-
logical observations with two deformation mechanisms that
cause weakening and re-strengthening on two different time-
scales: particulate flow assisted by hydrodynamic lubrication;
and intraparticle plasticity (Fig. 7). The action of these two
weakening mechanisms together is akin to superplasticity some-
times described in crystalline materials which involves intra-
particle deformation, as well as grain-boundary sliding between
particles (c.f.28).

Although the amorphous wear material lacks long-range
order, it is still dominated by silica tetrahedra, similar to
crystalline species of silica. Si–O bonds which are dangling,
stretched, bent (as shown in Fig. 5 and Table 2), or vacancies
within and between silica tetrahedra all act as defects within the
amorphous silica. Similar to crystalline materials, these defects
are concentrated on particle surfaces15). Variations in the Si–O
bond angle in silica glasses (including stress-induced varia-
tions) cause changes in bulk moduli, solubility in acids, thermal
expansion, viscosity, and rates of water diffusion in the glass29.
Any defect which concentrates stress within the amorphous
material plays a role during deformation which is analogous
to (and can be modeled as) a dislocation in a crystalline
structure, although these ‘shear transformation zones’ are not
geometrically similar to dislocations30. The exceptional con-
centrations of defects and vacancies in amorphous silica
nanoparticles encourage hydration and plasticity15,20,31, espe-
cially at the small scales and high pressures as expected at
asperity contacts (Fig. 7a;32,33). Yao et al.33 have shown that
heating, not just the presence of nanoparticles, is important for
slip weakening. Hydration effects reduce the glass transition
temperature and further promote plastic flow34,35. The exis-
tence of the smeared nanoparticles forming the striated plates
implies that the mild average frictional heating (Fig. 1b)
experienced in the shearing experiments at 10 cm/s was suffi-
cient to bring local patches above the glass transition tem-
perature, allowing superplastic flow and the cohesion of wear
powder to form the striated plates. The shear weakening effect
would be reversed upon cooling, within seconds after the ces-
sation of shearing.

Weakening in crystalline nanomaterials has been attributed to
the activity of grain boundary sliding36,37, but amorphous
nanoparticles do not contain crystalline grain boundaries, and
could even be work-hardening due to the rapid development of
dislocation tangles38. Therefore, we invoke a superplastic flow
mechanism in our amorphous nanopowders, but the details of the
contributing mechanisms may be different than in crystalline
wear powders. In amorphous silica, the mechanism of bulk flow is
by silicon-oxygen bond switching and void migration, which can
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Table 2 Peak positions in the FT-IR spectra and their corresponding vibrational modes

Vibrational mode Position of peak (cm−1)

Nanosilica Commercial nanosilica
(this study)

Wear material (this
study)

Powdered novaculite
(this study)

α-quartz

Isolated (free) silanol66 3747 3745
H-bonded silanol66 3660 3650
Stretching of H2O66 3450 3348 3424
Asymmetric stretching
of Si–O–Si20

1089 1066 1052 1087, 1043 1175, 1100

Bending of Si–OH67 972 1066
Symmetric stretching of
Si–O–Si20,68

812 798 797, 780 (double peak) 795, 776 (double peak) 797, 778 (double peak)

Symmetric bending of
Si–O–Si20

695 694 695

Asymmetric bending of
O–Si–O20

474 539 (shoulder), 452 515 (shoulder), 447 510 (shoulder), 446 516 (shoulder), 470
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change the number of atoms in oligomeric rings39, and may
explain the lack of any preferred coordination number in our
amorphous silica wear material (Fig. 5a).

Simultaneous with intraparticle plastic deformation, hydrated
particle surfaces cause a second mechanism of slip weakening
(Fig. 7b;40,41). Hydration is particularly effective in stressed Si–O
bonds on fresh surfaces42, forming silanol films that trap water
layers of unknown thickness between the particles42,43, enabling
hydrodynamic lubrication. Hydrated silica surfaces exhibit
hydrophilic and hydrophobic regions, depending on silanol
density44, which create areas of interparticle repulsion and
water adsorption. Hydrated surfaces on amorphous silica show
a significant lubrication effect, which increases in magnitude
with shearing velocity, particularly at high-stress and frictional
contacts, where the increased pressure accentuates surface
hydration40,45.

