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Abstract: Herein, we report on the reaction of nitro-substituted azidobenzofuroxans with 1,3-
dicarbonyl compounds in basic media. The known reactions of benzofuroxans and azidofuroxans
with 1,3-dicarbonyl compounds in the presence of bases are the 1,3-dipolar cycloaddition and the
Beirut reaction. In contrast with this, azidonitrobenzofuroxan reacts with 1,3-carbonyl compounds
through Regitz diazo transfer, which is the first example of this type of reaction for furoxan derivatives.
This difference is seemingly due to the strong electron-withdrawing effect of the superelectrophilic
azidonitrobenzofuroxan, which serves as the azido transfer agent rather than 1,3-dipole in this case.

Keywords: benzofuroxan; 1,3-dicarbonyl compounds; Regitz diazo transfer; tautomerism

1. Introduction

Derivatives of benzo[c][1,2,5]oxadiazole 1-oxide (benzofuroxan) have attracted the
attention of chemists due to the biological activity exhibited by this class of heterocycle.
Benzofuroxans have been proposed as monoamine oxidase inhibitors [1,2] and calcium
channel modulators [3,4], and possess vasodilating and cardiotropic [5], antitumor [6–9],
antiparasitic [10,11], anti-tuberculosis [12–14], bactericidal [15–17], virucidal, sporicidal,
and fungicidal activities [18,19]. Moreover, benzofuroxans exhibit anunusual chemical
behavior due to the specificity of the electronic structure of the 1,2,5-oxadiazole-N-oxide
cycle. Benzofuroxans are capable of entering not only substitution reactions [20,21], but
also nucleophilic addition and cycloaddition reactions both as a dienophile and as a
diene [22–24]. Additionally, they are characterized by the phenomenon of tautomerism
(benzo[c][1,2,5]oxadiazole 1-oxide quickly rearranging into benzo[c][1,2,5]oxadiazole 3-
oxideviathe open dinitroso form) [25], which often complicates the determination of the
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structure of asymmetrically substituted benzofuroxans [26] and makes their derivatization
a challenging task.

Organic azides are valuable building blocks in synthetic organic chemistry due to the
well-known ability of azides to undergo 1,3-dipolar cycloaddition reactions. We speculated
that the presence of the azide moiety in the benzofuroxan molecule would allow for easy in-
stallation of various biologically relevant fragments via a “click” reaction. Surprisingly, the
literature survey revealed that the chemistry of the azidobenzofuroxans is still unexplored.
The only reaction of the furoxan-based azide with 1,3-dicarbonyl compounds resulting
in the 3+2 cycloaddition in the basic media was reported by Fershtat and coworkers [27]
(Scheme 1A). Notably, benzofuroxans are also known to undergo the Beirut reaction un-
der the same conditions [28] (Scheme 1B). Thus, we decided to investigate the possible
reaction modes of azidobenzofuroxans with 1,3-dicarbonyl compounds, and herein we
report the results of our studies. In contrast with the known examples, superelectrophilic
azidobenzofuroxans do not undergo 1,3-dipolar cycloaddition nor the Beirut reaction with
1,3-dicarbonyl compounds. Instead, the Regitz diazo transfer proceeds, which results
in the appropriate diazo compound and aminobenzofuroxan (Scheme 1C). Additionally,
we explored the obtained tautomerism using NMR and quantum chemistry calculations.
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Scheme 1. Known reaction modes of the furoxan derivatives with 1,3-dicarbonyl compounds: (A) 1,3-
dipolar cycloaddition of azidofuroxan derivatives; (B) the Beirut reaction of the benzofuroxans;
(C) the Regitz diazo transfer of the azidobenzofuroxans (this work).

2. Results and Discussion

We initiated our studies through the synthesis of azidobenzofuroxan 2 via the SNAr
reaction of chloro derivative 1 with sodium azide (Scheme 2). Next, we carried out the
reaction of azide 2 with acetoacetic acid ester under the conditions described by Fershtat
and coworkers [27]. Surprisingly, the analysis of the mass spectra of the reaction mixture
indicated the complete absence of a cycloaddition product. The experiment was repeated
in the NMR tube, and careful examination of the 1H NMR spectrum revealed signals due
to three major products alongside some starting azide 2, starting ester, and triethylamine
(Figure 1).
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Figure 1. The 1H NMR spectra of the reaction mixture of the azidonitrobenzofuroxan 2 with ethylacetoacetate (CDCl3,
400 MHz, 303 K).

