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Abstract: Protein degradation is a pivotal process for eukaryotic development and homeostasis.
The majority of proteins are degraded by the ubiquitin–proteasome system and by autophagy.
Recent studies describe a crosstalk between these two main eukaryotic degradation systems which
allows for establishing a kind of safety mechanism. If one of these degradation systems is hampered,
the other compensates for this defect. The mechanism behind this crosstalk is poorly understood.
Novel studies suggest that primary cilia, little cellular protrusions, are involved in the regulation of
the crosstalk between the two degradation systems. In this review article, we summarise the current
knowledge about the association between cilia, the ubiquitin–proteasome system and autophagy.
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1. Introduction

Protein aggregates are huge protein accumulations that develop as a consequence of
misfolded proteins. The occurrence of protein aggregates is associated with the development of
neurodegenerative diseases, such as Huntington’s disease, prion disorders, Alzheimer’s disease and
Parkinson’s disease [1–3], demonstrating that the degradation of incorrectly folded proteins is of
eminent importance for human health. In addition to the destruction of useless and dangerous
proteins (protein quality control), protein degradation is an important process to regulate the cell
cycle, to govern transcription and also to control intra- and intercellular signal transduction [4–6].
Two main protein degradation systems exist in vertebrates—the ubiquitin–proteasome system (UPS)
and macroautophagy (hereafter referred to as autophagy) [7]. Their function is not only essential
for vertebrate homeostasis but also for vertebrate development [4,8–29]. Importantly, the UPS
and autophagy are, at least partially, redundant. If one degradation system is downregulated,
the other gets upregulated to prevent cell-damaging protein overload or the formation of protein
aggregates, as well as to ensure the maintenance of pivotal intra- and intercellular signalling [4,7,30].
However, the proteasome-to-autophagy direction of regulation is far better documented than the
autophagy-to-proteasome direction [31]. Evidence for the autophagy-to-proteasome direction is mainly
provided by investigations in cancer cells and in cultured neonatal rat ventricular myocytes [32,33],
while numerous studies reported findings that support the existence of the proteasome-to-autophagy
direction [34–47]. In any case, a kind of crosstalk takes place between the UPS and autophagy.
This article focuses on the role of primary cilia in this crosstalk. In the following sections, we will
shortly introduce the UPS, autophagy and primary cilia. Afterwards, we will discuss a potential role for
the UPS and autophagy in cilia-associated diseases and mechanisms underlying the UPS–autophagy
crosstalk with particular regard to primary cilia.

Cells 2019, 8, 241; doi:10.3390/cells8030241 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0002-6340-549X
http://www.mdpi.com/2073-4409/8/3/241?type=check_update&version=1
http://dx.doi.org/10.3390/cells8030241
http://www.mdpi.com/journal/cells


