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Abstract

The EphB4 receptor tyrosine kinase together with its preferred ligand, ephrin-B2, regulates a variety of physiological and
pathological processes, including tumor progression, pathological forms of angiogenesis, cardiomyocyte differentiation and
bone remodeling. We previously reported the identification of TNYL-RAW, a 15 amino acid-long peptide that binds to the
ephrin-binding pocked of EphB4 with low nanomolar affinity and inhibits ephrin-B2 binding. Although ephrin-B2 interacts
promiscuously with all the EphB receptors, the TNYL-RAW peptide is remarkably selective and only binds to EphB4.
Therefore, this peptide is a useful tool for studying the biological functions of EphB4 and for imaging EphB4-expressing
tumors. Furthermore, TNYL-RAW could be useful for treating pathologies involving EphB4-ephrin-B2 interaction. However,
the peptide has a very short half-life in cell culture and in the mouse blood circulation due to proteolytic degradation and
clearance by the kidneys and reticuloendothelial system. To overcome these limitations, we have modified TNYL-RAW by
fusion with the Fc portion of human IgG1, complexation with streptavidin or covalent coupling to a 40 KDa branched
polyethylene glycol (PEG) polymer. These modified forms of TNYL-RAW all have greatly increased stability in cell culture,
while retaining high binding affinity for EphB4. Furthermore, PEGylation most effectively increases peptide half-life in vivo.
Consistent with increased stability, submicromolar concentrations of PEGylated TNYL-RAW effectively impair EphB4
activation by ephrin-B2 in cultured B16 melanoma cells as well as capillary-like tube formation and capillary sprouting in co-
cultures of endothelial and epicardial mesothelial cells. Therefore, PEGylated TNYL-RAW may be useful for inhibiting
pathological forms of angiogenesis through a novel mechanism involving disruption of EphB4-ephrin-B2 interactions
between endothelial cells and supporting perivascular mesenchymal cells. Furthermore, the PEGylated peptide is suitable
for other cell culture and in vivo applications requiring prolonged EphB4 receptor targeting.
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Introduction

EphB4 is a member of the large Eph receptor tyrosine kinase

family. Eph receptors have been implicated in a wide variety of

physiological and pathological processes, and are therefore

considered promising drug target candidates [1]. The EphB4

receptor preferentially binds the transmembrane ligand, ephrin-

B2, at sites of cell-cell contact. The interaction initiates

bidirectional cellular responses through both EphB4 (‘‘forward’’

signals) and ephrin-B2 (‘‘reverse’’ signals).

EphB4 is highly expressed in most cancer cell types, including

prostate, breast, ovarian, colorectal, lung and bladder cancers,

melanoma and mesothelioma [2,3,4,5,6,7,8]. EphB4-ephrin-B2

bidirectional signaling appears to promote the malignancy of

certain cancers, such as melanoma [9,10,11]. However, the role of

the EphB4/ephrin-B2 system in other cancer cell types is

controversial [1,2,4,7,12].

EphB4-ephrin-B2 interaction is also known to play a critical role

in angiogenesis, including blood vessel remodeling during embry-

onic development, tumor vascularization and other forms of

pathological angiogenesis [2,13,14]. Ephrin-B2 is widely expressed

in tumor blood vessels, where it is upregulated by hypoxia and

vascular endothelial growth factor (VEGF). Ephrin-B2 reverse

signaling, triggered by contact with EphB4 and other EphB
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receptors, plays an important role in angiogenic responses. For

example, it promotes the migration/invasion and proliferation/

survival of cultured endothelial cells [15,16,17]. In addition, recent

studies have shown that ephrin-B2 reverse signaling is required for

vascular endothelial growth factor (VEGF) receptor internalization

in endothelial cells, which is critical for VEGF-dependent

angiogenesis [18,19]. Ephrin-B2 reverse signaling also plays an

important role in perivascular mesenchymal cells, including

pericytes and vascular smooth muscle cells, and regulates their

association with endothelial cells in vivo leading to vessel maturation

and stabilization [20,21]. Thus, an important role of EphB4 during

tumor progression is to promote ephrin-B2 reverse signaling in the

vasculature. This role may be fulfilled by EphB4 present in tumor

cells or co-expressed in vascular cells [13,14,15,22]. Additionally,

ephrin-B2-induced EphB4 forward signaling in endothelial cells

likely contributes to tumor angiogenesis [13,14,16,19,23,24].