One of these products was identified as ethyl 2-diazo-3-oxobutanoate 4a by the com-
parison of the spectrum with the published data [29]. The mass spectrometry data also
indicated the presence of the hydrated molecular ion of 4a. This ion may be formed either
from ionisation of the hydrated form of 4a or through rapid hydration of the ionised
form of 4a during the mass spectrometric experiment. The obtained data do not allow
fordistinguishing between these possibilities. In the EI mass spectrum peak of the molec-
ular ion, [M+H2O]+• (8%)was observed, as well as the range of the fragmentation peaks
(147 [M+H2O-C2H3]+ (19%), 129 [M+H2O-C2H5O]+ (100%), 102 [M+H2O-C3H4O2]+ (43%),
and 74 [M+H2O-C3H4N2O2]+ (82%); Figure 2).
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Figure 2. EI mass spectrum of peak of hydrated molecular ion of 4a [M+H2O]+• and the range of the
fragmentation peaks obtained from the addition of water to the compound 4a.

We speculate that the formation of the diazo compound 4a may be explained by the
diazo transfer reaction described by Regitz [30] (Scheme 2). Based on this, we propose that
the singlets in the 6.75–7.34 ppm range (see Figure 1) may be attributed to the tautomeric
aminobenzofuroxans 3A and 3B, as well as the unreacted starting azidobenzofuroxan 2.

Similar results were obtained when acetylacetone and trifluoromethyl-3-oxobutanoic
acid ester were employed instead of acetoacetic acid ester. Amino derivative 3 was obtained
in almost the same yield (ca 1–2% difference) alongside the appropriate diazo compound
(see Supplementary Materials, Figures S1 and S2 for the spectra). Thus, the replacement of
the electron-donating methyl group by the electron-withdrawing trifluoromethyl group,
as well as the replacement of the ethoxy fragment by the methyl group, did not affect
the reaction course. Taking this into account, we conclude that the reaction outcome was
determined by azidofuroxan rather than by the nature of the 1,3-dicarbonyl compound.

This reaction pathway differs from both the 1,3-dipolar cycloaddition of azidofuroxans
described by Fershtat and the Beirut reaction of benzofuroxans. Notably, the diazo transfer
is the preferred reaction pathway in the case of tosylazide [29], which possesses an electron-
withdrawing substituent next to the azide group. At the same time, the more electron-rich
phenylazide undergoes cycloaddition with 1,3-dicarbonyl compounds under the same con-
ditions [31,32]. Asnitro-substituted benzofuroxans are known for their superelectrophilic
nature [7,21,33–36], we attribute the difference between azidonitrobenzofuroxan 2 and
azidofuroxan derivatives [27] to the strong electron-withdrawing effect of the former.

Extra evidence was sought to confirm the structure of 3A and 3B. So, aminbenzo-
furoxan 3 was independently synthesized by the reaction of 1 with excess ammonia in
DMSO. The obtained NMR data of the compound appeared to be identical to the signals
observed in the NMR of the reaction mixture (Figure 1). Additionally, we were lucky
enough to obtain crystals suitable for the X-ray analysis (Figure 3), which also proved the
formation of amino derivatives 3A,B.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 11 
 

 

obtained in almost the same yield (ca 1–2% difference) alongside the appropriate diazo 

compound (see Supplementary Materials, Figures S1 and S2 for the spectra). Thus, the 

replacement of the electron-donating methyl group by the electron-withdrawing trifluo-

romethyl group, as well as the replacement of the ethoxy fragment by the methyl group, 

did not affect the reaction course. Taking this into account, we conclude that the reaction 

outcome was determined by azidofuroxan rather than by the nature of the 1,3-dicarbonyl 

compound. 

This reaction pathway differs from both the 1,3-dipolar cycloaddition of azidofu-

roxans described by Fershtat and the Beirut reaction of benzofuroxans. Notably, the diazo 

transfer is the preferred reaction pathway in the case of tosylazide [29], which possesses 

an electron-withdrawing substituent next to the azide group. At the same time, the more 

electron-rich phenylazide undergoes cycloaddition with 1,3-dicarbonyl compounds un-

der the same conditions [31,32]. Asnitro-substituted benzofuroxans are known for their 

superelectrophilic nature [7,21,33–36], we attribute the difference between azidonitroben-

zofuroxan 2 and azidofuroxan derivatives [27] to the strong electron-withdrawing effect 

of the former. 

