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Transthyretin (TTR) amyloidoses are systemic diseases associated with TTR aggregation

and extracellular deposition in tissues as amyloid. The most frequent and severe forms of

the disease are hereditary and associated with amino acid substitutions in the protein due

to single point mutations in the TTR gene (ATTRv amyloidosis). However, the wild type

TTR (TTRwt) has an intrinsic amyloidogenic potential that, in particular altered physiologic

conditions and aging, leads to TTR aggregation in people over 80 years old being

responsible for the non-hereditary ATTRwt amyloidosis. In normal physiologic conditions

TTR wt occurs as a tetramer of identical subunits forming a central hydrophobic channel

where small molecules can bind as is the case of the natural ligand thyroxine (T4).

However, the TTR amyloidogenic variants present decreased stability, and in particular

conditions, dissociate into partially misfolded monomers that aggregate and polymerize

as amyloid fibrils. Therefore, therapeutic strategies for these amyloidoses may target

different steps in the disease process such as decrease of variant TTR (TTRv) in plasma,

stabilization of TTR, inhibition of TTR aggregation and polymerization or disruption of the

preformed fibrils. While strategies aiming decrease of the mutated TTR involve mainly

genetic approaches, either by liver transplant or the more recent technologies using

specific oligonucleotides or silencing RNA, the other steps of the amyloidogenic cascade

might be impaired by pharmacologic compounds, namely, TTR stabilizers, inhibitors

of aggregation and amyloid disruptors. Modulation of different steps involved in the

mechanism of ATTR amyloidosis and compounds proposed as pharmacologic agents

to treat TTR amyloidosis will be reviewed and discussed.
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INTRODUCTION

Amyloidosis comprises a group of diseases which are characterized by extracellular deposition
of protein aggregates, with a structure mainly composed of cross β-sheets, insoluble and toxic,
in a range of tissues leading to the dysfunction of normal surrounding tissue (Galant et al.,
2017). This review summarizes the current knowledge concerning TTR amyloidosis (ATTR
amyloidosis) modulation aiming therapy and discusses the influence of other processes and factors
such proteolysis and extracellular chaperones, respectively, on TTR amyloidogenesis in order to
contribute for better understanding the disease pathophysiology and for the development of new
therapeutic approaches.
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TRANSTHYRETIN (TTR) STRUCTURE AND
FUNCTION

Transthyretin (TTR) is a 55 kDa homotetrameric globular
protein constituted by four monomers of 127 amino acid
residues (Kanda et al., 1974). It is mainly produced by the
liver and choroid plexus of the brain, being then secreted into
the blood and cerebrospinal fluid (CSF), respectively. However,
TTR synthesis has also been described in other tissues, such as
the retinal pigment epithelia (RPE), a monolayer of cells acting
as a blood barrier for the retina, which in turn secretes TTR
to the vitreous humor (Richardson, 2009). Low levels of TTR
expression were also found in Schwann cells of the sciatic nerve,
as described by Murakami et al. (2010).

TTR structure was firstly determined in the seventies by Blake
and collaborators (Blake et al., 1978), who described that each
TTR monomer is organized into two four-stranded anti-parallel
β-sheets (A through H) and a short β-helix located on β-strand
E (Blake et al., 1978); two monomers are connected through
hydrogen bonds between the two H strands of neighboring
monomers resulting in a very stable dimer. The association of
two dimers, mainly through hydrophobic interactions between
residues of the AB to GH loops results in the formation of the
TTR tetramer (Blake et al., 1978; Yokoyama et al., 2012).

TTR mainly functions as a carrier protein (Buxbaum and
Reixach, 2009; Vieira and Saraiva, 2014). The homotetrameric
structure of native TTR forms a central hydrophobic channel
that harbors two thyroxine (T4) binding sites at the dimer-dimer
interface (Blake et al., 1974) (Figure 1). However, due to negative
cooperativity, only one molecule of T4 is transported by TTR
(Andrea et al., 1980). In humans, around 15% of plasma T4 is
transported by TTR, whereas in rodents this percentage increases
to 50% (Vieira and Saraiva, 2014). In the CSF, TTR is the major
carrier of T4, transporting around 80% of the hormone in both
humans and rodents (Hu et al., 2006), being recently described as
essential for the retention of T4 in the CSF (Chen et al., 2016).

The TTR tetramer has four additional binding sites at the
protein’s surface for retinol-binding protein (RBP), two in each
dimer. Due to steric hindrance, only two RBP molecules may
effectively bind to TTR but, since the RBP levels in plasma are
lower than TTR, only one RBP molecule is effectively bound to
the TTR tetramer (Folli et al., 2010). The assembly of this TTR-
RBP complex is essential for the transport of retinol (or vitamin
A), allowing its delivery to the cells (Raghu and Sivakumar, 2004).
Indeed, studies in TTR knockout mice revealed a decrease in
both retinol and RBP levels in plasma (van Bennekum et al.,
2001), as well as an accumulation of hepatic RBP (Wei et al.,
1995), comparatively to wild-type mice. Altogether these results
suggest the pivotal role of TTR as a carrier of the retinol-
RBP complex preventing its glomerular filtration by the kidney
(Wei et al., 1995; van Bennekum et al., 2001; Gaetani et al.,
2002).

Besides its functions as carrier protein, a proteolytic activity
has been attributed to TTR. A small fraction of plasma TTR
(1–2%) was found associated with high density lipoproteins
(HDL) via apolipoprotein AI (apoA-I) (Sousa et al., 2000) and,

FIGURE 1 | Human transthyretin (TTR) tetramer structure in complex with two

thyroxine molecules (stick models) bound in the central hydrophobic channel,

from PDB 2ROX (Wojtczak et al., 1996). TTR subunits are colored differently

(blue, green, brown and yellow). Figure made with PyMOL (DeLano, 2005).

later, the capacity of TTR to cleave apoA-I carboxyl terminal
domain in vitro was also demonstrated (Liz et al., 2004). In
addition to apoA-I, TTR is also involved on the cleavage of both
neuropeptide Y (NPY) (Liz et al., 2009) and Aβ peptide (Costa
et al., 2008), suggesting an important role of TTR-mediated
proteolysis either in physiologic or pathologic conditions, with
major impacts on the biology of nervous system and Alzheimer’s
disease, respectively (Liz et al., 2010).

