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Abstract
Background: As the most common renal malignancy, kidney renal clear cell 
carcinoma (KIRC) has a high prevalence and death rate as well as a poor response 
to treatment. Developing an efficient prognostic model is essential for accurately 
predicting the outcome and therapeutic benefit of KIRC patients.
Methods: Gene expression profiles of podocyte- associated genes (PAGs) were 
obtained from The Cancer Genome Atlas and GEO datasets. Cox regression and 
Lasso regression analyses were then used for filtering prognosis- associated PAGs. 
Risk score (RS) was computed from these genetic characteristics. Kaplan– Meier 
analysis and receiver operating characteristic (ROC) curves were applied for as-
certaining the prognostic value. Stratified analysis was used to sufficiently vali-
date model performance. Concordance index was used to compare the predictive 
ability of different models. Immuno- infiltration analysis and immunophenoscore 
were utilized for the prediction of patient reaction to immune checkpoint inhibi-
tors (ICIs).
Results: WT1, ANLN, CUBN, OSGEP, and RHOA were significantly associated 
with KIRC prognosis. Prognostic analysis indicated that high- RS patients have a 
significantly poorer outcome. Cox regression analysis demonstrated a potential 
for RS to be an independent prognostic factor. Pathway enrichment results in-
dicated a lower enrichment of cancer- related biological pathways in the low- RS 
subgroup. Immune infiltration analysis and IPS demonstrated greater respon-
siveness to ICIs in the high RS group.
Conclusions: This podocyte- associated KIRC prognostic model can effectively 
predict KIRC prognosis and immunotherapy response, which may help to pro-
vide clinicians with more effective treatment strategies.
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1  |  INTRODUCTION

Kidney renal clear cell carcinoma (KIRC) is the common-
est pathological subtype of human urinary system tumors, 
accounting for about 85– 90%.1 In the early stage of KIRC, 
only a few patients have obvious symptoms, such as hema-
turia, abdominal masses.2 The 5- year survival rate of early 
KIRC patients after surgical treatment can reach 80– 90%.3 
However, patients with advanced KIRC are usually less sen-
sitive to treatment and have a poor prognosis accompanied 
by distant metastases. It is estimated that there might be ap-
proximately 13,780 deaths from KIRC in the US in 2021.4 
With rapid advances in molecular biology and bioinformat-
ics, several studies have identified many genes relevant to 
the KIRC progression that can be used as potential prog-
nostic biomarkers.5,6 However, for the time being, a reliable 
marker for detecting early KIRC is still lacking, and studies 
have demonstrated that high tumor heterogeneity and de-
layed detection are major factors contributing to untimely 
treatment and recurrence.7 Therefore, determining efficient 
biological markers for early identification and prediction of 
KIRC survival and establishing prognostic- related models 
have extremely important clinical significance for the treat-
ment and prognosis of patients.8 By establishing a prognos-
tic model, clinicians can make better individualized survival 
predictions at the molecular level.

Podocytes, also known as epithelial cells of the visceral 
layer of the renal capsule, are attached to the outer glomeru-
lar basement membrane and are a major component of glo-
merular filtration barrier.9,10 Lesions of the podocytes have 
been found to cause podocytopathies, including minimal 
change nephrosis and focal segmental glomerulosclerosis, 
which are typically clinically manifested as persistent pro-
teinuria.11– 13 A large number of podocyte- associated pro-
teins and their coding genes have been identified through 
molecular biology sequencing, and mutations or loss of 
these genes can lead to the development and exacerbation 
of steroid- resistant nephrotic syndrome.14,15

Currently, there are few researches on podocytes and 
their related genes and KIRC. We sought to investigate the 
clinical value of podocytes in KIRC through the integration 
of podocyte- associated gene (PAG) expression profiles with 
clinical data from KIRC patients. First, we extracted the 
expression levels of more than 50 PAGs from The Cancer 
Genome Atlas (TCGA) database and randomly divided the 
clinical patients into a training and internal validation co-
hort. In training cohort, LASSO regression and multivariate 
Cox regression were performed to define PAGs significantly 
related to the prognosis of KIRC patients and to establish 
a podocyte- related prognosis model. Second, Kaplan– Meier 
(K– M) curves and receiver operating characteristic (ROC) 
curves were drawn in the training, internal validation, 
TCGA total validation, and Gene Expression Omnibus 

(GEO) external validation cohorts to ascertain the model's 
reliability. In addition, we evaluated the effectiveness of this 
prognostic model in predicting patients to receive immuno-
therapy. In summary, the podocyte- associated risk model 
can serve an essential function in individualized and precise 
treatment for KIRC patients.