The interaction between EphB4 expressed in circulating tumor

cells and ephrin-B2 expressed in endothelial cells has also been

reported to mediate site-specific metastatic dissemination [8]. Other

roles of EphB4-ephrin-B2 bidirectional signaling include regulation

of bone remodeling [25] and cardiomyocyte differentiation [26,27].

Inhibiting EphB4-ephrin-B2 interaction could therefore be

useful for diverse medical applications. For example, administra-

tion of soluble monomeric EphB4 extracellular domain, which

interferes with the binding of ephrin-B2 to EphB receptors and

inhibits bidirectional signaling, was shown to inhibit tumor growth

and tumor angiogenesis in several mouse tumor xenograft

models as well as neovascularization in a model of retinopathy

[28,29,30,31,32]. A 15 amino acid-long EphB4 antagonistic

peptide, TNYL-RAW (TNYLFSPNGPIARAW), could represent

an alternative to the large EphB4 extracellular domain. TNYL-

RAW is a modified version of a 12 amino acid-long peptide

identified by phage display [33]. It binds to EphB4 with

remarkably high affinity (KD of 3 nM for mouse EphB4 as

measured by surface plasmon resonance [34] and 70 nM for

human EphB4 as measured by isothermal titration calorimetry

[35]). TNYL-RAW binds in the hydrophobic pocket that

represents the high affinity binding site for ephrin-B2 and

selectively binds to EphB4 but not any other Eph receptor [33,35].

The TNYL-RAW peptide has been shown to inhibit EphB4

tyrosine phosphorylation (activation) induced by ephrin-B2 in

cultured MCF7 breast cancer cells [33] and human umbilical vein

endothelial cells (HUVECs) [36]. Furthermore, it inhibits ephrin-

B2-induced retraction of HUVECs and capillary-like tube

formation on Matrigel [21,36,37]. Hence, this peptide could be

useful to inhibit EphB4 pathological activities.

Here we show that, like many other peptides, TNYL-RAW is

rapidly lost from cell culture medium and when administered in

vivo. This limits its possible research, therapeutic and diagnostic

applications. Therefore, we have investigated approaches to

increase its half-life in cell culture and in vivo. These studies

identify PEGylated TNYL-RAW as an improved form of the

peptide that retains high binding affinity for EphB4 but has greatly

decreased susceptibility to proteolytic degradation and increased

permanence in the mouse blood circulation. Importantly,

PEGylation is a modification compatible with the use of TNYL-

RAW for preclinical as well as clinical studies.

Results

The TNYL-RAW peptide has a short half-life in cell culture
medium and in the mouse circulation

We previously reported that the TNYL-RAW peptide inhibits

EphB4-ephrin-B2 binding with an IC50 value of ,15 nM in

ELISA assays [33]. However, much higher peptide concentrations

(10–100 mM) are needed to substantially inhibit ephrin-B2-

induced EphB4 tyrosine phosphorylation and downstream effects

in cultured cells [21,26,33,36,37]. An explanation for the

discrepancy in the potency of the peptide in biochemical and cell

culture assays could be that TNYL-RAW is susceptible to

degradation by proteases present in cell culture medium. For

example, trypsin-like proteases are likely to cleave the peptide

between R13 and A14 [38]. The consequent loss of W15, which is

involved in multiple interactions with the ephrin-binding pocket of

EphB4 [35], would be expected to result in a dramatic decrease in

affinity.

To assess the half-life of TNYL-RAW in cell culture, a

biotinylated form of the peptide was incubated with PC3 prostate

cancer cells that had been grown in the same medium for several

days. The amount of intact TNYL-RAW remaining after different

incubation times was measured in ELISA assays by capturing

the peptide with immobilized EphB4 Fc and detecting it

with streptavidin conjugated to horseradish peroxidase (HRP).