Post-slip healing is caused by the reversal of the same
mechanisms which cause the weakening. The hydrated surfaces
are particularly favorable to inter-particle bonding when the
relative motion ceases. In static contact with one another, the
silanol groups rearrange to construct a silica tetrahedron (silox-
ane), binding the particle surfaces together, and releasing a
molecule of water46. The timescale of this bonding depends on
contact aging, so the strength of the bond is time-dependent. This
effect may explain instantaneous weakening upon re-shearing, as
well as re-strengthening on ∼100 s timescales observed by
Goldsby and Tullis5. We found evidence for this surface bonding
in the agglomeration of particle clusters (Fig. 3c) that explode
under the electron beam, showing that vaporization of the
surface-bound water will disaggregate them. These are equivalent
to Togo and Shimamoto's47 finding of sintering between quartz
gouge grains in high velocity experiments and the formation of
shiny slip surfaces in experiments similar to ours, but they did not

test for the presence of amorphous silica which we observe
forming these features.

Our experiments were modeled after those which first reported
silica gel5,6, but we have documented that the wear material
produced in our experiments, which display the same weakening
behavior, is not gel. Both the previous experiments5,6 and our
experiments produced nanopowders48 and display similar
weakening behaviors, but our experiments did not produce gel,
perhaps due to different conditions. We therefore prefer the
interpretation that the wear powder is likely responsible for the
weakening behavior in both sets of experiments. Our results show
that the behavior of hydrous amorphous silica nanoparticles at
seismic slip rates can explain both the slip weakening and time-
dependent recovery in laboratory experiments. The similarity of
the wear material formed at all tested slip rates shows that the
mere presence of amorphous silica nanoparticles is not enough to
cause the observed drastic weakening. The whole range of tested
velocities (100 µm/s–10 cm/s) are unique to earthquakes49, but
the lubrication only occurred at slip velocities >1 cm/s. Due to the
strong velocity-weakening effect, the formation of this material
likely promotes runaway slip. These fast slip rates are necessary to
refresh interparticle contacts (preventing silica bonding) and to
warm or pressurize24 the interior of the amorphous particles
above the glass transition. The wear material productivity was
higher in the experiments which display this weakening, sug-
gesting that a continuous layer of ≥10 µm thickness is required to
activate silica weakening, c.f.5,9,16. Therefore, the formation of
amorphous silica nanopowder might facilitate earthquake slip
through mild weakening at small offsets or low seismic slip rates,
and the extreme weakening (friction coefficient < 0.1) at peak slip
rate could potentially result in complete stress drop on the
effected portion of earthquake rupture surfaces. As real earth-
quake faults are rough50, the work done in frictional heating and
amorphization is not uniform across natural slip surfaces.
Compared to these experiments, a natural fault might require
more or faster slip in order to build up a wear material layer of
sufficient thickness to cause catastrophic weakening e.g.51. Or, a
continuous layer may never develop, resulting in some residual
strength on the fault, and preventing complete stress drop during
earthquakes, e.g.,52. Although discrete sliding surfaces developed
in patches during the experiments, they were broken and refre-
shed during sliding, and no through-going principal slip surface
or zone was found in our samples, including those that showed
extreme weakening (Fig. 3b). One possible explanation is that the
polished fragments lie at a slight angle to the slip plane, as they
appear to be shingled with the forward edge (upper right in
Fig. 3e and f) appearing to onlap the leeward edge of the
neighboring fragment. It is unclear whether they formed in this
orientation or were inclined due to drag of the opposite fault wall,
but this pattern would prevent these slip surfaces from smoothly
linking up to form a continuous shear surface across the whole
sample.