2  |  METHODS AND MATERIALS

2.1 | KIRC data acquisition and 
preprocessing

The TCGA and GEO databases were searchable for podocyte- 
associated gene expression profiles and full clinical annota-
tions. Two eligible KIRC cohorts (GSE29609 and TCGA- KIRC) 
were collected for further analysis.16 Patients lacking complete 
clinical information and duplicate samples were excluded for 
further evaluation. Finally, 518 samples from TCGA database 
and 39 samples from GSE29609 dataset were subject to fur-
ther analysis. The samples in the TCGA database (n = 518) 
were further randomly allocated to the training and internal 
validation cohort in a 1:1 ratio. For the dataset in TCGA, RNA 
sequencing data for gene expression (FPKM values) were ob-
tained directly from UCSC Xena platform (https://xena.ucsc.
edu/) and then converted to transcript per kilobase million 
(TPM) values. The normalized expression matrix for the mi-
croarray data in the GSE29609 dataset was downloaded via 
the GEO website (https://www.ncbi.nlm.nih.gov/geo/). The 
"sva" package eliminated the batching effect.17 Clinical infor-
mation on KIRC patients is concluded in Table S1.

2.2 | Gene ontology and Kyoto 
Encyclopedia of Genes and Genomes 
pathway analysis

"ClusterProfiler" package was available for18 gene ontology 
(GO)19 and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways analysis.20 Adjusted p values <0.05 for 
pathways were deemed statistically significant.

2.3 | Construction of prognostic model

The training cohort was employed for creating the prog-
nostic model and internal validation cohort, TCGA total 
cohort, and GSE29609 cohort were utilized to assess the ac-
curacy of the model. Based on previous studies of PAGs, we 
identified 53 genes for inclusion in this study.14 First, we 
used univariate Cox regression on 53 PAGs in the training 
cohort to further screen out PAGs related to KIRC progno-
sis. Among them, when the HR was less than 1 and p < 0.05, 

https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
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the gene was considered a protective factor. Conversely, it 
was a risk gene when HR was greater than 1 and p > 0.05. 
Then, least absolute shrinkage and selection operator 
(Lasso) regression analysis could be applied to eliminate 
highly relevant survival- related PAGs and avoid overfitting 
of the model.21,22 Finally, five PAGs were determined by 
multivariate Cox regression (Table 1). On this basis, we cal-
culated risk scores (RS) for individuals with KIRC in each of 
the four cohorts, including the training set, internal valida-
tion cohort, TCGA total cohort, and GSE29609 cohort. RS 
was calculated as follows: RS = 

∑n
i=1 Coefi∗Expi. (εCoefiε 

is the correlation coefficient of the gene in the multivariate 
Cox analysis, and "Expi" is the level of gene expression.)

2.4 | Performance verification of 
prognostic models

Based on the median RS, we divided patients into high and 
low- risk groups. In four cohorts, we plotted K– M curves to 
compare the difference in overall survival (OS) between 
two groups, and plotted time- dependent ROC curves to 
assess the predictive reliability of the model. Risk strati-
fication analysis was conducted across the TCGA cohort 
to confirm the predictability of the risk model within each 
clinical cohort. The concordance index (C- index) was 
used to compare the predictive performance between dif-
ferent models.

T A B L E  1  Univariate and multivariate Cox regression analyses of the survival- related PAGs of KIRC