Cells 2019, 8, 241 2 of 15

2. The Ubiquitin–Proteasome System and Autophagy

The vast majority of the proteins (~80–90%) within the vertebrate cell are degraded by the
UPS [7]. Apart from the degradation of proteins, the UPS is able to implement the proteolytic
processing of particular proteins [48,49]. During this process, one or more peptide bonds of the target
protein are hydrolysed. Both protein degradation and protein processing, carried out by the UPS,
start with the ubiquitination of target proteins. Ubiquitin conjugation is performed by a cooperative
action of ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2) and ubiquitin ligases
(E3). In simplified terms, ubiquitin is activated by E1 enzymes when ATP is present and, thereafter,
is transferred to E2 enzymes. Two different types of E3 ligases exist: homologous to the E6-AP carboxyl
terminus (HECT) domain E3 ligases and really interesting new gene (RING) finger domain E3 ligases.
The E2 enzymes pass ubiquitin onto the HECT domain E3 ligases which transfer it to the target
protein [50,51]. In contrast to the HECT domain E3 ligases, the E2 enzymes do not convey ubiquitin to
the RING domain E3 ligases but directly to the proteasomal substrates. The RING domain E3 ligases act
as a kind of bridge between the ubiquitin-bound E2 enzymes and the substrates, thereby increasing the
activity of the E2 enzymes [52]. In the context of ubiquitination, three different models exist that explain
the formation of a ubiquitin chain (polyubiquitination) bound at proteasomal substrates. The first
model describes the formation of the chain in a step-by-step process in which ubiquitin monomers
are added sequentially to the substrate. The second model states that the ubiquitin chain might be
pre-assembled on an E2 enzyme and then transferred to the substrate in a single process. The third
model represents a combination of the first two models [53–55]. Finally, polyubiquitinated proteins are
degraded or processed by the catalytic component of the UPS, the 26S proteasome. The proteasome
represents a large multi-protein complex of about 1700 kDa which comprises two different kinds
of subunits—the 19S subunit and the 20S subunit (Figure 1A) [56,57]. The ubiquitin chain of target
proteins is recognised and bound by the 19S regulatory complex and, subsequently, the target proteins
are unfolded [58]. Hereafter, these proteins get degraded or processed by the 20S subunit which
harbours different protease activities (caspase-like activity, chymotrypsin-like activity, trypsin-like
activity) [59]. Proteasomes were detected in the cytosol, cell nucleus, microsomes, centrosomes and at
the base of primary cilia [60–63]. Since their action is of great importance for the proper transduction of
numerous signalling pathways [64,65], an altered proteasomal activity provokes defects in the regular
procedure of cellular signalling and associated cellular processes [66], reflecting the eminent role of the
UPS in the development and function of many vertebrate organs and structures [20–22].

In contrast to the UPS, autophagy is able to degrade proteins but cannot process them. However,
autophagy degrades intracellular pathogens, long-lived proteins, very large protein complexes and
even entire cell organelles [7,67–72]. In this way, autophagy plays an important role in vertebrate
development [9,10,17–19], participating in the development of the brain [23], eyes [24–26], lung [27],
heart [28,29] and liver [28]. Autophagy starts with the formation of phagophores, which then elongate
to develop autophagosomes (Figure 1B) [73]. Elongation of the phagophore membrane and formation
of the autophagosome is dependent on the recruitment of two ubiquitin-like (Ubl) conjugation systems.
To build up the first system, autophagy-related protein 12 (ATG12) gets bound to ATG5 by the action
of the E1-like enzyme ATG7 and the E2-like enzyme ATG10. Afterwards, ATG12–ATG5 becomes
associated with ATG16L and forms a large complex referred to as the ATG16L complex. This complex
is located at the phagophore, thereby defining the site of conjugation of the second Ubl system.
The second Ubl conjugation system starts with the cleavage of microtubule-associated protein 1B
light chain 3 (LC3) by ATG4 to generate cytoplasmic LC3-I. With the support of ATG7 and another
E2-like enzyme called ATG3, LC3-I becomes lipidated with phosphatidylethanolamine (PE) to generate
membrane-tethered LC3-II [74]. Autophagosomes represent double-membraned vesicles which enclose
the targets destined to be degraded. LC3-II is integrated into both the inner and outer membrane
of the autophagosome where it functions in autophagy substrate selection [75–77]. To degrade their
enclosed substrates, the autophagosomes fuse with lysosomes [73]. The formed autolysosomes release
hydrolases that implement the degradation of the autophagy substrates (Figure 1B). Autophagy
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is regulated by mammalian target of rapamycin (also known as mechanistic target of rapamycin)
complex 1 (mTORC1) which blocks the initiation of autophagy. mTOR inactivates the ULK complex by
phosphorylation [78,79]. The ULK complex consists of unc-51-like kinase 1/2 (ULK1/2), focal adhesion
kinase family-interacting protein of 200 kDa (FIP200) and ATG13. When mTOR is inactivated,
the ULK complex is allowed to translocate to phagophores and ULK1 directly phosphorylates Beclin-1,
thereby activating the pro-autophagy class III phosphoinositide 3-kinase (PI(3)K) VPS34 complex and
promoting autophagy induction and maturation [80].