TNYL-RAW was rapidly lost in PC3 cell culture medium, with

half-lives varying from less than an hour to several hours

depending on cell density and how long the cells had been grown

in the culture medium (Figure 1A and data not shown). Moreover,

when incubated with cells in fresh culture medium, TNYL-RAW

had a longer half-life (Figure 1A), suggesting that its loss is due to

degradation by proteases produced by the cells and accumulating

in the culture medium rather than uptake by the cells or other

mechanisms. Supporting the idea of proteolytic degradation,

TNYL-RAW loss was also observed in conditioned medium

without the cells (Figure 1B) and was blocked by a mixture of

protease inhibitors (Figure 1B). Incubation in PC3 cell conditioned

medium for several hours also abolished the ability of TNYL-

RAW to inhibit ephrin-B2-EphB4 interaction in ELISA assays

(Figure 1C), confirming that the peptide itself is cleaved rather

than just losing the biotin tag used for detection. Rapid TNYL-

RAW loss was also observed in all other cell types examined,

including B16 melanoma cells, human umbilical vein endothelial

cells (HUVECs) and epicardial mesothelial cells (EMCs) (Figure

S1) as well as C6 glioma cells and BPH1 prostate epithelial cells

(data not shown). TNYL-RAW is also very rapidly lost from the

mouse circulation and in our ELISA assay it could not be detected

in serum as early as 30 min after intravenous administration

(Figure 1D). This may be at least in part due to proteolytic

degradation because TNYL-RAW is also rapidly lost when

incubated ex vivo at 37uC in mouse serum, an effect that can be

partially counteracted by a mixture of protease inhibitors (Fig. 1E).

Some peptide loss also occurs at room temperature during the

ELISA assay, since less peptide is detected at the 0 time point in

the absence of protease inhibitors.

Modified forms of TNYL-RAW retain high EphB4 binding
affinity

We investigated several modifications that might improve the

resistance of the TNYL-RAW peptide to proteolytic degradation

and increase its half-life in the blood circulation. We generated

TNYL-RAW fused to the Fc portion of human IgG1 by

purification from the culture medium of transiently transfected

293 human embryonal kidney (HEK) cells, because Fc fusion

proteins typically have increased resistance to proteolysis and a

long half-life in vivo [39,40]. We also modified the biotinylated

synthetic TNYL-RAW by complexation with streptavidin or by

covalent coupling to a 40 KDa branched PEG polymer.

Streptavidin is a bacterial tetrameric protein of approximately

50 KDa that binds biotin with very high affinity and has also

PEGylated Antagonistic Peptide Targeting EphB4
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been used to stabilize peptides in vivo [41,42]. Attachment to large

PEG molecules is a modification often used in the pharmacolog-

ical industry to decrease proteolytic degradation and in vivo

clearance of peptides, proteins and small molecules [40,43]. To

minimize possible negative effects of the large branched PEG

molecule on the ability of TNYL-RAW to bind EphB4, we

attached it to the N terminus of TNYL-RAW, because the N-

terminal T1 and N2 amino acids are not involved in the

interaction with EphB4 [35]. By measuring TNYL-RAW binding

to immobilized EphB4 or EphB4 binding to immobilized TNYL-

RAW in ELISA assays, we confirmed that the binding affinity of

all three modified forms of the peptide is not substantially affected

compared to the unmodified biotinylated peptide (Figure 2A,B).

The apparent increase in affinity observed for TNYL-RAW

bound to streptavidin or fused to Fc is likely due to the

multimeric nature of these molecules, because TNYL-RAW-Fc is

a dimer and TNYL-RAW-streptavidin is a tetramer. ELISA

competition experiments further confirmed that none of the

modifications substantially affects the ability of TNYL-RAW to

inhibit EphB4-ephrin-B2 binding (Figure 2C). Therefore, the

TNYL-RAW peptide fused to Fc, bound to streptavidin or

covalently coupled to 40 KDa PEG remains a potent EphB4

antagonist.

Modified forms of TNYL-RAW have increased half-life in
cell culture medium and mouse blood

Fusion to Fc, complexation with streptavidin and PEGylation

all dramatically improve the half-life of TNYL-RAW in cell

culture medium, as indicated by the absence of peptide

degradation after incubation in PC3 cell conditioned medium

for up to 48 hours (Figure 3A) and much decreased degradation

after incubation in mouse serum (Figure 3B). Of note, TNYL-

RAW-Fc was not as stable in mouse serum as the streptavidin-

bound or PEGylated peptide. The three modifications also

increased the persistence of TNYL-RAW in the mouse blood

circulation after intravenous injection. While TNYL-RAW was

undetectable in serum prepared from blood collected 30 min

after peptide injection (Figure 1D), the circulation half-life of

TNYL-RAW-Fc and TNYL-RAW-streptavidin was ,1 hour

(area under the curve (AUC) = 140% and 110% of the injected

doseNhours/ml, respectively) and the half-life of intravenously

injected PEG-TNYL-RAW was ,11 hours (AUC = 790% of the

injected doseNhours/ml) (Figure 3C). We also found that even

though as expected PEG-TNYL-RAW injected intraperitoneally

enters the circulation more slowly than the peptide injected

intravenously, it nevertheless reaches similar blood levels after 6

and 24 hours (Figure 3C, right panel). Thus, intraperitoneal

injection can be used as a more convenient route of administra-

tion for in vivo studies.