 

Scheme 2. The Regitz diazo transfer of azidobenzofuroxan 2. 

Extra evidence was sought to confirm the structure of 3A and 3B. So, aminbenzofu-

roxan 3 was independently synthesized by the reaction of 1 with excess ammonia in 

DMSO. The obtained NMR data of the compound appeared to be identical to the signals 

observed in the NMR of the reaction mixture (Figure 1). Additionally, we were lucky 

enough to obtain crystals suitable for the X-ray analysis (Figure 3), which also proved the 

formation of amino derivatives 3A,B. 

 

Figure 3. Asymmetric unit of tautomers 3A and 3B showing 50% probability thermal ellipsoids. C 

atoms: grey; N atoms: blue; O atoms: red; Cl atom: green. 

The crystals of compound 3 consisted of two tautomers in a ratio of 1:1 (Figure 3). 

The oxygen atom in one tautomer formed an intramolecular hydrogen bond with the 

amino group of the other tautomer, while in the second tautomer, the oxygen atom 

formedan intermolecular hydrogen bond with the amino group. The data on hydrogen 

Figure 3. Asymmetric unit of tautomers 3A and 3B showing 50% probability thermal ellipsoids. C
atoms: grey; N atoms: blue; O atoms: red; Cl atom: green.
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The crystals of compound 3 consisted of two tautomers in a ratio of 1:1 (Figure 3). The
oxygen atom in one tautomer formed an intramolecular hydrogen bond with the amino
group of the other tautomer, while in the second tautomer, the oxygen atom formedan
intermolecular hydrogen bond with the amino group. The data on hydrogen bonds are
summarized in Table S1, Supplementary Materials. The plane of the nitro group leftthe
plane of the benzene ring by 33.2 degrees; apparently this wasdue to the steric factor,
asthe neighboring positions in the benzene ring wereoccupied. It should be noted that
the tautomers formed planes parallel to 0bc consisting of one type of tautomer (Figure S3,
Supplementary Materials).

Study of the Tautomerism of Benzofuroxans

As mentioned previously, benzofuroxan and its derivatives can undergo tautomerisa-
tion, which is believed to proceed through the transient formation of 1,2-dinitrosoarenes
(see Supplementary Materials, Figure S4 for the putative mechanism of the tautomerisa-
tion). Consequently, the determination of the tautomeric composition of the benzofuroxans
is important for the correct determination of their structure. Taking this into account, the
study of the tautomerism of compounds used was essential for our research.

First, we investigated the starting chlorobenzofuroxan 1 using various NMR tech-
niques. As mentioned above, one of the main difficulties in studying thetitled compounds
using NMR is a lack of a sufficient number of spin markers (protons) in these molecules
(vide supra). This strongly complicates «direct» structure elucidation, i.e., using only
experimental 2D correlation NMR data. To overcome such problems, anab initio analysis
could be applied.

A variety of NMR correlation methods were used to establish the structure of the titled
compound. The combination of 2D 1H-13C HSQC and 1H-15N/13C HMBC correlations
enabled directly establishing two heteroaromatic moieties.

The 1H NMR spectrum of 1 at 303 K consisted of a broadened (ca 20 Hz) signal at
7.6 ppm with a weak broad shoulder on the lowfield side of the signal (Figure 4a). Thus,
a chemical exchange wasobserved. DNMR showed that 313 K was a coalescence point,
and a high resolution spectrum tookplace for T < 263 K (Figures S5 and S6, Supplementary
Materials). The components ratio was ca 91:9. Indeed, the theoretical analysis gave a
1.63 kCal/mol energy gap with a preference for the B form (Figure 4). Moreover, a barrier
of ca 18 kCal was estimated.
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NMR experiments allowed for establishing C-H connectivities for a part of the
molecule. However, the earlier utilized level of theory was used again in order to accom-
plish the assignment (Table S2, Supplementary Materials). The experimentally identified
13C CSs were used as reference points in order to choose an appropriate calculated set.
C7a/C3a resonance CS, which was detected experimentally, strongly depends on the tau-
tomer form (ca 110 ppm for A (C7a) and 150 ppm for B (C3a)) for a trustworthy assignment
to bepossible.

The observed dependence of tautomers interconversion rates could probably be
explained in terms of electrostatic repulsion. In the case of 1, the tautomer A became
less favorable due to an additional chlorine atom on the side of N1, which shifted the
equilibrium towards the B tautomer.