id

Univariate analysis Multivariate analysis

HR (95% CI) p- value coef HR (95% CI) p- value

ARHGAP24 0.509 (0.420– 0.615) <0.001

ANLN 1.743 (1.468– 2.070) <0.001 0.271 1.312 (1.084– 1.587) 0.005

CUBN 0.788 (0.731– 0.849) <0.001 −0.210 0.811 (0.745– 0.882) <0.001

LAGE3 1.791 (1.449– 2.213) <0.001

RHOA 0.421 (0.298– 0.597) <0.001 −0.565 0.568 (0.403– 0.801) 0.001

NUP85 2.287 (1.610– 3.249) <0.001

LAMB2 0.652 (0.543– 0.784) <0.001

CDC42 0.412 (0.279– 0.608) <0.001

PDSS2 0.465 (0.331– 0.653) <0.001

WT1 1.392 (1.199– 1.616) <0.001 0.262 1.300 (1.091– 1.549) 0.003

OSGEP 2.175 (1.524– 3.104) <0.001 0.562 1.755 (1.227– 2.510) 0.002

NUP133 0.496 (0.356– 0.690) <0.001

DLC1 0.682 (0.564– 0.826) <0.001

CD2AP 0.614 (0.479– 0.788) <0.001

ITSN2 0.566 (0.413– 0.775) <0.001

DGKE 0.492 (0.327– 0.742) 0.001

NUP93 2.517 (1.436– 4.411) 0.001

TRPC6 0.630 (0.474– 0.839) 0.002

ACTN4 0.656 (0.504– 0.852) 0.002

AVIL 1.643 (1.206– 2.238) 0.002

SCARB2 0.595 (0.430– 0.824) 0.002

NUP107 2.143 (1.327– 3.462) 0.002

KANK1 0.697 (0.543– 0.894) 0.005

XPO5 1.623 (1.145– 2.299) 0.006

RAC1 1.836 (1.135– 2.971) 0.013

NUP205 0.690 (0.504– 0.945) 0.021

MYO1E 0.734 (0.560– 0.963) 0.026

Abbreviation: PAG, podocyte- associated gene.

" "
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2.5 | Construction of 
prognostic nomogram

Cox regression analysis was performed on clinicopatho-
logical parameters and RS from the entire TCGA cohort 
to confirm that RS might be an independent prognos-
tic factor for patients with KIRC. Screened independent 
prognostic factors were integrated into the plotting of the 
nomogram to predict the patient's 1, 3, and 5- year OS rate.

2.6 | Gene Set Enrichment Analysis

The Gene Set Enrichment Analysis (GSEA) algorithm 
could assess whether a predefined set of genes are statisti-
cally significantly and consistently different in two biol-
ogy states.23 GSEA software (version 4.0.3) was used to 
identify pathways that were enriched in two different risk 
groups. p < 0.05 and false discovery rate (FDR) < 0.25 were 
considered as cutoff values.

2.7 | Immune cell infiltration analysis

According to the normalized PAGs expression profile, we 
quantified 22 infiltrating immune cells in the KIRC tumor 
immune microenvironment (TIME) using CIBERSORT, a 
deconvolution algorithm.24 The sum of all estimates of the 
immune cell ratio was equal to 1 for each sample. We then 
used the ssGSEA (Single Sample Gene Set Enrichment 
Analysis) algorithm to quantify the relative infiltration 
abundance of immune cells in KIRC TIME. Gene set for 
marking immune infiltrating cell types was derived from 
Charoentong's study.25,26

2.8 | IPS analysis

By analyzing gene expression in the four cell types, ma-
chine learning could be applied to impartially derive the 
patient's IPS.25 IPS was calculated according to gene ex-
pression of representative cell types, ranging from 0 to 10. 
The higher the IPS, the higher the immunogenicity.25 The 
patient's IPS was obtained from The Cancer Immunome 
Atlas (TCIA) (https://tcia.at/home).

2.9 | Statistical analysis

All statistical analysis and graphics were done using R 
4.0.3. Cox regression analysis was performed to identify 
PAGs associated with survival and to demonstrate the 
independence of prognostic indicators. Lasso regression 

analysis was employed to remove highly relevant genes 
and prevent overfitting of the model. The K– M curve 
displayed the OS difference between the two groups and 
the log- rank test was applied to determine the significant 
nature of the difference. ROC curves and corresponding 
AUCs were applied to assess the accuracy of this model. 
Nomogram showed the prognosis of RS in KIRC patients 
more intuitively. P<0.05 was regarded as statistically 
different.