PEGylated TNYL-RAW inhibits EphB4 and ephrin-B2
phosphorylation in cells

Consistent with its greatly improved half-life in cell culture

medium, PEG-TNYL-RAW inhibits ephrin-B2-induced tyrosine

phosphorylation of endogenous EphB4 expressed in B16 melano-

ma cells with an IC50 value of 90 nM, and 2 mM peptide are

sufficient to reduce receptor phosphorylation to undetectable levels

(Figure 4A, B). Furthermore, PEG-TNYL-RAW but not the

unmodified peptide, retains its inhibitory activity even after

24 hours of incubation with B16 cells (Figure 4A). Prolonged

incubation with PEG-TNYL-RAW also inhibits endogenous

EphB4 phosphorylation in mixed cultures of epicardial mesothelial

cells (EMCs) and human umbilical vein endothelial cells

(HUVECs), two cell types that express both EphB4 and ephrin-

Figure 1. The TNYL-RAW peptide is rapidly lost in cell culture medium and from the mouse circulation. (A) Biotinylated TNYL-RAW
peptide was incubated with cultured PC3 prostate cancer cells grown in the same medium for 3 days or in the culture medium freshly replaced just
before adding the peptide. Functional (EphB4- and streptavidin-binding) peptide remaining at the indicated times was captured in ELISA plates
coated with EphB4 Fc and detected with streptavidin-HRP. (B) TNYL-RAW was incubated at 37uC in PC3 cell conditioned medium (without cells) with
and without a mixture of protease inhibitors including aprotinin, leupeptin, pepstatin and PMSF, and detected as in (A). (C) TNYL-RAW was incubated
with PC3 cell conditioned medium for 4 hours and added together with ephrin-B2 AP to ELISA wells pre-coated with EphB4 Fc. TNYL-RAW mixed with
conditioned medium right before the ELISA assay (0 hrs) was used as a control. The graph shows the ratio of ephrin-B2 AP bound in the presence and
in the absence of peptide. (D) Serum from 3 mice injected intravenously with 6 nmoles biotinylated TNYL-RAW was collected 30 min after peptide
administration and incubated at a dilution of 1:20 in ELISA wells pre-coated with EphB4 Fc. Based on the amount of injected TNYL-RAW and an
estimated mouse serum volume of 2.5 ml, the peptide concentration in the wells would be 120 nM. TNYL-RAW at a concentration of 5 nM in similarly
diluted mouse serum was used for comparison. Bound peptide was detected with streptavidin-HRP. (E) TNYL-RAW was incubated in undiluted mouse
serum ex vivo for the indicated times and detected as described in (A). Averages from 3 measurements 6 SE are shown in all the panels.
doi:10.1371/journal.pone.0028611.g001
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B2 (Figure 4C, D) and can assemble together into capillary-like

structures when cultured together on Matrigel [44,45,46] (see

below). Interestingly, the peptide also inhibits tyrosine phosphor-

ylation of ephrin-B2 induced by treatment of EMCs and HUVECs

with EphB4 Fc, a soluble dimeric form of the EphB4 extracellular

domain fused to Fc that should preferentially activate ephrin-B2

among the ephrin-B ligands (Figure 4E). Ephrin-B2 phosphory-

lation was measured by immunofluorescence microscopy using a

phospho-ephrin-B antibody, which performed better in this type of

assay than in immunoblotting experiments. Thus, PEG-TNYL-

RAW can be used to inhibit both forward and reverse signals

generated by the EphB4-ephrin-B2 complex.

Low micromolar concentrations of PEGylated TNYL-RAW
inhibit capillary-like tube formation and capillary
sprouting

Ephrin-B2 reverse signaling has been shown to play an

important role in the interaction between endothelial cells and

vascular mural cells such as pericytes and smooth muscle cells

[20,21,30,31]. EMCs express smooth muscle actin (Figure S2) and

after 20 hours on Matrigel form capillary-like structures together

with HUVECs, as expected for vascular support cells (Figure 5).