As with the UPS, autophagy is also able to recognise a small proportion of its target proteins
by their polyubiquitination (selective autophagy). Ubiquitin has different lysine residues which
participate in the generation of polyubiquitin chains [81,82]. While the UPS preferably degrades or
processes proteins that have a K48-linked polyubiquitin chain, autophagy degrades proteins with
K63-linked chains [83,84].
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Figure 1. Overview of ubiquitin–proteasome system (UPS) protein degradation, autophagy and primary
cilium structure. (A) The ubiquitin–proteasome system. The ubiquitinated substrate is recognised by
the 19S regulatory subunit of the 26S proteasome and gets degraded or proteolytically processed by
the 20S subunit of the 26S proteasome. (B) Autophagy starts with the formation of phagophores which
subsequently elongate to finally develop into autophagosomes. During autophagosome formation,
target proteins and structures become enclosed in the autophagosomes. These autophagosomes
fuse with lysosomes and the hydrolases of the lysosomes degrade the target proteins and structures.
(C) Primary cilia consist of a microtubule scaffold called axoneme. The axoneme is surrounded by
the ciliary membrane and grows out of the basal body. The basal body is a modified mother centriole
that is connected to the daughter centriole by interconnecting fibres. The basal body is attached to the
ciliary membrane in the region of the ciliary pocket via transition fibres. The transition zone, with its
Y-links, is located at the proximal part of the axoneme.

3. The Primary Cilium

Primary cilia are tiny cytoplasmic protrusions (1–15 µm long) and basically contain three
different compartments—the axoneme, the basal body (BB) and the transition zone (TZ) (Figure 1C).
The axoneme represents the microtubule-based scaffold of the cilium and grows out of the BB,
which is the modified mother centriole. The axoneme consists of nine doublet microtubules that
are organised in a ring-like fashion. It stabilises the cilium and is essential for intraflagellar transport
(IFT). IFT carries proteins from the base to the tip of the cilium (anterograde IFT), and then back
to the base (retrograde IFT). The implementation of IFT requires the presence of motor proteins
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(kinesin-2 for anterograde IFT and dynein-2 for retrograde IFT) and of so-called IFT proteins.
IFT proteins belonging to the IFT-B complex (e.g., IFT88) drive anterograde IFT, while IFT proteins
of the IFT-A complex (e.g., IFT140) are necessary for retrograde transport [85]. The cargo that is
destined for transport within the cilium is bound to IFT proteins which, in turn, are attached to
motor proteins that move along the microtubules of the axoneme. The TZ, a short region of 0.5 µm,
is located at the proximal end of the axoneme. It is characterised by the presence of so called
Y-links, structures which appear as Y-shaped densities by transmission electron microscopy [86,87].
The TZ functions as a ciliary gatekeeper, controlling the entry and exit of proteins into and out of
the cilium [87–95]. Several of the proteins that traverse the TZ and that are translocated through
the cilium are receptors and mediators of signalling cascades such as the hedgehog (HH) pathway,
the platelet-derived growth factor receptor α (PDGFRα) pathway and the transforming growth factor
β (TGFβ) pathway [96–103]. HH signalling is one of the best studied cilia-mediated signalling
pathways. In the absence of HH ligand, the activation of smoothened (SMO) is inhibited by the
HH receptor patched (PTC), which is located in the ciliary membrane [101]. In this case, the HH
mediator proteins glioblastoma 2 (GLI2) and glioblastoma 3 (GLI3) are proteolytically processed
into GLI2-R and GLI3-R, two transcriptional repressors of HH target gene expression (Figure 2A).
In the presence of HH, the HH ligand binds to PTC and the HH/PTC complex is translocated
out of the cilium. Subsequently, SMO is activated, enters the cilium and induces the generation
of GLI2-A and GLI3-A, two transcriptional activators of HH target gene expression [98,104,105]
(Figure 2A). PDGFRα signalling starts with the binding of the ligand platelet-derived growth factor
AA (PDGF-AA) to its ciliary membrane-bound receptor PDGFRα, which subsequently dimerises
and undergoes phosphorylation [100]. As a consequence, the transduction of the mitogen-activated
protein kinases 1/2 (MEK1/2)–extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase
B (AKT/PKB) pathways is initiated (Figure 2B). The importance of primary cilia in mediating PDGFRα
signalling is reflected by the fact that the loss of cilia completely blocks PDGFRα signalling [100].
In the case of TGFβ signalling, both receptors of the pathway, TGFβ-RI and TGFβ-RII, localise to
cilia [102]. By ligand binding, TGFβ-RI and TGFβ-RII form a heterotetrameric receptor complex which,
in turn, activates the mediator proteins Sma- and Mad-related Protein 2 (SMAD2) and Sma- and
Mad-related protein 3 (SMAD3) at the base of primary cilia (Figure 2B). Then, SMAD2 and SMAD3
join with Sma- and Mad-related protein 4 (SMAD4) at the ciliary base and the SMAD2–3–4 complex
leaves the cilium in order to enter the nucleus and to induce TGFβ target gene expression [102].
Cilia-mediated signalling cascades are essential for the regulation of cellular processes during the
entire development of an organism [103,106–109]. Consequently, many severe human diseases
are associated with dysfunctional primary cilia and their number is permanently increasing [110].
The diseases caused by ciliary dysfunctions are commonly referred to as ciliopathies. Ciliopathies
comprise many life-threatening diseases such as polycystic kidney disease, Meckel–Gruber syndrome,
Joubert syndrome, Bardet–Biedl syndrome, Leber congenital amaurosis, Senior–Løken syndrome,
orofaciodigital syndrome type 1, Alström syndrome, Jeune asphyxiating thoracic dystrophy, Ellis–van
Creveld syndrome and Sensenbrenner syndrome [111,112].
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Figure 2. Cilia-mediated HH, PDGFRα and TGFβ signalling. (A) Without the HH ligand, the receptor
PTC inhibits ciliary entry of SMO. GLI2-FL and GLI3-FL are proteolytically processed into the repressor
forms GLI2-R and GLI3-R by the ciliary proteasome. They translocate into the nucleus and inhibit
HH target gene expression. In the presence of HH, HH binds to its receptor PTC and the HH/PTC
complex leaves the cilium. SMO enters the cilium and GLI2-FL and GLI3-FL become activated and,
in turn, initiate HH target gene expression. (B) PDGF-AA binds to the ciliary receptor PDGFRα and
activates AKT signalling or the MEK1/2–ERK1/2 signalling cascade. TGFβ binds to a heterotetrameric
receptor composed of TGFβ-RI and TGFβ-RII in the ciliary membrane. At the base of cilia, the signal is
transduced via different SMAD proteins.