3  |  RESULTS

3.1 | The genetic variation landscape of 
podocyte- associated genes in KIRC

53 PAGs were finally identified. We summarized the 
incidence of copy number variation (CNV) in the 53 
PAGs in KIRC. Mutations in PAGs occurred in 68 out 
of 336 samples, with a frequency of 20.24%. CUBN and 
FAT1 were found to exhibit the highest mutation fre-
quencies (Figure  1A). Subsequently, the investigation 
of the frequency of CNV alterations showed that CNV 
alterations was prevalent in 53 PAGs, with genes show-
ing copy number amplification or deletion in approxi-
mately equal proportions. Among them, SMARCAL1, 
RHOA, and LAMB2 showed extensive CNV deletion 
frequencies (Figure 1B). The location of CNV changes 
in PAGs on chromosomes was depicted in Figure  1C. 
In order to ascertain whether the above genetic vari-
ants affect PAGs expression in KIRC, we compared the 
mRNA expression levels of PAGs between normal and 
KIRC samples and observed that altered CNV may be 
responsible for the altered expression of PAGs. PAGs 
with deleterious CNVs were less expressed in KIRC 
than in normal tissues (such as RHOA and PDSS2) 
and vice versa (such as NUP85 and ITGB4) (Figure 1B; 
Table S1). These analyses indicated that there was con-
siderable heterogeneity in the genetic and expression 
alterations of PAGs between normal and KIRC sam-
ples, implying that imbalances in PAG expression were 
critical in the development and progression of KIRC.

3.2 | Pathways and biological processes 
involving podocyte- associated genes

To assess the mechanisms of PAGs, GO, and KEGG path-
way enrichment analysis were performed (Table  S2). 
Figure 2 summarized the significant enrichment of biologi-
cal processes. Clearly, these genes showed biological pro-
cesses significantly associated with kidney growth and cell 
migration, including kidney development, focal adhesion, 

https://tcia.at/home
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tight junction, renal cell carcinoma, etc. This confirmed that 
PAGs contributed significantly to the development of KIRC.

3.3 | Developing a podocyte prognostic 
model on a training cohort

We obtained relevant clinical information and PAGs 
expressions of KIRC patients from TCGA and GEO da-
tabases, and randomly divided the 518 specimens with 
survival information in the TCGA database into training 

and internal validation cohorts. In training cohort, we ran 
univariate Cox regression analyses on 53 PAGs and then 
screened 27 PAGs for significant association with KIRC 
survival (p < 0.05, Table  1). Subsequently, we applied 
Lasso regression analysis to remove highly relevant PAGs 
(Figure  3). Lastly, five PAGs were obtained from multi-
variate Cox regression analysis (WT1, OSGEP, ANLN, 
CUBN, and RHOA) (Table 1). According to the correla-
tion coefficients, we calculated RS and established a risk 
model. RS = (0.26237*WT1) + (0.56227*OSGEP ) + (−0.20
967*CUBN) + (0.27124*ANLN) + (−0.56505* RHOA).

F I G U R E  1  Landscape of genetic variation of podocyte- associated genes (PAGs) in kidney renal clear cell carcinoma (KIRC). (A) The 
mutation frequency of 53 PAGs in 336 KIRC patients from The Cancer Genome Atlas- KIRC cohort. (B) The CNV variation frequency of 53 
PAGs. (C) The location of CNV alteration of PAGs on 23 chromosomes
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3.4 | Performance verification of 
prognostic model

To test the reliability of the risk model, K– M survival 
curves were created to assess the OS differences in each 
of the four cohorts. Using the median RS of the four in-
dividual queues as the respective threshold values, we 
divided patients into high and low- risk groups by rank-
ing RS from highest to lowest. As seen in Figure 4A– D, 
significant differences in OS were observed between high-  
and low- risk groups in all four independent datasets, with 
patients in high group having lower survival rates than 
low- risk group (p < 0.05). Time- dependent ROC curves 
were also applied to validate the precision of this model in 
predicting survival at 1, 3, and 5 years for KIRC patients, 

with the corresponding AUC greater than 0.7 (Figure 4E– 
H). Moreover, we analyzed the distribution of RS and pa-
tients' survival status, with Figure 4I,M showing that the 
higher the RS of the patient, the higher the mortality rate. 
Heat map displayed the expression of PAGs in KIRC pa-
tients in different risk groups (Figure 4Q). These results 
could be fully validated in the internal validation cohort, 
total TCGA cohort and GSE29609 cohort (Figure 4I– T).