We found that PEG-TNYL-RAW at a concentration of 5 mM

disrupts the tubular organization of the mixed endothelial-mural

cell structures (Figure 5), whereas the PEG control had no effect

Figure 2. Modified forms of TNYL-RAW retain high EphB4 binding affinity and potency for inhibition of EphB4-ephrin-B2 binding.
(A) Biotinylated, streptavidin-bound and PEGylated TNYL-RAW were incubated at the indicated concentrations in EphB4-coated ELISA wells.
Biotinylated TNYL-RAW was detected with streptavidin-HRP, TNYL-RAW-streptavidin was detected with and anti-streptavidin antibody coupled to
HRP, and PEG-TNYL-RAW was detected with an anti-PEG antibody followed by a secondary antibody conjugated to HRP. (B) The indicated
concentrations of EphB4 AP were incubated in ELISA wells pre-coated with streptavidin and biotinylated TNYL-RAW (left) or an anti-IgG antibody and
TNYL-RAW-Fc (right). Kd values are based on EphB4 AP concentrations calculated from AP activity. (C) The different forms of TNYL-RAW were
incubated at the indicated concentrations together with a constant amount of ephrin-B2 AP in ELISA wells pre-coated with EphB4 Fc. The ratio of
ephrin-B2 AP bound in the presence and in the absence of peptide is shown. The graphs show averages 6 SE from triplicate measurements in
representative experiments, while the Kd and IC50 values are calculated from 3 to 11 experiments.
doi:10.1371/journal.pone.0028611.g002
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compared to no treatment (data not shown). PEG-TNYL-RAW is

also effective at submicromolar concentrations, whereas unmod-

ified TNYL-RAW does not have significant effects at the

concentrations tested (up to 20 mM; Figure 6). Interestingly,

although both HUVECs and EMCs can also form capillary-like

tubes on Matrigel when cultured individually, TNYL-RAW did

not significantly affect the integrity of these structures (Figure 5),

which excludes non-specific toxic effects of the peptide on the cells.

Notably, EMCs form tubes more rapidly than HUVECs, but their

tubes spontaneously disintegrate by 15–20 hours in the absence of

co-cultured HUVECs. PEG-TNYL-RAW also reduced the

capillary sprouts formed over a period of two days by spheroids

containing both HUVECs and EMCs and embedded in a collagen

gel (Figure 7). These effects imply that EphB4 is a particularly

important partner for ephrin-B2 in the interplay between

endothelial and mural cells and suggest that the TNYL-RAW

peptide can be used to effectively inhibit angiogenic responses

involving the two cell types.