4. Do the UPS and Autophagy Play a Role in the Development of Ciliopathies?

Current treatment of ciliopathies is limited to symptomatic therapies, as curative medication
against ciliopathies is not yet available [113]. For this reason, cilia research is focused on the investigation
of molecular mechanisms underlying ciliopathies as well as on developing curative therapies against
these severe diseases [66,114–121]. There are promising approaches to tackle ciliopathies ranging
from gene therapy to the use of small molecules, but none have yet successfully gone through clinical
trials [122–124]. According to several studies, reduced activity of the UPS and/or of autophagy
might be involved in the development of ciliopathies. For instance, it was reported that the ciliopathy
phenotype of Bardet-Biedl syndrome (bbs) and Oral-Facial-Digital Syndrome 1 (ofd1) morphant zebrafish
embryos is ameliorated by injecting human proteasomal subunit component (RPN10, RPN13, or RPT6)
mRNA or by injecting the proteasome activators sulforaphane (SFN) and mevalonolactone (alias
mevalonic acid lactone, mevalonate, and (±)-β-hydroxy-β-methyl-δ-valerolactone and abbreviated
MVA), respectively [66]. Regarding autophagy, many data were collected in the context of polycystic
kidney disease. In zebrafish embryos, it was demonstrated that a decreased autophagic activity
causes polycystic kidney disease and that a specific inducer Beclin-1 peptide and the autophagy
activators rapamycin (RAP) as well as carbamazepine (CBZ) and minoxidil ameliorates cyst formation
and restores kidney function [125,126]. While the macrolide RAP activates autophagy by inhibiting
mTORC1 signalling [127–129] which is known to block autophagy [130–133], carbamazepine (CBZ) and
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minoxidil exert their autophagy-activating function independently of mTOR [134,135]. Interestingly,
in utero application of RAP also markedly attenuated cyst formation in mouse embryos suffering from
polycystic kidney disease [136]. Moreover, treatment of adult mice suffering from polycystic kidney
disease with RAP reduces renal cystogenesis [137,138]. Furthermore, the treatment of rats displaying
polycystic kidney disease with RAP as well as with the mTOR inhibitor and autophagy activator PP242
blocks renal enlargement and cystogenesis [139–142]. In polycystic kidney patients, the application of
RAP slows kidney growth and prevents the worsening of renal function [137,143–145]. In mice, it was
shown that a proper dose of RAP is essential for its positive effect on polycystic kidney disease [146,147].
Based on these studies, it is conceivable that a decreased proteasomal and/or autophagic activity
might be involved in the development of ciliopathies.