3.5 | Correlation between risk score and 
clinical characteristics

After removing those samples with missing clinical and 
survival information, we counted KIRC patient clinical 

F I G U R E  2  Functional and pathway enrichment analyses of 53 podocyte- associated genes (PAGs). (A) Bubble plot representing the 
enriched GO terms of PAGs. (B) Bubble plot representing the enriched Kyoto Encyclopedia of Genes and Genomes pathways of PAGs

F I G U R E  3  Screening of the optimal podocyte- associated genes (PAGs) used for final construction of risk model using Lasso regression. 
(A) The optimal parameter was screened by cross validation. (B) LASSO coefficients profiles of 27 survival associated PAGs
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data in four separate datasets to facilitate further inves-
tigation of the association of risk models with the clinical 
features of KIRC patients (Table S3). Considering the ef-
fect of sample size on statistical errors, we finally selected 
518 specimens from the total TCGA cohort for the analy-
sis. Based on different clinical characteristics, we divided 
all KIRC patients into several different subgroups, includ-
ing age ≤ 60 (n = 261), age > 60 (n = 257), female (n = 177), 
male (n = 341), stage I– II subgroup (n = 314), stage III– IV 
(n = 204), grade I– II (n = 240), grade III– IV (n = 278), T 
I– II ( n = 332), T III– IV (n = 186), M0 (n = 414), M1- X 
(n  =  104), N0 (n  =  235), and M1- X (n  =  283). In total 
TCGA database, survival rates were statistically different 
across clinical characteristics (including gender, stage, 
grading, and TMN staging) in both groups (p < 0.05, 
Figure 5A– N). Moreover, logistic analysis was carried out 
to investigate the association of RS with clinical features. 

The higher the risk value, the higher the tumor stage, and 
the more likely it was to metastasize (Table  2). Besides, 
we also constructed ROC curves to compare the prognos-
tic performance of RS with that of the five genes. As seen 
in Figure  5O, the AUC values for RS were significantly 
higher than the other five genes (AUC = 0.777). Together, 
these results suggested that this model performed well in 
KIRC stratification analysis, indirectly demonstrating the 
risk model's prognostic value.

We performed COX regression analysis to determine 
that RS could be considered as an independent predictive 
factor. As seen in Table 3, RS could be considered as an 
independent prognostic factor (p < 0.001). The screened 
valid independent clinical prognostic factors (age, stage, 
and grade) were then plotted in a nomogram along with 
RS to more visually demonstrate the efficiency of the prog-
nostic risk model in predicting OS for patients (Figure 5P).

F I G U R E  4  Risk stratification analysis of the training cohort, internal validation cohort, total The Cancer Genome Atlas (TCGA) cohort 
and GSE29609 cohort. (A– D) Kaplan– Meier survival analysis of OS in high- risk (red) and low- risk(blue) kidney renal clear cell carcinoma 
(KIRC) patients in training (A), internal validation (B), total TCGA (C), and GSE29609 cohort (d). E- H. ROC curves for predicting 1- , 3- , 5- 
year OS in the training (E), internal validation (F), total TCGA (G), and GSE29609 cohort (H). (I– L) Risk score distribution of KIRC patients 
in training (I), internal validation (J), total TCGA (K), and GSE29609 cohort (L). (M– P) Scatterplots of KIRC patients with different OS status 
in training (M), internal validation (N), total TCGA (O), and GSE29609 cohort (P). (Q– T) Expression of five podocyte- associated genes in 
KIRC patients with different risk status in training (Q), internal validation (R), total TCGA (S), and GSE29609 cohort (T)
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3.6 | Podocyte- associated gene signature 
as a novel predictive model in KIRC

To further evaluate the predictive performance of our model, 
we compared it with four other risk models, including a four 

gene,27 a nine gene,28 a five gene,29 and a three gene30 sig-
nature. To make them comparable, we also calculated risk 
scores for each model using multivariate Cox regression 
analysis and plotted ROCs to describe the prognostic perfor-
mance of each, based on the corresponding genes included 

F I G U R E  5  Performance of risk scores in different clinical stratifications. (A– M) Kaplan– Meier survival curves for RS and OS 
in different kidney renal clear cell carcinoma sub- cohorts of patients, including male (A), female (B), ≤60 (C), >60 (D), stage1– 2 (E), 
stage3– 4 (F), grade1- 3 (G), grade3- 4 (H), T1- 2 (I), T3- 4 (J), M0 (K), M1- x (L), N0 (M), N1- x (N). (O). ROC curves comparing the prognostic 
performance of RS with five genes. (P). Nomograms incorporating RS and clinical characteristics for predicting patient OS
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in the four models. The samples were then divided into two 
groups of high-  and low- risk based on median RS. The dif-
ference in prognosis between the high-  and low- risk groups 
was significant in all four models (p < 0.001, Figure S1A– D). 
However, as can be seen from the ROC curves, the AUCs 
of all four models were lower than our prognostic model 
(Figure  S1E– I). In addition, we calculated the C- index 
to evaluate the predictive ability between the models. It 
was clear that our model had the highest C- index at 0.70 
(Figure S1J). Thus, our model had the best performance in 
predicting prognosis compared to other models.