A neuroprotective role of TTR has also been described
under conditions of cerebral ischemia in mice deficient for
heat shock transcription factor 1 (HSF1), an activator of
heat-shock proteins. Under conditions of compromised heat-
shock response, TTR from CSF contributes to control neuronal
cell death, edema and inflammation, thereby influencing the
survival of endangered neurons in cerebral ischemia (Santos
et al., 2010). More recent work, indicates that TTR acts
as neurotrophic factor, through interaction with megalin,
stimulating neurite outgrowth and promoting neuroprotection
in ischemic conditions (Gomes et al., 2016, 2019).
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TRANSTHYRETIN-RELATED
AMYLOIDOSIS

Transthyretin amyloidosis (ATTR amyloidosis) is a group of
diseases in which TTR variants (ATTRv) or even the wild-
type protein (ATTRwt) aggregate and form amyloid fibrils
that deposit extracellularly in tissues (Sipe et al., 2016). These
are, respectively, hereditary and non-hereditary forms of the
disease. The non-hereditary form is related to alterations of
environmental conditions and aging leading to the aggregation
and fibril formation of wild type TTR, ATTRwt (Sipe et al.,
2016). Thus, ATTRwt amyloidosis is mainly an age-related
disorder, affecting 12–25% of the population over 80 years-
old and is characterized by ATTRwt deposition, particularly
in the heart, affecting cardiac functions (Westermark et al.,
2003). In contrast, the hereditary forms of the disease, ATTRv
amyloidosis result from single point mutations in the coding
region of the TTR gene, mainly producing less stable variant
proteins with an altered amino acid in the polypeptide chain,
ATTRv (Saraiva, 1995). Accordingly, to date, more than 140
mutations on the TTR gene have been described (http://
amyloidosismutations.com/mut-attr.php) (Connors et al., 2003).
Among these, only about 15 TTR variants are reported as non-
amyloidogenic, while most TTR point mutations induce systemic
amyloidosis with predominant neuropathic (Plante-Bordeneuve
and Said, 2011), or cardiac phenotypes (Rapezzi et al., 2010).
However, most of the variants have been associated with a mixed
phenotype, characterized by varying degrees of neurological and
cardiac involvement (Conceicao et al., 2019). Less frequently,
manifestations of ATTR amyloidosis include vitreous opacities
(Ando et al., 1997) and, in rare cases, leptomeningeal amyloidosis
(Maia et al., 2015).

The substitution of valine for methionine at position 30
(V30M) in the TTR polypeptide chain was the first mutation
to be identified and, is the most common mutation associated
with ATTR polyneuropathy (ATTR-PN) (previously designated
familial amyloid polyneuropathy—FAP) (Saraiva et al., 1984).
This life-threatening disease, first described by Corino de
Andrade (Andrade, 1952) mainly affects both peripheral and
autonomic nervous system, being sensorimotor polyneuropathy,
autonomic dysfunction and gastrointestinal tract disturbances
the major clinical manifestations which may lead to death within
10 years after disease onset if not treated (Ando et al., 2005;
Conceicao et al., 2016).

The prevalence of ATTR V30M amyloidosis is estimated to
be 0.87–1.1 per 1 000 000 individuals (Adams et al., 2014)
and the disease has been considered endemic in the north of
Portugal (Sousa et al., 1995), Japan (Kato-Motozaki et al., 2008),
and Sweden (Sousa et al., 1993). Individuals from Portugal
and some provinces in Japan typically manifest early-onset and
high-penetrance phenotype, whereas people in Sweden and, also
in other Japanese regions usually present late-onset and low-
penetrance disease (Plante-Bordeneuve and Said, 2011).

Besides peripheral neuropathy, cardiomyopathy is also one of
the major clinical manifestations of ATTR amyloidosis (ATTR-
CM) (Suhr et al., 2003). In addition to ATTRwt, which is the

main cause of ATTR-CM, as mentioned above, some non-V30M
mutations on TTR gene also lead to the development of cardiac
symptoms (Westermark et al., 1990). In particular, TTR V122I
is the most common variant responsible for ATTR-CM being
almost exclusively found in 3–4% of African-Americans and,
the predominant phenotype associated with this mutation is
severe restrictive cardiomyopathy with late-onset, i.e., occurs
mainly after the age of 60, without neurological symptoms
(Jacobson et al., 1997; Quarta et al., 2015; Buxbaum and
Ruberg, 2017). There are also other TTR variants responsible
for the development of cardiac amyloidosis, such as T49A,
S50I, T60A, I68L, and L111M (Rapezzi et al., 2015; Sekijima,
2015).

In patients with ATTR-CM, amyloid fibrils can infiltrate
any or all cardiovascular structures including conduction
system, the atrial and ventricular myocardium, valvular tissue
and, the coronary and large arteries (Falk and Dubrey,
2010). Myocardial infiltration results in progressive increase
in the thickness of left and right ventricular walls and of
the interatrial septum, ultimately leading to heart failure
(Rapezzi et al., 2010).

The diagnosis of ATTR-CM firstly includes echocardiogram
and electrocardiogram (Donnelly and Hanna, 2017). However,
myocardial scintigraphy using bone avid tracers, in particular,
technetium-based isotypes, such as 99mtechnetium 3,3-
diphosphono-1,2-propanodicarboxylic acid, pyrophosphate
and hydroxymethylene diphosphonate revealed high
sensitivity and specificity to cardiac ATTR amyloid deposits.
In fact, these agents allow to identify deposits before
increasing myocardial wall thickness, contributing to early
diagnosis of ATTR-CM (Maurer et al., 2019). In addition,
alterations in the values of cardiac biomarkers have also
been increasingly helpful on the management of ATTR-
CM. Indeed, clinical data from Patel and Hawkins indicate
that substantial ATTR amyloid deposits accumulating
in the cardiac tissue are accompanied by a moderate
increase in serum levels of NT-proBNP concentration
(Patel and Hawkins, 2015).