Discussion

Peptides are known to have a short half-life in cell culture or

when systemically administered in vivo, mainly due to proteolytic

degradation and clearance by the kidneys and reticuloendothelial

system [40,43,47,48]. We indeed found that the EphB4-targeting

peptide, TNYL-RAW, is rapidly lost in cell culture medium and in

the mouse blood circulation. This is in agreement with the blood

pharmacokinetic studies reported for 64Cu-DOTA-TNYL-RAW

in a recent study [49]. In cell culture, TNYL-RAW is degraded by

proteases secreted by the cells because peptide loss is delayed in

freshly replaced cell culture medium and addition of protease

inhibitors blocks its degradation in conditioned medium. Degra-

dation by proteases may also contribute to TNYL-RAW loss in

vivo, as suggested by the rapid loss of the peptide incubated in

mouse serum ex vivo [43,50]. The biodistribution data reported for

TNYL-RAW coupled to 64Cu-DOTA or polymeric micellar

nanoparticles suggest that uptake by the spleen and liver and

Figure 3. Modified forms of TNYL-RAW have increased stability in cell culture medium and in the mouse circulation. (A, B)
Biotinylated, streptavidin-bound, fused to Fc and PEGylated TNYL-RAW were incubated in medium conditioned by PC3 prostate cancer cells (A) or
mouse serum (B). Functional peptide remaining at the indicated times was captured in ELISA plates and quantified. Biotinylated TNYL-RAW was
captured on ELISA wells pre-coated with EphB4 Fc and detected with Streptavidin-HRP. TNYL-RAW-streptavidin was captured on wells pre-coated
with EphB4 Fc and detected with an anti-streptavidin antibody coupled to HRP. TNYL-RAW-Fc was captured on wells coated with an anti-Fc antibody
and detected with EphB4 AP. PEG-TNYL-RAW was captured on wells coated with EphB4 Fc and detected with anti-PEG antibody followed by a
secondary antibody conjugated to HRP. Normalized averages from 6–9 measurements 6 SE are shown. Peptide amounts at different time points
were compared to those at time 0 by one-way ANOVA and Dunnett’s post test. *P,0.05, **P,0.001 and ***P,0.001. (C) Blood from mice injected
intravenously (IV) or intraperitoneally (IP) with 2.1 nmoles TNYL-RAW-Fc, 1.5 nmoles TNYL-RAW-streptavidin or 6 nmoles of PEG-TNYL-RAW was
collected and peptide levels in the serum were measured in ELISA assays as described in (A). Peptide concentrations in serum were calculated based
on a standard curve generated using serum containing known TNYL-RAW concentrations. Areas under the curve (AUC) values were calculated as
described in the Materials and Methods. Averages from blood collected from 3 mice 6 SE are shown.
doi:10.1371/journal.pone.0028611.g003
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Figure 4. PEGylated TNYL-RAW inhibits tyrosine phosphorylation of EphB4 and ephrin-B2. (A) B16 melanoma cells pretreated with the
indicated concentrations of PEG-TNYL-RAW or TNYL-RAW for 15 min or 24 hours were stimulated with 1.5 mg/ml preclustered ephrin-B2 Fc (+) or Fc
as a control (2) for 20 min in the continued presence of the peptide. EphB4 immunoprecipitates were probed with anti-phosphotyrosine antibody
(PTyr) and reprobed for EphB4. (B) The inhibition curve shows the relative levels of EphB4 phosphorylation in the presence of different concentrations
of PEG-TNYL-RAW, which were quantified from immunoblots and normalized to the amount of immunoprecipitated EphB4. Error bars represent the
standard error from 3–6 experiments. (C) HUVEC and EMC lysates were probed for EphB4, ephrin-B2 (band at ,45 Kd detected with a pan-ephrin-B
antibody) and ß-actin as a loading control. It is not known why the ephrin-B2 band appears as a more prominent doublet in EMCs than HUVECs. (D)
HUVECs and EMCs were cultured individually or mixed at a 1:1 ratio in the presence of 1.5 mM PEG-TNYL-RAW or PEG control. EphB4
immunoprecipitates were probed with an anti-phosphotyrosine antibody (PTyr) and reprobed for EphB4. (E) HUVECs and EMCs, which express EGFP,
were cultured at a 1:1 ratio for 15 hours in the presence of 1.5 mM PEG-TNYL-RAW or PEG control. The cells were then stimulated with 1.5 mg/ml
preclustered EphB4 Fc or Fc as a control for 20 min in the continued presence of the peptide or PEG. The cells were stained for phospho-ephrin-B
(red), which likely corresponds to the phosphorylated form of the EphB4 preferred ligand ephrin-B2, and nuclei were labeled with DAPI (blue). Scale
bar = 50 mM. Fluorescence intensity from 6 micrographs per condition was quantified. The values obtained (expressed in arbitrary units 6 standard
error) are: PEG & Fc, 2462.6; PEG & EphB4 Fc, 4463.6; PEG-TNYL-RAW & EphB4 Fc, 2062.5. The fluorescence of cells treated with PEG-TNYL-RAW &
EphB4 Fc was significantly (P,0.001) different from that of cells treated with PEG & EphB4 Fc, but not from that of cells treated with PEG & Fc, by one-
way ANOVA and Bonferroni’s post test.
doi:10.1371/journal.pone.0028611.g004
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escretion through the kidneys also contribute to peptide loss from

the blood circulation [34,49].

Despite the low nanomolar EphB4 binding affinity of TNYL-

RAW, the very short half-life of the peptide greatly limits its

effectiveness, as exemplified by the high concentrations (10–

100 mM) needed to inhibit EphB4-ephrin-B2 interaction in cell

culture [21,33,36,37]. We used three strategies to improve TNYL-

RAW stability in cell culture and circulating half-life: fusion with

Fc, complexation with streptavidin and covalent coupling to

40 KDa polymeric PEG molecules. Fusion with Fc has been

successfully used to improve the stability and pharmacokinetic

properties of numerous proteins and peptides, and a number of

drugs approved for human use contain an Fc moiety [39,40,51].

Streptavidin has been used in preclinical and human clinical

studies as part of tumor-targeting delivery systems, however it

cannot be administered multiple times because of its high

Figure 5. PEGylated TNYL-RAW inhibits capillary-like tube formation in co-cultured HUVECs and EMCs. EMCs expressing EGFP and
cultured in DMEM or complete Medium 200 and HUVECs labeled with CellTrackerTM Orange were plated on Matrigel individually or mixed at a 1:2
ratio and imaged 5 and 20 hours later. The effect of 5 mM PEG-TNYL-RAW or an equal amount of PEG control on tube formation was analyzed. The
histogram shows average tube lengths quantified from 2–3 micrographs at 5 hours for EMCs and 20 hours for HUVECs and HUVEC + EMC co-cultures
and normalized to the average for the PEG control. Error bars represent the standard error from tube length measured from 3–4 wells. Tube length in
the presence of PEG-TNYL-RAW was compared to that in the presence of PEG by one-way ANOVA and Bonferroni’s post test. ***P,0.001. PEG-TNYL-
RAW showed a trend towards decreasing tube formation in EMCs grown in Medium 200, which however did not reach significance (P = 0.11 by t-test).
Scale bar = 250 mM.
doi:10.1371/journal.pone.0028611.g005
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immunogenicity [41]. Nevertheless, complexation with streptavi-