3.7 | Multiple tumor- associated 
pathways were diminished in low- 
risk group

To thoroughly investigate the potential mechanisms 
and role of risk models in KIRC patient prognosis, we 

performed GSEA to screen for RS- associated signaling 
pathways. GSEA results indicated that tumor- related 
pathways such as homologous recombination were up-
regulated in high- risk group (Figure  6A). In contrast, 
multiple pathways associated with KIRC development 
and metastasis, such as renal carcinoma, ERBB signaling 
pathway, MTOR signaling pathway, adherens junctions, 
tight junction, apoptosis, and focal adhesion were down-
regulated in low- risk group (Figure 6B– K).

3.8 | Differential immune 
infiltration and immunotherapy response 
in high-  and low- risk groups

GO and KEGG enrichment analyses yielded immune 
activation- related pathways, including the chemokine 
signaling pathway, T cell costimulation, and positive 
regulation of T cell activation (Table  S2), suggesting 

Clinical characteristics

Risk score

OR OR.95L OR.95H p- value

Age

>60 versus ≤60 1.283 0.898 1.837 0.172

Gender

Male versus female 1.588 1.104 2.292 0.013

Stage

Stage 3- 4 versus Stage 1- 2 2.693 1.875 3.891 <0.001

Grade

G 3– 4 versus G 1– 2 2.020 1.426 2.873 <0.001

T

T3– 4 versus T1– 2 2.346 1.627 3.405 <0.001

M

M1- X versus M0 3.352 2.118 5.428 <0.001

N

N1- X versus N0 0.985 0.697 1.39 0.930

T A B L E  2  The correlation between 
RS and clinical characteristics of KIRC 
patients (logistic regression)

T A B L E  3  Univariate and multivariate cox regression analyses of RS and clinicopathological variables in predicting OS

Parameters

Univariate analysis Multivariate analysis

HR HR.95L HR.95H P HR HR.95L HR.95H P

Age 1.0293 1.0158 1.0429 <0.001 1.0315 1.0171 1.0461 <0.001

Gender 0.9395 0.6863 1.2862 0.6970

Stage 1.9054 1.6676 2.1772 <0.001 2.1860 1.6707 2.8603 <0.001

Grade 2.2977 1.8714 2.8212 <0.001 1.4163 1.1222 1.7876 0.0034

T 1.9323 1.6374 2.2803 <0.001 0.7263 0.5337 0.9885 0.0420

M 1.5074 1.2673 1.7930 <0.001 0.8730 0.6491 1.1741 0.3691

N 0.9234 0.8342 1.0220 0.1237

RiskScore 1.2523 1.1880 1.3202 <0.001 1.2642 1.1787 1.3559 <0.001
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that PAGs were associated with TIME. To investigate 
the link between podocyte characteristics and immune 
infiltration, we performed correlation analysis between 
RS and 22 immune cells and found that most immune 
cells were associated with RS. Infiltration of resting 
memory CD4+ T cells, monocytes, resting mast cells, 
B cells, macrophages M1 and M2, etc. was negatively 
correlated with RS (Figure  S2A– G); whereas infiltra-
tion of regulatory T cells, activated memory CD4+ T 
cells, plasma cells, macrophages M0, etc. was positively 
related to RS (Figure  S2H– N). For the rest of immune 
cells, there was no significant correlations (Figure S2O– 
V). Subsequently, we quantified the relative abundance 
of immune cell infiltration with ssGSEA algorithms. As 
seen in Figure  7A, high- risk group was enriched with 

more adaptive immune cells, including activated B cells, 
CD4+ T cells, CD8+ T cells, etc.

Immune checkpoint inhibitors (ICIs) have become 
critical therapies for tumor- targeted molecular treat-
ments,31– 33 and recent studies have shed light on IPS' role 
in foreseeing melanoma patients' response to ICI, which 
was largely dependent on the preexisting high immuno-
genicity potential.25 We have therefore exhaustively in-
vestigated the relationship between IPS and the immune 
profile of KIRC patients. The four scores were intended to 
estimate a patient's likelihood of accepting ICI treatment. 
In our experiment, we noted a marked rise in scores in 
high- risk group (p  =  0.036) (Figure  7B; Figure  S3A– C). 
This implied that the high- risk group seemed to have a 
stronger immunogenic phenotype. We then observed that 