Approximately, one-fourth of the amyloidogenic TTR
mutations originates vitreous amyloid, namely F33I, R34G,
L35T, I84S, and T114C (Sekijima, 2015). It has been postulated
that vitreous amyloid is the result of local TTR synthesis in the
RPE cells in the eye (Ando et al., 1997). Similarly to vitreous,
also leptomeningeal amyloidosis may be related to local TTR
synthesis, in this case by choroid plexus and, amyloid deposition
mainly occurs in the media and adventitia of medium-sized
and small arteries, arterioles and veins of the cortex and
leptomeninges. These amyloid infiltrations induce cerebral
infarction, cerebral hemorrhage, subarachnoid hemorrhage and
hydrocephalus, ultimately leading to serious central nervous
dysfunctions, namely ataxia and dementia (Maia et al., 2015;
Sekijima, 2015). Till now, leptomeningeal amyloidosis is mainly
associated with D18G, A25T, and T114C TTR mutations
(Sekijima, 2015). However, in some cases, leptomeningeal
amyloidosis may also develop in patients with V30M mutation
(Maia et al., 2015).
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TTR AMYLOID FORMATION

The hallmark of ATTR amyloidosis is the extracellular deposition
of aggregated TTR or TTR fibrils in tissues. The process of TTR
aggregation and fibril formation is not completely elucidated
however biochemical and biophysical evidences indicate that
the tetrameric form of TTR becomes unstable and the protein
dissociates into dimers and monomers presenting a partially
unfolded conformation which self-assemble into toxic non-
fibrillar aggregates and, later into amyloid fibrils that accumulate
as amyloid deposits throughout the body (Quintas et al., 2001;
Cardoso et al., 2002).

In vivo the amyloid deposits are composed also by other
proteins such as serum amyloid P component (SAP) and
proteoglycans (Benson et al., 2018a). In the case of ATTR
amyloidosis, TTR in the amyloid deposits might be in its intact
form meaning as full-length protein and as TTR fragments
suggesting that proteolysis might contribute as a mechanism of
amyloid formation.

Knowledge of the mechanisms involved in TTR amyloid
formation allows establishing therapeutic targets to avoid and/or
halt the progression of disease. In this sense several therapeutic
strategies have been pursued targeting different stages of the
process of amyloid formation or clearance of pre-formed fibrils.
The main targets have been lowering or silencing TTR, TTR
stabilization, inhibition of TTR fibril formation and fibril
disruption that will be discussed below.

ATTR AMYLOIDOSIS THERAPIES
TARGETING TTR SYNTHESIS

TTR variants are the main component of amyloid deposits in
ATTRv amyloidosis, therefore abolishment of TTR synthesis
was one of the first proposed therapeutic approaches in these
diseases. Since the liver is the main organ producing and
secreting TTR into blood, liver transplant emerged as a possible
therapeutic strategy for ATTR amyloidosis (Lewis et al., 1994).
Indeed, orthotopic liver transplant (OLT) was shown to arrest
disease progression through suppression of mutant TTR from
circulation and has been the most effective treatment for ATTR
amyloidosis (Benson, 2013; Ericzon et al., 2015). Despite the
favorable prognosis observed in transplanted patients, there
are still some concerns and long-term complications since the
previously existing hereditary amyloid deposits may recruit
newly circulating TTR wt promoting amyloid growth and,
ultimately resulting in disease progression (Maurer et al., 2016;
Saelices et al., 2018). Additionally, there are reports of continuous
amyloid deposition even after liver transplantation, mainly in
cardiac tissue of transplanted TTR V30M carriers (Okamoto
et al., 2011), as well as in the vitreous humor (Munar-Ques et al.,
2000; Ando et al., 2001) and leptomeninges (Sekijima et al., 2016).
This may be due to the recruitment of newly circulating TTR
wt by the previously existing amyloid deposits, mainly in the
heart or due to the local TTR synthesis in the eye and choroid
plexus of the brain, in either case this might result in amyloid

growth and disease progression (Maurer et al., 2016; Saelices
et al., 2018). On the other hand, in the case of domino liver
transplant (DLT), in which the liver excised from ATTRv patient
is transplanted to patients with severe liver disease, the recipients
developed symptoms related to ATTR amyloidosis (Stangou
et al., 2005; Goto et al., 2006; Barreiros et al., 2010). In addition,
post-mortem analysis indicated that systemic amyloid deposition
occurred before the appearance of the symptoms (Koike et al.,
2011). Interestingly, the clinical manifestations of acquired ATTR
amyloidosis after DLT are predominantly related to sensory
deficits contrary to the predominant autonomic symptoms in the
donors (Stangou et al., 2005; Goto et al., 2006; Barreiros et al.,
2010).

The previous findings of continuous amyloid deposition, even
after OLT, as well as the knowledge that TTR wt may also
aggregate into amyloid fibrils (Westermark et al., 2003), led to
an increasing interest in less invasive treatments aiming also to
arrest TTR synthesis through gene silencing as a new strategy
for the treatment of ATTR amyloidosis. Two different gene-
silencing approaches have been developed. One is based on
antisense nucleotides (ASOs) and the other on small-interfering
RNA (siRNA) (Gertz et al., 2019).