5. Which Role Does the Primary Cilium Play in the Crosstalk between the UPS and Autophagy?

For many years, crosstalk between the UPS and autophagy was negated since the general view
was that the two main degradation systems have different substrate preferences [148,149]. In the
last 10 years, interplay between the UPS and autophagy was the subject of intense research. The key
finding was that the UPS and autophagy are at least partially redundant, a result that is based on the
fact that both degradation systems partially share the same substrates, and that if one degradation
system is downregulated, the other gets upregulated. It was shown that numerous proteins participate
in this crosstalk [150]. Due to existing excellent review articles about the crosstalk between these
degradation systems [31,150–152], we will concentrate on those interplay mechanisms in which the
primary cilium is obviously involved.

It is unquestionable that the primary cilium takes part in the crosstalk between the UPS and
autophagy, but it is difficult to define its exact role since different relationships between ciliary proteins
and both degradation systems have been elucidated (Figure 3). BBS4 and OFD1 are good examples
for explaining this difficulty. Both proteins positively regulate proteasomal activity since the loss of
BBS4 (in the kidney, liver, brain and retina) and OFD1 (in mouse embryonic stem cells) results in a
reduced proteasomal activity, respectively [66]. Moreover, both proteins are influenced by autophagy.
In mouse embryonic fibroblasts (MEFs), BBS4 is recruited to primary cilia by autophagy, most likely
via an indirect mechanism, and OFD1 is an autophagic substrate which is degraded at the ciliary
base [153]. Considering that ciliary BBS4 positively regulates proteasomal activity, autophagy would
promote proteasomal activity by the ciliary recruitment of BBS4. By contrast, autophagy seems to
inhibit proteasomal activity via degrading OFD1. Furthermore, the autophagy-dependent degradation
of OFD1 at the ciliary base promotes ciliogenesis and ciliary elongation [153,154]. Consequently,
autophagy ensures the formation of cilia. In turn, ciliary presence is essential for the proteolytic
processing of GLI3 in mice [99]. Investigations in MEFs revealed that GLI3 processing is implemented
by the cilia-regulated proteasome, a kind of proteasome that localises to the ciliary base and is
controlled differently from all other proteasomes within the cell [63]. The absence of retinitis
pigmentosa GTPase regulator-interacting protein 1-like (RPGRIP1L) leads to a reduced catalytic activity
of the cilia-regulated proteasome, while the activity of all other proteasomes within the cell is not
affected [63]. The proteolytic processing of GLI3 gives rise to GLI3-R, which inhibits HH signalling [48].
Cilia-mediated HH signalling is able to activate autophagy in MEFs and mouse kidney epithelial
cells [155]. Thus, the cilia-regulated proteasome negatively regulates autophagy. As mentioned
before, the catalytic activity of the cilia-regulated proteasome is positively governed by RPGRIP1L
in MEFs, suggesting that RPGRIP1L negatively regulates autophagy via its positive regulation of
the cilia-regulated proteasome. However, RPGRIP1L positively regulates both the activity of the
cilia-regulated proteasome and autophagy in MEFs. Additionally, it was demonstrated that RPGRIP1L
controls both activities independently of each other in MEFs [156]. Remarkably, RPGRIP1L negatively
controls the proteasome-based degradation of dishevelled (DSH) in Madin–Darby canine kidney
(MDCK) cells [157], suggesting that RPGRIP1L governs proteasomal activity in a cell type-specific
manner. Moreover, RPGRIP1L controls the assembly of the TZ by ensuring the proper amount of other
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proteins at the ciliary base in MEFs, mouse embryonic kidneys and mouse embryonic limbs [158].
One of these proteins is BBS4. In MEFs, autophagy recruits BBS4 to cilia [153] and RPGRIP1L positively