Amorphous silica will crystallize to quartz within a few years at
typical crustal temperatures53, with crystallization rates enhanced
by the presence of hydroxyl or other impurities and by differential
stress54. Thin, translucent, nano-crystalline to micro-crystalline
quartz layers have been reported on natural fault surfaces, con-
taining patches of amorphous silica, and relict silica nanoparticles
entombed in strain-free quartz crystals55–57. These continuous
coatings of amorphous silica or cryptocrystalline quartz on nat-
ural fault surfaces may constitute the rock record of silica lubri-
cation in past earthquakes.

Methods
Friction experiments. Experiments were performed using the ROtary-Shear
Apparatus ROSA (built by MARUI & CO., LTD (model MIS-233-1-77) as designed

Silanol film

Silanol film

Water layer

A: Interior warmed 

by frictional heating 

leads to plastic flow

B: Edges of
particles take up OH-
to form silanol film,
which traps lubricating layer of water

~10–200 nm

Si

Si

O

O

Fig. 7 Schematic cartoon showing parallel operation of two slip weakening
mechanisms. See text for discussion
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by T. Shimamoto). A detailed report of the design and capabilities of ROSA is
provided by Rempe et al.58. The rotation of the axial column was controlled by the
11 kW servomotor; the normal load was applied (on the stationary column) via a
pneumatic system. Mechanical data were collected at a rate of up to 1 kHz. For the
experiments reported in this paper, cylindrical novaculite samples 25 mm in dia-
meter and 3.5 cm in length were prepared and roughened with 150 grit SiC paper
prior to the experiment to ensure equal roughness of the sliding surfaces.

Flash heating temperature calculations. We calculated the temperature increase
by flash heating in water-poor asperities: with no free water in pores around the
asperities to cool them down during the experiments (following14, supplementary
material).

In general, the temperature increase by frictional heating is described as:

ΔT ¼ τV
ffiffi

t
p

ρcp
ffiffiffiffiffiffiffiffiffi

αthπ
p ð1Þ

Which at the asperity scale becomes:

ΔTflash ¼ μpPmV
ffiffiffiffi

tc
p

ρcp
ffiffiffiffiffiffiffiffiffi

αthπ
p ð2Þ

The properties of the wear material are poorly constrained, so we chose values
conservatively to place a maximum bound on the flash heating temperature at
asperities. The temperature was calculated using the properties of water-poor type I
silica glass (density ρ (=2200 kgm−3), heat capacity cp (=1026 Jkg−1K−1)),
and thermal diffusivity αth= (6.07e–7 m2s−1) 59), Pm is indentation strength of
quartz (=2.7e9 Pa, 60) µp as our peak friction coefficient (=0.7), V is our slip rate
(= 0.0001–0.1 ms−1), and tc is contact time. Contact time is related to the radius of
circular asperities a and slip rate V as:

tc ¼
a
V

ð3Þ

The radius of the asperities is related to the normal force F (= 1227 N) and Pm.

a ¼
ffiffiffiffiffiffiffiffiffiffiffi

F
PmM

s

ð4Þ

Figure 2 shows the temperature increase by flash heating versus slip rate in the
experiments. We used the peak friction coefficient during the experiments (µ= 0.7)
to calculate the heating, so actual asperity temperatures were lower once weakening
began.

Post-experiment sample preparation and observation. Following sliding
experiments at Padova, samples were recovered intact from the shearing apparatus,
secured and sealed with tape, and sent to McGill University. Some samples were
cut longitudinally (along the core axis) in order to image the sliding surface and
wear material in cross section (e.g., Fig. 3a, Fig. 4). Some samples were gently
opened (top novaculate core removed) to expose the sliding surface (e.g.,
Fig. 3b–d).