TTR specific siRNAs were firstly tested in mouse models
of ATTR amyloidosis and a reduction on amyloid deposition
was observed, inducing ATTR amyloid regression (Butler et al.,
2016). Different siRNAs with similar mechanism of action were
further assessed, in particular patisiran and revusiran, being
patisiran the one selected for phase III clinical trials (Coelho
et al., 2013). Prolonged administration of patisiran in an open-
label study for an extended period of 29 months demonstrated
a consistent lowering of plasma TTR levels resulting in
disease stabilization and absence of major safety concerns,
confirming its indication for ATTR amyloidosis therapy
(Adams et al., 2018).

More recently, a novel liver-directed siRNA conjugate,
vutrisiran, has been formulated. Vutrisiran is a GalNAc-
siRNA conjugate presenting improved pharmacokinetic and
pharmacodynamic properties allowing potent and sustained TTR
reduction and an acceptable safety profile with mild treatment-
related adverse effects as found in a phase I clinical trial enrolling
healthy individuals (Habtemariam et al., 2020). These improved
characteristics suggest vutrisiran as a novel promising therapy for
the treatment of ATTR amyloidosis.

Furthermore, a second-generation ASOs (e.g., IONIS-TTRRx
or Inotersen) was reported to be effective by decreasing TTR
plasma levels in both monkeys and ATTR I84S transgenic mice.
Experiments in healthy humans also revealed a decrease in
TTR wt plasma concentrations in a dose-dependent manner
(Ackermann et al., 2016). More recent results from phase 3
clinical trial studies with these two gene silencers, patisiran
and inotersen, reveal that both are able to efficiently reduce
TTR synthesis and arrest disease progression though with
some differences in the form and frequency of the therapeutic
administration and safety monitoring (Adams et al., 2018;
Benson et al., 2018b; Gertz et al., 2019; Koike and Katsuno,
2020).
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ATTR AMYLOIDOSIS THERAPIES
TARGETING AMYLOID FORMATION

Several compounds have been suggested for the treatment of
ATTR amyloidosis by targeting different steps of the amyloid
formation. The main steps include TTR stabilization, inhibition
of oligomerization and fibril disruption. The most relevant
compounds are listed in Table 1 and will be discussed in the
following sections. In the recent years, computational studies,
such as molecular dynamics (MD) simulations, molecular
docking and quantitative structural-activity relationships (SAR)
have been used as complement of experimental approaches
to better understand TTR monomer misfolding mechanisms-
driving TTR amyloidogenesis (Zhou et al., 2019), as well as the
binding of small molecules to TTR (Dessi et al., 2020). Indeed,
these in silico experiments have been essential to obtain a more
detailed information about structural changes in biomolecules
and, have been used to determine the structural dynamics of TTR
(Ortore and Martinelli, 2012; Zhao and Lei, 2014), which in turn
will be particularly relevant to the development of more targeted
and effective therapies for the treatment of ATTR amyloidosis.

TTR Stabilization
TTR tetramer stability is a determinant factor conditioning
tetramer disassembly, the rate-limiting step for aggregation and
amyloid fibrils formation (McCutchen et al., 1993; Quintas et al.,
1999). Accordingly, the development of small molecules able
to stabilize the TTR tetramer, preventing its dissociation into
monomers, has been recognized as a great therapeutic strategy
for the treatment of ATTR amyloidosis. The design of these
molecules was based on the affinity of T4 to bind to the
central pocket of the TTR tetramer inhibiting its dissociation
(Miroy et al., 1996). Based on the capacity of the nonsteroidal
anti-inflammatory drugs (NSAIDs), to bind to the T4-binding
channel in TTR (Baures et al., 1999; Miller et al., 2004), the
first drug to be tested was diflunisal, which was reported as
an effective stabilizer of the TTR tetramer in plasmas from
ATTR-PN patients (Tojo et al., 2006). Then, ATTRv patients
were randomly assigned to receive diflunisal for 2 years and,
in fact, the use of diflunisal reduced the rate of progression
in neurologic impairment and preserved the quality of life of
patients comparatively to placebo group (Berk et al., 2013)
and ameliorated the autonomic symptoms in ATTRv patients
(Takahashi et al., 2014). However, diflunisal administration to
these patients induced long-term side effects, namely impaired
renal function and thrombocytopenia (Sekijima et al., 2015),
which may compromise its clinical value.

Following, other pharmacologic molecules, such as tafamidis
(a benzoaxazole derivative) (Vyndaqel R©) have been proposed
through a structure–based drug design approach to select
compounds to occupy these T4-binding sites, kinetically
stabilizing the TTR tetramer, and ultimately resulting in a
decrease in the rate of amyloid fibril formation in vitro (Bulawa
et al., 2012). One of the major concerns about the use of
tafamidis in ATTRv patients is related to potential metabolic
side effects, since it could interfere with T4 delivery throughout
the body. However, clinical trials have found minimal evidences

about this concern because thyroxine binding globulin (TBG),
rather than TTR, transports the majority of the circulating T4

(∼75%) (Refetoff, 2000; Coelho et al., 2012). Tafamidis has
gained approval for the treatment of ATTRv amyloidosis in
several countries, including in the European Union, Mexico,
Argentina, Japan and more recently also in the USA for the
treatment of ATTR-CM (Coelho et al., 2016). Moreover, an
open-label extension study for 6 years also revealed the slowing
of neuropathy progression without unexpected adverse effects
(Barroso et al., 2017). Recently, the effects of tafamidis on ATTR-
CM were also evaluated in both ATTRv and ATTRwt patients
in a phase III clinical trial significantly reducing mortality and
cardiovascular-related hospitalizations (Maurer et al., 2018).