F I G U R E  6  Five- gene signature associated biological pathways in kidney renal clear cell carcinoma (KIRC). (A– J) Representative 
enriched pathways in high-  and low- risk KIRC patients through GSEA analysis. (A) Homologous recombination. (B) Renal carcinoma. 
(C) ERBB signaling pathway. (D) MTOR signaling pathway. (E) TGF- BETA signaling pathway. (F) WNT signaling pathway. (g) Adherens 
junction. (H) Tight junction. (I) Apoptosis. (J) Focal adhesion. (K) GSEA of high RS patients and low- RS patients
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high- risk patients have elevated PD- 1 (p  =  0.0078) and 
CTLA- 4 gene expression level (p < 0.0001, Figure  7C,D), 
while low- risk patients have increased PD- L1 expression 
(Figure 7E). These findings pointed to high- risk patients 
as promising candidates for ICI treatment.

4  |  DISCUSSION

As the commonest pathological category of renal cell car-
cinoma (RCC), patients with KIRC have a poorer outcome 
than other RCC types.34 In general, KIRC predictions are 
largely dependent on cancer pathological stage and TNM 
stage; yet, these parameters still fall short of precision 
for early- stage patients.35 Thus, determining biomarkers 
for early detection and prediction of KIRC survival is es-
sential. With the discovery of tumor markers, the early 
detection of some malignancies, such as prostate cancer 
and primary liver cancer, as well as their treatment have 
been remarkably improved.36,37 However, clinically avail-
able markers are lacking in KIRC. Advances in genome 

sequencing and bioinformatics have greatly facilitated 
the detection of gene sequencing biomarkers that can 
improve the categorization of cancer and personalized 
treatment.38– 40

Podocytes are epithelial cells present outside the glo-
merular capillary fundamentals, and their function and 
structural integrity directly affect the filtration function of 
glomerulus.9 More than 50 genes, including CD2AP, WT1, 
RHOA, GLEEP1, and ANLN, have been found to act as 
podocyte surface markers. Alterations in these markers 
can affect the architecture and composition of the podo-
cyte, thereby impairing glomerular filtration membrane 
barrier function.14 At present, the majority of research on 
podocytes are concentrated on podocyte diseases, protein-
uria and other disorders,41 but in KIRC, relevant studies 
are rare. We are the first research to explore and verify the 
potential value of PAGs in KIRC. As such, our study will 
be inspirational and valuable to other researchers.

In this work, we first analyzed 53 PAGs for CNV and ex-
pression data and demonstrated the association of these 
PAGs with the development and metastasis of KIRC by 

F I G U R E  7  Tumor immune microenvironment (TIME) cell infiltration characteristics, immunophenoscore (IPS) and immunotherapy 
gene expression analysis in distinct risk groups. (A) The abundance of each kidney renal clear cell carcinoma TIME immune cell infiltration 
in high-  and low- risk group. (B) Differences in IPS (ips_ctla4_pos_pd1_pos) among low-  and high- risk groups. (C– E) Gene expression of PD- 
1 (C), CTLA- 4 (D), and PD- L1 (E) in low-  and high- risk groups. *p < 0.05; **p < 0.01; ***p < 0.001
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GO and KEGG enrichment analysis. Then, we randomly 
divided 518 samples from TCGA- KIRC into training 
and internal validation cohort. In training cohort, five 
genes, WT1, OSGEP, CUBN, ANLN, and RHOA, were 
selected using Lasso regression and Cox regression anal-
ysis, and the formulae for RS were obtained on this basis. 
Based on five gene expression levels and correlation co-
efficients, we calculated RS for each KIRC patient and 
categorized the patients into high-  and low-  risk groups 
dependent on the median RS. In all four cohorts, we 
found a significant difference in prognosis between the 
high-  and low- risk groups of KIRC patients (p ≤ 0.002), 
with low- risk group displaying a more positive progno-
sis. This meant that RS was highly correlated with KIRC 
prognosis and that RS was probably a negative prognos-
tic agent. Time- dependent ROC curves were plotted to 
describe RS' accuracy in forecasting patient outcomes. 
Typically, AUC > 0.70 meant high predictive diagnostic 
value. In four cohorts, the AUC of the ROC curve for RS 
all reached 0.70, which strongly proved the effectiveness 
of its prediction. Correlation analysis in combination 
with clinicopathological parameters showed higher RS 
was more relevant to higher stage, grade and metastasis, 
and Cox regression demonstrates that RS represented an 
independent KIRC prognostic factor. Prognostic perfor-
mance of RS in the KIRC stratified analysis again vali-
dated this risk model's hidden values and broadens its 
scope of use. Moreover, GSEA results showed a signifi-
cantly reduced enrichment of tumor signaling pathways 
in low- risk KIRC patients