regulates autophagic activity [156]. Thus, it is conceivable that RPGRIP1L ensures the ciliary amount
of BBS4 via regulating autophagy. Considering that BBS4 positively regulates proteasomal activity [66],
it is possible that RPGRIP1L controls proteasomal activity by affecting the ciliary amount of BBS4.
However, BBS4 seems to control overall cellular proteasomal activity [66] while RPGRIP1L governs
proteasomal activity exclusively at the ciliary base [63]. Furthermore, it was demonstrated that
RPGRIP1L regulates the activity of the cilia-regulated proteasome by interacting with proteasome
26S non-ATPase regulatory subunit 2 (PSMD2) [63], arguing for a BBS4-independent control of
proteasomal activity by RPGRIP1L. Another protein whose abundance at the TZ is governed by
RPGRIP1L represents nephrocystin 4 (NPHP4), which also participates in the regulation of protein
degradation. NPHP4 interacts with an E3 ligase named Jade-1, which targets β-catenin, the main
mediator of the canonical WNT pathway, to the proteasome. By this interaction, NPHP4 stabilises
Jade-1 and enhances its capability to promote the proteasomal degradation of β-catenin in a human
embryonic kidney cell line (HEK293 cells) [159]. A link between NPHP4 and autophagy has not
been shown. The E3 ligases c-CBL and CBL-b also interact with a ciliary protein, the intraflagellar
transport protein 20 (IFT20). It stabilises c-CBL and CBL-b by inhibiting their autoubiquitination
and proteasomal degradation. In this way, IFT20 supports the ubiquitination and internalization of
PDGFRα thereby preventing aberrant PDGFRα signalling in immortalised MEFs (NIH3T3 cells) [160].
In the context of autophagy, analyses in MEFs demonstrated that IFT20 is an autophagic substrate
and a positive regulator of autophagy suggesting “a novel mechanism for self-containment of the
autophagic process” [155].
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Figure 3. Complex network of the cilia-related crosstalk between the UPS and autophagy. Autophagy
is able to regulate overall proteasomal activity in a positive or negative manner via BBS4 or OFD1.
In addition, autophagy regulates ciliogenesis via OFD1 and/or IFT20 and thereby affects ciliary
signalling. In turn, several cilia-mediated signalling cascades, like HH and mTOR signalling, modulate
autophagy. Moreover, mTOR signalling regulates the overall proteasomal activity either positively
or negatively (which is a matter of fierce debate). Additional cilia-associated proteins, like IFT20 or
RPGRIP1L, regulate ciliogenesis as well as autophagy, whereby RPGRIP1L is also able to regulate the
activity of the ciliary proteasome.
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Apart from HH signalling, another signal transduction cascade links cilia to the UPS and
autophagy. The mTOR signalling pathway is mediated by primary cilia in a human kidney proximal
tubular epithelial cell line (HK2 cells) and in MEFs [154,156] and among many other processes is deeply
involved in the regulation of both the UPS and autophagy [161]. It is known that mTOR signalling
inhibits autophagy [130–133,161]. In addition, mTOR signalling negatively regulates proteasomal
activity in MEFs and in HEK293 cells [40]. Regarding proteasomal activity, the opposite is also
observed, namely that mTOR signalling positively governs proteasomal activity as was shown in
MEFs and in HEK293 cells [162], leading to an unresolved situation [163,164].

6. Conclusions

The primary cilium plays a vital role in the crosstalk between the UPS and autophagy, but it is
impossible to define a blanket function of the primary cilium in this crosstalk since it is a signalling
hub and houses numerous proteins. As we have outlined in this article, various ciliary proteins and
cilia-mediated signalling pathways have different effects on the two degradation systems. It is the
beginning of an enormous puzzle where the bulk of the pieces are missing and future studies have to
be undertaken to yield a clear picture.
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