Most studies for the development of efficient TTR stabilizers
were based on rational ligand design and, thus most of the
stabilizers are, in general, halogenated biaryl analogs of T4,
many resembling NSAIDs. However, these molecules act as
cyclooxygenase (COX) inhibitors increasing the risk of severe
cardiovascular events therefore being contraindicated in patients
with ATTR-CM (Mukherjee et al., 2001). Moreover, high-
throughput screening studies pointed out a new compound,
AG10, as an effective and selective stabilizer of the cardiac TTRwt
and TTR V122I protecting human cardiomyocytes from TTR
amyloid toxicity (Alhamadsheh et al., 2011; Penchala et al., 2013).
Interestingly, structural studies revealed that AG10 is unique in
its capacity to form hydrogen bonds with the same serine residues
at position 117 that stabilize the non-amyloidogenic TTR T119M
variant (Miller et al., 2018). Recent results from phase II clinical
trials revealed that AG10 has the potential to be safe and effective
for the treatment of ATTR-CM patients either carrying mutant
or TTR wt. Phase III clinical trials with AG10 are ongoing (Judge
et al., 2019).

In addition, based in its molecular structure, tolcapone, an
FDA-approved drug for the treatment of Parkinson’s disease,
has been repurposed for the treatment of ATTR amyloidosis.
Tolcapone specifically binds to TTR in human plasma and,
stabilizes the native TTR tetramer in vivo in mice and humans.
Furthermore, it was also demonstrated that the binding of
tolcapone to the recombinants TTR wt and TTR V122I, at
the T4-binding channel is stronger comparatively to tafamidis
(Sant’Anna et al., 2016). These results pointed-out tolcapone as
a strong candidate for the treatment of ATTR polyneuropathy
and, in fact, it has gained clinical interest and it already passed
phase I/II clinical trials (Gamez et al., 2019). A very recent work
on the structural characterization of Tolcapone–TTR complexes
demonstrates high stabilization and binding affinity of Tolcapone
to TTR variants associated with leptomeningeal amyloidosis.
These characteristics in association with its ability to cross
the blood-brain barrier suggests its particular indication for
therapeutic intervention in this type of amyloidosis (Pinheiro
et al., 2020).

Contrarily to the above-mentioned compounds, palindromic
ligands, such as mds84, rapidly bind simultaneously to both T4-
binding sites in each tetrameric TTR molecule, which would
overcome the problems of negative cooperativity of the binding
of the existing drugs, such as tafamidis. Mds84 binds to
the native TTR wt in whole serum and, more effectively to
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the amyloidogenic TTR variants, promoting the stabilization
of the TTR tetramer (Kolstoe et al., 2010; Corazza et al.,
2019).

Some plant polyphenols which may be part of our diet have
also been reported as TTR tetrameric stabilizers. In particular,
epigallocatechin-3-gallate (EGCG) and curcumin, the major

TABLE 1 | Compounds proposed for the treatment of ATTR amyloidosis.

Compound/structure Activity References

DIFLUNISAL Binding at the thyroxine binding

sites/TTR stabilization

Tojo et al., 2006; Berk et al., 2013;

Takahashi et al., 2014

TAFAMIDIS Binding at the thyroxine binding

sites/TTR stabilization

Bulawa et al., 2012; Coelho et al.,

2016; Barroso et al., 2017; Maurer

et al., 2018

AG10 Binding at the thyroxine binding

sites/TTR stabilization

Alhamadsheh et al., 2011; Penchala

et al., 2013; Miller et al., 2018; Judge

et al., 2019

TOLCAPONE Binding at the thyroxine binding

sites/TTR stabilization

Sant’Anna et al., 2016; Gamez et al.,

2019; Pinheiro et al., 2020

mds84 Binding at the thyroxine binding

sites-bivalent ligand/TTR stabilization

Kolstoe et al., 2010; Corazza et al.,

2019

CURCUMIN Binding at the thyroxine binding

sites/TTR stabilization

Ferreira et al., 2011, 2013, 2016,

2019

(Continued)
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TABLE 1 | Continued

Compound/structure Activity References

EGCG TTR stabilization /inhibition of

aggregation

(oligomerization)/Disruption of

aggregates

Ferreira et al., 2009, 2011, 2012

Molecular tweezer CLR01 Inhibition of aggregation

(oligomerization)/Disruption of

aggregates

Sinha et al., 2011; Ferreira et al., 2014

DOXYCYCLINE Disruption of TTR aggregates Cardoso et al., 2003, 2008; Cardoso

and Saraiva, 2006

components of green tea and turmeric, respectively, were able
to effectively stabilize the TTR tetramer in human plasmas from
both V30M carriers and controls (Ferreira et al., 2011), as well
as in plasmas from transgenic mice carrying human TTR V30M
variant (HM30 mice) (Ferreira et al., 2012, 2013). It should be
noted that these compounds exhibit different ways of action.
Curcumin competes with T4 for the binding to TTR, meaning
that it binds at the T4 binding sites, whereas EGCG stabilizes TTR
through binding at the surface of the TTR molecule in particular
at two binding sites at the dimer-dimer interface exerting an effect
similar to a cross-linker. Low bioavailability and low specificity of
binding seem to be relevant conditioning factors of their effects in
vivo in humans (Kristen et al., 2012; aus dem Siepen et al., 2015;
Cappelli et al., 2018).

Inhibition of TTR Aggregation Into Amyloid
Fibril
TTR stabilizers, as the above-mentioned small molecule
compounds, including EGCG, curcumin, tolcapone and mds84

have also been reported as inhibitors of TTR amyloid formation
as consequence of their effect on the first step of TTR aggregation.

Ferreira et al. firstly described EGCG as a strong inhibitor of
TTR aggregation in vitro (Ferreira et al., 2009), by maintaining
most of the protein in a non-aggregated soluble form. EGCG
also suppressed the amyloid fibril formation pathway in a cell
culture system (Ferreira et al., 2009). Later, the role of EGCG on
the inhibition of amyloid fibril formation in vivo using a well-
characterized transgenic murine model of ATTR-PN was also
demonstrated. EGCG reduced, in about 50%, the deposition of
TTR toxic aggregates in the gastro-intestinal tract and peripheral
nervous system (PNS), with a concomitant decrease in the
expression of both non-fibrillar-related biomarkers and amyloid
deposition markers (Ferreira et al., 2012).