Additionally, the 1H NMR spectra of both chlorobenzofuroxan 1 and aminobenzo-
furoxan 3, as well as its N-substituted analog 5, were recorded in various solvents (Figures
S5–S23, Table S3, Supplementary Materials) and the ratio of the tautomers is given in the
Table 1. As seen from the table, a strong preference for tautomer B existed in acetone and
chloroform for the chloro derivative 1. In other solvents, signal broadening due to quick
equilibrium was observed. In contrast with this, replacement of the chlorine atom by the
amino group increased the amount of the second tautomer significantly and hindered
tautomerization, so that signals of both tautomers were clearly distinguished in all solvents.
This may be explained by the stabilization of tautomer A by the hydrogen bonding between
the oxygen atom and amino group. Indeed, the quantum chemistry calculations indicated
that in the case of compound 3, tautomer A was ca 1 kCal/mol lower in energy than
tautomer B. The calculated tautomerization barrier was ca 23 kCal, which was considerably
higher compared with chlorobenzofuroxan 1, and is in accordance with the experimental
observations (Figure S4, Supplementary Materials). Interestingly, in case of its N-butyl
substituted analog, tautomer B again became lower in energy (ca 2.5 kCal/mol). This was
presumably due to the steric hindrance caused by the n-Bu group, which overcame again
in energy due to intramolecular hydrogen bonding.
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3. Conclusions

In conclusion, we discovered that azidonitrobenzofuroxans react with 1,3-carbonyl
compounds through the Regitz diazo transfer. This is in sharp contrast with both azid-
ofuroxans and benzofuroxans, which undergo 1,3-dipolar cycloaddition or the Beirut
reaction under the same conditions. This difference is presumably explained by the super-
electrophilic nature of the azidonitrobenzofuroxan, which serves as an azido transfer agent
rather than 1,3-dipole in this case.

4. Materials and Methods
4.1. Chemistry

The IR spectra were recorded as an emulsion in Vaseline oil (sample concentration
0.25%) on a Tensor 27 (Bruker GmbH, Germany) in the range 400–4000 cm−1, which were
the most intense absorption bands. Electron ionization (EI) mass spectra were obtained
using gas chromatography−mass spectrometry with an Agilent 6890N–5973N (Agilent
Technologies, Santa Clara, CA, USA) system at an electron ionization energy of 70 eV, and
the temperature of the ion source was250 ◦C. Nuclear magnetic resonance (NMR) spectra
were recorded on Bruker spectrometers AVANCEIII-500 (BrukerBioSpin, Rheinstetten,
Germany) (500.1 MHz for 1H, 125.8 MHz for 13C) in different solvents at 303 K. Chemical
shifts were measured in δ (ppm) with reference to the solvent (δ = 2.10 ppm and 30.5 ppm
for (CD3)2CO for 1H and 13C NMR, respectively). The pulse programs of the COSY,
HSQC, and HMBC experiments were taken from the Bruker software library. Compound 3
obtained using Method 1 (see below) was used in all of the NMR experiments.

Elemental analysis was performed on a CHNS-O Elemental Analyser EuroEA3028-
HT-OM (EuroVectorS.p.A., Milan, Italy) with an accuracy ±0.4% for C, H, and N. The
melting points were determined in glass capillaries on a Stuart SMP 10 instrument (Keison
Products, Chelmsford, UK). The progress of the reactions and the purity of the products
were monitored usingTLC on Sorbfil UV-254 plates (Sorbpolimer, Krasnodar, Russia); the
chromatograms were developed under UV light.

4.1.1. X-ray Crystallography Data

The data set for the single crystal 3A/3B obtained by Method 1 (see below) was
collected on a Rigaku Synergy S instrument (Rigaku Oxford diffraction, Tokyo, Japan)
with a HyPix detector and a PhotonJet microfocus X-ray tube using Cu Kα (1.54184 Å)
radiation at a low temperature. Images were indexed and integrated using the CrysAlisPro
data reduction package. Data were corrected for systematic errors and absorption using
the ABSPACK module: numerical absorption correction based on Gaussian integration
over a multifaceted crystal model and empirical absorption correction based on spherical
harmonics according to the point group symmetry using equivalent reflections. The GRAL
module was used for the analysis of the systematic absences and space group determination.
The structure was solved withdirect methods using SHELXT [37], and was refined by the
full-matrix least-squares on F2 using SHELXL [38]. Non-hydrogen atoms were refined
anisotropically. The hydrogen atoms were inserted at the calculated positions and were
refined as riding atoms. The figures were generated using the Mercury v4.1 [39] program.
Crystals were obtained using the slow evaporation method.