din is the most straightforward method to increase the half-life of

biotinylated TNYL-RAW and could be used to improve the

stability of the peptide for use in cell and organotypic culture

systems. It should be noted that although TNYL-RAW-Fc is

dimeric and TNYL-RAW-streptavidin is tetrameric, these forms

of the peptide remain unable to detectably activate EphB4 and

therefore retain the antagonistic function of the monomeric

peptide (unpublished data).

Covalent attachment of molecules to PEG, such as 40 KDa

branched PEG, is a widely used approach to improve water

solubility, shield from proteolytic enzymes, prevent loss through

kidney filtration and uptake by the reticuloendothelial system as

well as reduce immunogenicity [40,52,53,54,55,56]. Therefore,

PEGylation greatly prolongs in vivo circulating half-lives of peptides

and proteins and enhances their therapeutic potential without

toxic effects. Indeed, a number of drugs being evaluated in clinical

trials or already approved for human use are PEGylated

[52,57,58].

All three modified forms of TNYL-RAW retain similar high

EphB4 binding affinity and inhibitory ability as the non-modified

peptide, but have a much increased half-life. The modifications

greatly improve the resistance of TNYL-RAW to cell-derived

proteases, with essentially no degradation observed for up to two

days in PC3 cell-conditioned culture medium. Although the three

modifications also all increase TNYL-RAW half-life in the mouse

Figure 6. PEGylation increases the effectiveness of the TNYL-RAW peptide in inhibiting capillary-like tube formation by co-coltured
HUVECs and EMCs. HUVECs labeled with CellTrackerTM Orange and EMCs expressing EGFP were plated on Matrigel in complete Medium 200 at a
2:1 ratio and imaged 15 hours later. The effect of different concentrations of PEG-TNYL-RAW or TNYL-RAW on tube formation was analyzed. The
histograms show the average tube lengths for the different peptide treatments normalized to the average for the PEG or DMSO controls. Error bars
represent the standard error from 3–4 wells. Tube lengths for PEG-TNYL-RAW or TNYL-RAW were compared to the PEG or DMSO control by one-way
ANOVA and Dunnett’s post test. **P,0.001; ***P,0.001. TNYL-RAW at 20 mM showed a trend towards decreasing tube formation, which however did
not reach significance (P = 0.40 by t-test). Scale bar = 250 mM.
doi:10.1371/journal.pone.0028611.g006

Figure 7. PEGylated TNYL-RAW inhibits capillary sprouting in co-coltured HUVECs and EMCs. Collagen embedded spheroids generated
with HUVECs expressing mCherry, EMCs expressing EGFP or a 1:1 mixture of the two cell types were treated with 5 mM PEG-TNYL-RAW or PEG for 2
days. The number of sprouts and the cumulative sprout length in the HUVE + EMC spheroids were normalized to the average for the PEG control. The
histogram shows averages from 40–45 spheroids 6 SE. The values obtained for spheroids treated with PEG-TNYL-RAW were compared to those with
PEG control by one-way ANOVA. ***P,0.001. Scale bar = 250 mM.
doi:10.1371/journal.pone.0028611.g007
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circulation, PEGylation has the most dramatic effect resulting in a

circulating half-life of ,11 hours and a 10 fold higher systemic

exposure than the other two modified forms of TNYL-RAW.

Furthermore, peptide loss appears to slow down at later times, and

,20% of the PEGylated TNYL-RAW is still present in the mouse

blood 24 hours after intravenous or intraperitoneal administra-

tion.

Conjugation of TNYL-RAW to PEG-coated micellar nanopar-

ticles has also been recently shown to increase the half-life of the

peptide in the mouse blood circulation to ,2 hours [49]. Such

nanoparticles, filled with an infrared fluorescent dye and labeled

with Indium-111, were successfully used to visualize EphB4-

expressing prostate xenograft tumors in mice by both optical

imaging and single photon emission computed tomography

(SPECT). TNYL-RAW coupled to the chelating agent DOTA

in complex with Copper-64 (64Cu-DOTA-TNYL-RAW) has also

been recently used to image EphB4-expressing tumors using small-

animal positron emission tomography (PET) [34]. Although the

circulating half-life of 64Cu-DOTA-TNYL-RAW is much shorter

than that of the peptide attached to the nanoparticles [49], it is still

sufficient for tumor imaging, perhaps because the N-terminal

DOTA chelating group provides some protection from the

aminopeptidases present in the blood [50]. These studies support

the effectiveness of TNYL-RAW for non-invasive imaging of

EphB4-expressing tumors, which could be useful for cancer

diagnosis and to monitor the effects of anti-cancer therapies.