The TEM foils were prepared by J.C. White at the University of New Brunswick.
The first step is preparation of a thin section which contained the entire wear layer
(cross section of the intact slip surface, e.g., Fig. 3a) using CrystalBond adhesive
(manufactured by SPI Supplies) to adhere the sample to the glass slide. The thin
section was polished and observations were made using standard petrographic
microscope and scanning electron microscope (SEM). Then, 3 mm copper grids
were glued to the polished surface of the thin section. The thin section was
immersed in acetone to gently dissolve the CrystalBond, leaving a thin (30 µm)
sheet of rock with copper foils on it. The copper foils help to keep the rock sheet
intact especially through the slip surface area where it would be likely to break
without reinforcement. Using tweezers, the thin sheet of rock is gently broken away
from each copper grid, leaving only the pieces adhered to the grids. This mount is
then thinned very slowly using an oblique beam at a low angle from an ion mill
until the rock sheet is just perforated, and the margins of the hole are of the
appropriate thickness for electron beam transparency. As the thin section was fully
characterized and photographed prior to being broken up, we are able to determine
exactly what is preserved and observed in the TEM foil and place that in context of
the complete slip surface.

Backscattered electron images (Fig. 2, except for 2b) were collected by C. Rowe
on the JEOL 8900 microprobe in the Earth and Planetary Sciences Department at
McGill University. Figure 2b was collected by J.C. White using the JEOL 6400
Scanning Electron Microscope at the University of New Brunswick Microscopy
and Microanalysis Facility. Transmission electron microscopy (TEM) images and
diffraction patterns were collected by J.C. White using the JEOL 2011 Scanning
Transmission Electron Microscope (STEM) at the Microscopy and Microanalysis
Facility, University of New Brunswick. Adobe Photoshop was used to adjust

brightness and contrast of the backscattered electron and transmission electron
images.

Raman spectroscopy and polarizability experiments. Raman spectra were col-
lected by K. Lamothe using the laser Raman microprobe spectrometer with 633 nm
He–Ne excitation laser in the Materials Chemistry lab at McGill University.

Raman spectroscopy uses a laser to interrogate a sample in order to measure the
very small fraction of laser photos that are scattered inelastically, meaning the
energy of the photos is shifted from interaction with the molecules in the sample.
Measurement of the shift in wavelength of these photons, called the Raman shift,
yields a spectrum that gives information about the vibrational modes of the
molecules, which are specific to the chemical bonds and can therefore be used to
gain insight into the molecular structure of the material. Raman bands are often
assigned a Mulliken symbol to describe the symmetry of the modes that produced
them61. The spectrum characteristic of quartz contains A1 and E bands, with
A1 signifying the total symmetry and E signifying a doubly-degenerate, two-
dimensional irreducible representation. A concise description of normal vibrational
modes is given by Tuschel62. The bands associated with amorphous silica include D
bands, a name reflective of disordered structure rather than a Muliken symbol
which is associated with ring modes in silica63,64.

Polarisibility experiments have shown that the wear material is highly
polarization dependent (Fig. 5a). The R-band shows a strong polarization
dependence for parallel (�X(ZZ)X; VV) versus the perpendicular (�X(ZY)X; VH)
polarizations (Supplementary Fig. 1)65. The Z-axis refers to the axis along which
the incident laser beam propagates to the sample and the scattered photons return
(incident electric field). The X-axis refers to the ‘horizontal’ axis for the sample,
generally parallel to the front of the stage on which the sample is mounted, and Y is
in the plane of the stage, perpendicular to the X-axis. Notation for polarizability
experiments is given in the form of a(bc)d where a is the axis along which the
incident laser propagates, b is the axis of polarization of the incident laser by the
polarizer, c is the axis of polarization of the scattered photons by the analyzer, and
d is the axis of propagation of the scattered photons (Supplementary Fig. 1).

Data availability
The Matlab codes used for temperature calculations including Fig. 1b are archived
on GitHub at https://github.com/aretu/thermalmatlabcodes. All data is available
from the authors on request.
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