CCDC number 2,099,880 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.
html, accessed on 28 July 2021 (or from the Cambridge Crystallographic Data Centre,
12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223-336-033; or deposit@ccdc.cam.uk).

4.1.2. Quantum-Chemical Computations

The GIAO DFT b3lyp/6–31+g(2d,p)//b3lyp/6–31+g(2d,p) basis set was used for ge-
ometry optimization and calculation of the NMR parameters, and b3lyp/6–31g(d)//b3lyp/
6–31g(d) was used for the SCF energy calculation of thetransition states. Carbons with a
chlorine substituent were excluded from the correlation analysis due to a known problem

www.ccdc.cam.ac.uk/conts/retrieving.html
www.ccdc.cam.ac.uk/conts/retrieving.html
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in the theoretical estimations of CS for nuclei of the 3d group of chemical elements [40]. All
of the calculations were performed with the Gaussian 16 package [41]. All optimizations
were followed by frequency calculations at the same level of theory in order to check that
the optimized structures really corresponded to the true minima.

The following compounds were prepared following the literature procedures indi-
cated: 4,6-dichloro-5-nitrobenzo[c][1,2,5]oxadiazole 1-oxide 1 [42] and 4-(butylamino)-6-
chloro-5-nitrobenzo[c][1,2,5]oxadiazole 1-oxide 5 [21].

The synthesis of the 4-azido-6-chloro-5-nitrobenzo[c][1,2,5]oxadiazole 1-oxide 2.
To a solution of 4,6-dichloro-5-nitrobenzofuroxan 1 (1 mmol) in 5 mL of acetone at

room temperature, a solution of sodium azide (1 mmol) in 1 mL of water was added. The
reaction mixture was stirred at room temperature for 1h, and the conversion was monitored
through TLC analysis (eluent: toluene/ethyl acetate, 2:1). After completion of the reaction,
the solvent was evaporated under a vacuum, washed with cold water, and dried in vacuum
(0.06 mm Hg) at 40 ◦C to constant weight. Dark powder, yield 70%; Mp = 60−61 ◦C; IR
(ν, cm–1): 2127 (N3), 1614 (furoxan ring), and 1559 (NO2asymm). 1H NMR (500 MHz,
acetone-d6): 7.74 (s, 1H). Anal. calcd (%) for C6HClN6O4:C, 28.09; H, 0.39; Cl, 13.82; N,
32.76. Found: C, 28.07; H, 0.41; Cl, 13.84; and N, 32.73.

The synthesis of the 7-amino-5-chloro-6-nitrobenzo[c][1,2,5]oxadiazole 1-oxide 3A
and 4-amino-6-chloro-5-nitrobenzo[c][1,2,5]oxadiazole 1-oxide 3B.

Method 1:
To a solution of 4-azido-6-chloro-5-nitrobenzo[c][1,2,5]oxadiazole 1-oxide 2 (0.66 mmol)

in 5 mL of CH3CN or CHCl3, triethylamine (0.16 mmol) and ethyl 3-oxobutanoate/pentane-
2,4-dione/trifluoromethyl-3-oxobutanoic acid methyl ester (0.66 mmol) were added at
room temperature. The reaction was carried out at room temperature and under magnetic
stirring, and the conversion was monitored through TLC analysis (eluent: toluene/ethyl
acetate, 2:1). The mixture was stirred at room temperature overnight; the solvent was
evaporated under vacuum (0.06 mm Hg) at 40 ◦C to constant weight. The crude product
was purified by column chromatography on silica gel (eluent chloroform) to give target
compound 3 as the orange powder, with a yield of 56%.

Method 2:
To a solution of 4,6-dichloro-5-nitrobenzofuroxan 1 (1.0 mmol) in 5 mL of DMSO,

bubbled dry ammonia (2.0 mmol, the amount was determined by weighing) was added.
The reaction mixture was stirred for 1 h at room temperature and was poured into water
(30 mL). The obtained solid was filtered off, washed with cold water (50 mL), and dried
under a vacuum (0.06 mm Hg) at 40 ◦C to constant weight.