Similar studies using curcumin demonstrated suppression of
fibril formation in vitro through the generation of small “off-
pathway” oligomers (Ferreira et al., 2011) and inhibited this
process in transgenic mice carrying human TTR V30M variant.
In fact, immunohistochemical analysis of mice tissues revealed
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that dietary curcumin decreased TTR load in as much as 70%
and lowered the cytotoxicity associated with TTR aggregation
(Ferreira et al., 2013). Later, it has been shown that dietary
curcumin decreases TTR deposition and associated toxicity in the
dorsal root ganglia and stomach of aged mice carrying human
TTR V30M variant (Ferreira et al., 2016).

Furthermore, synthetic compounds such as tolcapone and
mds84 effectively inhibited the process of TTR fibril formation
in vitro (Kolstoe et al., 2010; Sant’Anna et al., 2016) and,
tolcapone was also able to suppress TTR toxicity in cellular
models (Sant’Anna et al., 2016).

However, some inhibitors of amyloid formation might act on
a different step of the cascade leading to fibril formation that
includes, for instance, the polymerization of the intermediate
species originating aggregates that evolve to amyloid fibrils. That
is the case of the molecular tweezer CLR01 (Sinha et al., 2011).
This is a synthetic compound that through binding to positively
charged amino acids, in particular lysine and arginine residues
in the terminal beta-strands of TTR, inhibit the tight alignment
of protofilaments characteristic of amyloid formation. Thus, the
molecular tweezer CLR01 inhibited TTR aggregation in vitro and
also in vivo as demonstrated in a study in which TTR V30M
mice treated with CLR01 presented decrease of TTR deposition
and of associated biomarkers (Ferreira et al., 2014). However,
this compound presents limitations related to the low binding
affinity to proteins and to its formulation needing improvement
of pharmacologic properties.

Disruption of Aggregates
The role of anthracyclines and, in particular of 4′-iodo-4′-
deoxydoxorubicin on the reabsorption of amyloid deposits was
related to the almost planar structure of these compounds and
the cross β-pleated structure characteristic of all amyloid fibrils
(Merlini et al., 1995). Furthermore, doxycycline, a member of
tetracycline antibiotics family, structurally homologous to the
anthracyclines, was found to be particularly effective on the
disruption of TTR amyloid fibrils in vitro (Cardoso et al., 2003).
In addition, in vivo studies on transgenic mice carrying human
TTR V30M variant supported the previous in vitro findings.
Doxycycline was administered to old transgenic mice and, tissue
analysis revealed Congo red positive staining only for the non-
treated animals from the control group. Additionally, a decrease
in several markers associated with TTR amyloid deposition was
also reported (Cardoso and Saraiva, 2006; Cardoso et al., 2008).
The recent development of doxycycline conjugates, namely
polyglutamate-doxycycline, demonstrated an enhanced effect
in the clearance of fibrils comparatively to non-conjugated
doxycycline only (Conejos-Sanchez et al., 2015).

Since doxycycline has effect only in advanced phases of the
amyloidogenic cascade it has been proposed that it could be
combined with another drug targeting an earlier phase of the
amyloid fibrils assembly (Cardoso et al., 2010). In this sense,
tauroursodeoxycholic acid (TUDCA), a hydrophilic biliary acid
derivative, gained particular clinical interest for the treatment
of ATTR amyloidosis since it has been previously referred to
cause a decrease in the deposition of toxic pre-fibrillar TTR
oligomers and to reduce the expression of several apoptotic and

oxidative biomarkers associated with ATTR amyloid deposition
in transgenic murine models treated with TUDCA (Macedo
et al., 2008; Cardoso et al., 2010). Clinical trials of combined
doxycycline and TUDCA are underway and preliminary results
indicate positive effects though more results are necessary to
evaluate the impact of this therapeutic approach in disease
progression (Obici and Merlini, 2014).

Moreover, some therapeutic compounds are classified as
multi-target disease agents, performing a role in different steps of
amyloid fibril formation. For instance, compounds such as EGCG
and curcumin besides its effects as inhibitors of aggregation act
also as disruptors of TTR amyloid deposits. In fact, both natural
polyphenols, EGCG and curcumin, efficiently disaggregated pre-
formed TTR amyloid fibrils (Ferreira et al., 2011) (Ferreira et al.,
2019). Recent studies using transgenic murine models pointed
out both curcumin and TUDCA as modulators of cellular
autophagy processes, which are involved in the clearance of large
protein aggregates (Teixeira et al., 2016).

Immunotherapy
Immunotherapy is another therapeutic strategy for the treatment
of ATTR amyloidosis, which still remains under investigation.
Specific antibodies targeting TTR monomers, oligomers or
amyloid aggregates may prevent TTR fibrillogenesis. As a first
approach, a structure-based strategy was used to develop a TTR
conformation-specific antibody targeting pre-fibrillar, misfolded
TTR intermediates without recognizing native tetrameric
TTR. This is achieved since the antibody (misTTR) targets
the residues 89–97 in the polypeptide chain, which are
buried in the TTR tetramer, but it is exposed in the
monomer, inhibiting fibrillogenesis of misfolded TTR under
micromolar concentrations (Galant et al., 2016). This antibody
has already entered into phase I clinical trials in ATTRv patients
(Macedo et al., 2020).

CONTRIBUTION OF TTR PROTEOLYSIS TO
AMYLOID FORMATION

Since a long time ago, TTR proteolysis has been suggested to
be involved in the mechanisms driving TTR-related amyloidosis
(Pitkanen et al., 1984). Therefore, by understanding in detail
the molecular mechanisms implicated in the pathophysiology of
ATTR amyloidosis, it would be possible to develop new targeted
therapies to improve the patients’ outcomes.