Among these five genes, WT1 is mutated and inacti-
vated in Wilm's tumor and causes tumorigenesis, which 
has a tumor suppressor effect.42 Sampson et al. found that 
WT1 is poorly expressed in adult kidney, but its expres-
sion is raised in KIRC. The high expression of WT1 can 
upregulate E- cadherin expression and induce tumor cell 
epithelial- mesenchymal hybrid transition (EMHT). This 
is a differentiated state of tumor cells. At this time, cancer 
cells maintain EMT (epithelial- mesenchymal transition) 
and MET (mesenchymal- epithelial transition) properties, 
which act in facilitating tumor cell plasticity and tumor 
progression.43 RhoA is a part of the small GTPase rho 
family and serves as a functional switch in the signaling 
cascade.44 It was found that increasing tumor cell prolif-
eration and invasive capacity by inhibiting RhoA- ROCK 
axis.45,46 CUBN, acting as an endocytic receptor, is highly 
specific for expression in KIRC. The increased expression 
of CUBN suggested a good prognosis for KIRC patients.47 
ANLN, as actin- binding protein, is mainly involved with 
cytoplasmic division.48 Dysregulation of ANLN expres-
sion has already occurred in various human cancers such 
as breast and colorectal cancers.49 In KIRC, the higher the 
ANLN expression, the poorer the prognosis of patient.50 

OSGEP, a member of the KEOPS complex, has been poorly 
investigated for its role in the progression of KIRC.15 The 
biofunction of these five genes was a partial clue to im-
proving knowledge of the prognostic value of RS, but the 
potential mechanisms of these genes and RS in KIRC de-
velopment need to be investigated in depth.

Immune cell infiltration in TIME not only matters for 
tumor proliferation and metastasis,51,52 but also affects 
the patient's response to immunotherapy.53 Chen et al. 
classified patients into three basic immune profiles based 
on their response to anti- PD- L1/PD- 1 therapy, including 
immune- inflamed phenotype, immune- excluded phe-
notype, and immune- desert phenotype.53 In conjunc-
tion with immune infiltration in TIME, we observed 
that high- risk group mainly corresponds to immune- 
inflamed phenotype. There are many CD4+ T cells and 
CD8+ T cells in this phenotype, accompanied by mono-
cytes and myeloid cells. In clinical treatment, immune- 
inflamed phenotype is most responsive to anti- PD- L1/
PD- 1 therapy. Meanwhile, we found higher expression 
of PD- 1 and CTLA- 4 genes in high- risk patients, suggest-
ing that tumor immunogenicity may be stronger in the 
high- risk group. Furthermore, it has been demonstrated 
that tumor mutational burden (TMB) predicts patient 
response to ICI and clinical benefit, with higher TMB 
being associated with better immunotherapy outcomes 
for patients.54,55 In our research, TMB was dramatically 
greater in high- risk group compared to low- risk group, 
although there was no statistical difference (Figure s3D). 
It also provided side evidence to indicate that the pa-
tients in high- risk group may be better responsive to 
immunotherapy.

Despite high accuracy of the podocyte- related prognos-
tic model in predicting KIRC patient prognosis, our study 
remains limited. First, we mainly used bioinformatics 
methods to construct the model and lacked some clinical 
experiments, including PCR, protein blotting, etc. to ex-
ternally validate the model. Second, we concentrated our 
study on transcriptome analysis and neglect to consider 
the impact that epigenetic modifications and other events 
have on the results. Therefore, the ability of the podocyte- 
related prognostic model to predict patient responsiveness 
to ICIs remains open to debate and requires further clini-
cal trials to validate.

5  |  CONCLUSION

In this study, we developed an in- depth understanding of 
PAG's contribution to KIRC and constructed a prognostic 
model of KIRC from PAG's transcriptomic analysis first. 
The risk model works effectively in forecasting progno-
sis and treatment response in KIRC and potentially to 
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improve therapeutic management. Overall, this five- gene 
prognostic model may serve as a highly accurate and reli-
able predictive tool for KIRC.
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