Orange powder, yield 70%. M.p.: 79–80 ◦C. IR (ν, cm–1): 1337 (NO2symm), 1558
(NO2asymm), 1621 (furoxan ring), and 3336 (NH2). MS (EI, 70 eV, Figure S24, Supplemen-
tary Materials), m/z (IOTH (%)): 214 [M-O]+ (75), 184 [M-NO2]+ (37), 168 [M-O-NO-NH2]+

(9), and 154 [M-O-2NO]+ (42). Anal. calcd (%) for C6H3ClN4O4:C, 31.26; H, 1.31; Cl, 15.38;
N, 24.30. Found: C, 31.28; H, 1.37; Cl, 15.34; and N, 24.29.

Acetone-d6 experiment (the percentage of each tautomer is given in parentheses).
7-amino-5-chloro-6-nitrobenzo[c][1,2,5]oxadiazole 1-oxide (3A, Figure 5) (54%). 1H

NMR (500 MHz, acetone-d6): δ 7.16 (s, 1H, H4) and 7.93 (s, 2H, NH2). 13C{1H} NMR
(126 MHz, acetone-d6): δ 151.3 (C7), 137.6 (C5), 133.8 (C3a), 124.2 (C6), 109.0 (C7a), and
105.3 (C4).

4-amino-6-chloro-5-nitrobenzo[c][1,2,5]oxadiazole 1-oxide (3B, Figure 5) (46%).1H
NMR (500 MHz, Acetone-d6): δ 6.91 (s, 1H, H7) and 7.99 (s, 2H, NH2). 13C{1H} NMR
(126 MHz, Acetone -d6): δ 148.0 (C4), 137.7 (C6), 129.0 (C3a), 127.8 (C5), 112.8 (C7a), and
100.3 (C7).

Benzene-d6 experiment (the percentage of each tautomer is given in parentheses).
7-amino-5-chloro-6-nitrobenzo[c][1,2,5]oxadiazole 1-oxide (3A) (89%). 1H NMR

(500 MHz, benzene-d6): δ 6.02 (s, 1H, H4) and 6.02 (s, 2H, NH2). 13C{1H} NMR (126 MHz,
benzene-d6): δ 150.5 (C7), 136.3 (C5), 134.3 (C3a), 124.6 (C6), 108.0 (C7a), and 105.6 (C4).
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4-amino-6-chloro-5-nitrobenzo[c][1,2,5]oxadiazole 1-oxide (3B) (11%). As the concen-
tration of the second tautomer wassmall, it practically did not show up in the 13C{1H} NMR.
The chemical shifts of parts of the carbons were determined from the HMBC spectra.1H
NMR (500 MHz, benzene-d6): δ 5.77 (s, 1H, H7) and 5.24 (s, 2H, NH2). 13C{1H} NMR
(126 MHz, benzene-d6) δ 146.5 (C4), n/o (C6), 129.4 (C3a), 127.7 (C5), n/o (C7a), and
101.8 (C7).

Methanol-d4 experiment (the percentage of each tautomer is given in parentheses).
7-amino-5-chloro-6-nitrobenzo[c][1,2,5]oxadiazole 1-oxide (3A) (40%). 1H NMR

(500 MHz, methanol-d4): δ 7.004 (s, 1H, H4) and n/o (s, 2H, NH2). 13C{1H} NMR (126 MHz,
methanol-d4): δ 151.9 (C7), 137.8 (C5), 134.7 (C3a), 125.0 (C6), 109.4 (C7a), and 105.6 (C4).

4-amino-6-chloro-5-nitrobenzo[c][1,2,5]oxadiazole 1-oxide (3B) (60%). 1H NMR
(500 MHz, methanol-d4): δ 6.761 (s, 1H, H7) and n/o (s, 2H, NH2). 13C{1H} NMR (126 MHz,
methanol-d4) δ 148.6 (C4), 138.4 (C6), 130.1 (C3a), 128.3 (C5), 113.5 (C7a), and 100.2 (C7).

Crystal Data for C6H3ClN4O4 (M = 230.57 g/mol): orthorhombic, space group P212121
(no. 19), a = 5.8860(2) Å, b = 11.2467(3) Å, c = 24.7322(7) Å, V = 1637.22(8) Å3, Z = 8,
T = 100.0(4) K, µ(Cu Kα) = 4.246 mm−1, Dcalc = 1.871 g/cm3, 8428 reflections measured
(7.148◦ ≤ 2Θ ≤ 153.52◦), 3305 unique (Rint = 0.0410, Rsigma = 0.0393), which were used in
all calculations. The final R1 was 0.0439 (I > 2σ(I)) and wR2 was 0.1199 (all data).
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