Several evidences suggest the existence of different types of
TTR amyloid fibrils in a range of tissues. In fact, amyloid deposits
might be composed by a mixture of both cleaved and full-length
TTR (type A) or full-length TTR only (type B). The resulting
amyloid deposits are different. Type A fibrils are shorter and
exhibit weaker affinity for Congo Red staining than type B fibrils,
which are longer, slender and strongly stain with Congo Red
(Bergstrom et al., 2005; Ihse et al., 2008, 2011).

Different amyloidogenic fragments may be found in different
tissues and could be associated either with ATTRwt or ATTRv
amyloidosis (Suhr et al., 2017). Vitreous TTR appeared to be
fragmented between the residues Lys48-Thr49, whereas cardiac
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TTR may be cleaved at multiple sites between the 46–52 amino
acid residues in polypeptide chain (Liepnieks et al., 2006).
However, peptide 49-127 C-terminal fragment is the main
component of ex vivo TTR amyloid fibrils in tissue biopsies of
cardiac deposits, which is further associated with poor clinical
prognosis, often with rapidly progressive cardiac involvement,
even after liver transplantation (Gustafsson et al., 2012; Ihse et al.,
2013).

The protease responsible for TTR cleavage has not yet been
identified. However, the highly specific fragmentation pattern
suggests that it could be a trypsin-like serine protease. The
three-dimensional structure of this protein region is solvent
exposed and potentially accessible for cleavage. In accordance,
all amyloidogenic TTR variants showed an increased main
chain solvent exposure comparatively to both native and
non-amyloidogenic variants, which may result in increased
susceptibility to proteolysis (Schormann et al., 1998).

Recent in vitro studies, using recombinant trypsin, revealed
that the proteolysis/fibrillogenesis pathway is common to several
amyloidogenic TTR variants and, the process of cleavage and
release of the 49–127 TTR fragment is faster for the highly
amyloidogenic variant, TTR S52P, than for the other TTR
variants analyzed (Mangione et al., 2014; Marcoux et al.,
2015). It requires the action of biomechanical forces provided
by sheer stress of physiological fluid flow and, importantly,
the non-amyloidogenic TTR T119M is neither cleaved nor
generates amyloid fibrils under these conditions. These studies
also demonstrated that the TTR stabilizers, mds84, tolcapone,
diflunisal and tafamidis, inhibited TTR proteolysis resulting
in the inhibition of aggregation. However, the maximum
inhibition is only achieved when both T4-binding sites in central
hydrophobic channel are simultaneously occupied by small
ligands (Mangione et al., 2014; Verona et al., 2017). In opposition,
natural TTR ligands, T4 and RBP, were not able to inhibit TTR
cleavage. Nevertheless, binding of RBP, but not T4, effectively
inhibited the subsequent formation of amyloid fibrils (Mangione
et al., 2014).

Due to the exclusive duodenal location of trypsin, it is unlikely
that it may contribute to the development of systemic TTR
amyloidosis in vivo. In silico studies recently pointed out plasmin
as a plausible pathophysiological candidate protease involved
in the process of TTR amyloid formation (Mangione et al.,
2018). Furthermore, the ubiquitous distribution of plasmin, its
structural similarities to trypsin (Mangione et al., 2018) and
the reported activation of plasminogen activation system (PAS)
in other amyloid-related disorders, such as Alzheimer’s disease
(Tucker et al., 2000) and immunoglobulin light chain (AL)
amyloidosis (Mumford et al., 2000; Bouma et al., 2007; Uchiba
et al., 2009) also indicate that this protease could perform a key
role in TTR amyloidogenesis.

Recent studies showed that amorphous protein aggregates are
degraded by plasmin, releasing smaller soluble protein fragments,
which are cytotoxic in vitro for both endothelial and microglial
cells (Constantinescu et al., 2017).

Plasmin, similarly to trypsin, selectively cleaves TTR S52P
variant, at Lys48-Thr49 peptide bond under physiological
conditions in vitro being, both the TTR fragments and

full-length protomers readily released from the homotetramer
and incorporated into amyloid fibrils, morphologically identical
to ex vivo TTR amyloid (Mangione et al., 2018). Concerning
these observations, a hypothetical model for the role of
plasmin-mediated proteolysis on TTR fibrillogenesis has been
proposed. In this model, circulating TTR can diffuse toward
the extracellular compartment, be entrapped in the fibrin clot
or escape from it. Upon plasminogen activation, TTR may be
cleaved and then dissociate into a mixture of both truncated and
full-length TTR, which ultimately assemble into amyloid fibrils
and deposit at the extracellular space (Mangione et al., 2018).

Altogether these evidences seem to point out the importance
of lysine (Lys) residues for the pathogenicity of ATTR
amyloidosis as it has been described for other amyloid disorders
(Sinha et al., 2011). By targeting the Lys residues using synthetic
Lys specific molecular tweezers (e.g., CLR01), the process of
TTR proteolysis could be effectively inhibited through its binding
to Lys48, which seem to be target of the protease responsible
for TTR cleavage. This could be particularly important for the
treatment of both ATTR-CM and vitreous amyloidosis, since the
49-127 TTR fragment has been frequently encountered in the
amyloid deposits in both cases.

Despite the increasing interest on TTR proteolysis as leading
mechanism-driving ATTR amyloidosis, some questions remain
to be answered. Though, it is still unknown whether TTR
fragmentation occurs prior or after aggregation and, where
it occurs, in circulation or at the site of deposition, an
increase of the proteolytic activity in plasmas from ATTR
patients comparatively to healthy controls, suggesting that
the process occurs in the bloodstream before fibril formation
(da Costa et al., 2015).

EXTRACELLULAR CHAPERONES AS
REGULATORS OF ATTR AMYLOIDOSIS

The disruption of the protein folding quality control mechanisms
is also an underlying cause of ATTR amyloidosis. Recently, some
studies revealed the existence of a growing family of extracellular
chaperones in body fluids, which selectively bind to exposed
hydrophobic residues in misfolded proteins in order to prevent
their toxicity upon aggregation into insoluble deposits (Wyatt
et al., 2013).

Among those extracellular chaperones, haptoglobin, alpha-2-
microglobulin (A2M) and clusterin were found to be increased
in plasmas from ATTR patients (da Costa et al., 2015). While
haptoglobin and A2M, were previously described as effective
in the inhibition of stress-induced aggregation of a number of
unrelated target proteins (Yerbury et al., 2005; French et al.,
2008), clusterin is an ubiquitous highly conserved secreted
protein (Wyatt et al., 2009), which inhibits protein aggregation
in an ATP-independent manner upon its binding to misfolded
proteins, such as α-synuclein and β-amyloid peptide, producing
soluble, high molecular complexes (Matsubara et al., 1996; Poon
et al., 2000; Yerbury et al., 2007).

The role of clusterin on the clearance of extracellular
aggregates has also been investigated in ATTR-PN (Lee et al.,
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2009; Magalhaes and Saraiva, 2011). In vitro studies using
neuroblastoma cells incubated with TTR oligomers revealed
intracellular clusterin overexpression and increased levels of
clusterin secreted to the culture medium. An overexpression
of clusterin in tissues with TTR deposition was found in mice
carrying human TTR V30M in HSF-1 null background, which
exhibit early and extensive non-fibrillar TTR deposition in
the gastrointestinal tract and in the peripheral and autonomic
nervous system. In addition, in human nerve, clusterin co-
localizes either with fibrillar or non-fibrillar TTR deposits as
detected by double immunostaining (Magalhaes and Saraiva,
2011).

Clusterin was also found in cardiac TTR amyloid deposits
from patients with ATTRwt and ATTRv (Greene et al., 2011)
and, later, experiments using circular dichroism spectroscopy
revealed that clusterin preferentially stabilizes monomeric TTR
leading to the appearance of increasingly stable conformations
under acid stress. Additionaly, clusterin interacts also with
high molecular weight TTR aggregated species and, these
interactions with both monomeric and oligomeric TTR proceed

in a cooperative manner in the presence of the TTR tetramer
stabilizer, diflunisal. Altogether these observations suggest a
novel synergistic treatment for ATTR amyloidosis using both
diflunisal and clusterin for the removal of misfolded and
aggregated TTR (Greene et al., 2015). Accordingly, preliminary
data revealed a temporal increase in serum clusterin levels in
patients treated with diflunisal at 1-year follow-up compared
to baseline. In opposition, patients who were not treated with
diflunisal demonstrated decreased clusterin levels at annual
evaluation. Interestingly, a positive correlation between clusterin
and TTR levels was found at baseline suggesting that soluble
tetrameric TTR decreases as more of the native protein
dissociates and forms species, overwhelming the protein folding
capacity of clusterin leading to a reduction in circulating
levels of this molecular chaperone and, the treatment of
the ATTR patients with diflunisal lead to a partial recovery
of serum clusterin levels (Torres-Arancivia and Connors,
2019). These results are in accordance with previous studies
reporting the beneficial effects of diflunisal for the treatment of
ATTRv amyloidosis.

FIGURE 2 | Mechanisms-driving TTR amyloidogenesis and different therapeutic targets for the treatment of ATTR amyloidosis. Tetramer destabilization is widely

accepted as a rate-limiting step for the development of amyloid fibrils. However, TTR proteolysis has been increasingly suggested as an alternative mechanism

contributing to amyloid formation. Several pharmacological agents have been implicated in the treatment of ATTR amyloidosis, from inhibitors of TTR synthesis,

tetramer stabilizers, inhibitors of amyloid formation and even disruptors of formed fibrils. The modulation of TTR proteolysis may also be helpful for the treatment of

ATTR amyloidosis. Despite the protease responsible for this process has not yet been identified, its specific cleavage patterns suggest that it could be a trypsin-like

serine protease. Accordingly, pharmacological molecules targeting lysine residues, as well as physiological serine protease inhibitors may be act as modulators of TTR

proteolysis, consequently inhibiting amyloid formation.
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CONCLUSION AND FUTURE
PERSPECTIVES

ATTR amyloidosis is an under-recognized disease which is
characterized by extracellular deposition of TTR aggregates
in several organs, being polyneuropathy and cardiomyopathy
the major clinical manifestations. The mechanism by which
the tetramer disassembles and aggregates into amyloid fibrils
has been considered the main driver of the disease. However,
TTR proteolysis, namely occurring in the cardiac tissue, as
well as its modulation have been increasingly documented
as fundamental for understanding the development and
progression of ATTR amyloidosis.

Many therapeutic approaches have been suggested for the
treatment of ATTR amyloidosis targeting different steps of
the pathology. Those therapies include interventions from the
synthesis of the TTR variants through liver transplant or
gene silencing therapies, to TTR stabilization, inhibition of
aggregation, disruption of amyloid fibrils and clearance of
amyloid deposits. The main targets for intervention on TTR
amyloid formation are summarized in Figure 2. Although some
the available therapies are more efficient than others, it becomes
increasingly evident that combination of different therapies may
improve the therapeutic outcome. In this sense, it would be
interesting to test TTR gene silencing therapies in combination
with protein stabilizers or disruptors of pre-existing amyloid

deposits. It is also important to obtain more efficient and
targeted therapies specific to organ and tissues with limited
drug access as is the case of the eye and brain, that are
particularly relevant in some forms of the disease. Moreover,
it is crucial to continue with studies that can contribute to a
better understanding of the mechanisms involved in the disease,
in particular, TTR proteolysis, which has been mainly valued
in the case of ATTR-CM and, also at the extracellular level
involving either interactions with components of the extracellular
matrix or with molecular and chemical chaperones acting as
disease modulators.

Overall, detailed knowledge of the mechanisms of amyloid
formation and the availability of different approaches allows
directed and personalized interventions aiming higher specificity
and efficacy of chosen therapeutic solutions.
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