PEGylated TNYL-RAW inhibits EphB4 phosphorylation in

melanoma cells stimulated with ephrin-B2 even 24 hours after its

addition to cell culture medium, whereas the less stable

unmodified TNYL-RAW is ineffective after prolonged incubation

in cell culture medium. The PEGylated peptide also inhibits

tyrosine phosphorylation of EphB4 and ephrin-B2 in co-cultured

EMCs and HUVECs after a 15 hour incubation in the culture

medium. Furthermore, consistent with increased stability, PEG-

TNYL-RAW significantly inhibits endothelial-mural cell assembly

into capillary-like tubes at a concentration of less than 1 mM,

whereas unmodified TNYL-RAW does not have a significant

effect even at a concentration of 20 mM. Interestingly, even at a

concentration of 5 mM PEG-TNYL-RAW does not significantly

affect capillary-like tube formation in HUVECs or EMCs cultured

separately. These findings suggest that while inhibition of EphB4-

ephrin-B2 interaction is sufficient to disrupt the assembly of

endothelial with perivascular mesenchymal cells under the

conditions of our experiments, other Eph receptors may play a

more important role in tube formation by HUVECs and EMCs

cultured separately [21,24,59]. For example, HUVECs express

EphB2 [36], another Eph receptor that can stimulate ephrin-B2

reverse signaling and that is not targeted by the TNYL-RAW

peptide [33]. In addition, EphA2-ephrin-A1 interaction has been

shown to play a critical role in the assembly of HUVECs into tubes

[59].

The interaction between EphB4 and ephrin-B2 expressed in

endothelial and mural cells also appears to play a critical role in

capillary sprouting under the conditions of our experiments, as

suggested by the observation that in the absence of exogenously

added proangiogenic factors HUVECs and EMCs embedded as

spheroids in collagen generate capillary sprouts only when the two

cell types are cultured together, an effect that is blocked by the

addition of PEG-TNYL-RAW. Interestingly, the sprouts appear to

mostly contain EMCs, consistent with reports showing that

pericytes in some cases precede endothelial cells in the formation

of capillary sprouts [60,61,62].

These results imply that the PEGylated form of TNYL-RAW

could be used to interfere with tumor angiogenesis and other forms

of pathological angiogenesis. The ability of PEG-TNYL-RAW to

disrupt the coordinated interplay of endothelial and perivascular

mesenchymal cells suggests that this peptide could be used to: (1)

enhance the effectiveness of anti-angiogenic cancer treatments

targeting vascular endothelial growth factor (VEGF) or VEGF

receptor, which preferentially affect smaller blood vessels lacking a

perivascular cell component and (2) disrupt the remodeled blood

vessels of tumors that have recurred after anti-VEGF treatments,

which are typically stabilized by perivascular mesenchymal cells

[63,64,65,66]. Interestingly, elevated levels of ephrin-B2 have been

reported in the remodeled blood vessels of tumors that recur after

anti-angiogenic treatments [65] and the soluble extracellular

domain of EphB4 has been shown to disrupt tumor endothelial cell

coverage by mural cells in vivo [30,31]. Inhibition of EphB4-

ephrin-B2 interaction by PEG-TNYL-RAW could also be useful

to inhibit the growth of cancer cells in which EphB4-ephrin-B2

interaction promotes tumorigenesis, such as melanoma cells

[9,10,11].

Importantly, TNYL-RAW also represents a powerful tool to

investigate the role of EphB4-ephrin-B2 interaction in pathological

and physiological processes, given its selectivity for EphB4. For

instance, TNYL-RAW has been recently used to demonstrate that

ephrin-B2 has effects in endothelial cells that are independent of

interaction with EphB4 [37] and that EphB4 has effects in breast

cancer cells that are independent of interaction with ephrin-B2

[67]. For all these applications, using a form of the peptide with

improved stability, such as PEG-TNYL-RAW, will represent an

advantage by enabling long-term EphB4 inhibition in cell culture

as well as in vivo studies, and the use of substantially lower

amounts of the peptide.

Materials and Methods

Synthesis of TNYL-RAW and biotinylated TNYL-RAW
TNYL-RAW was synthesized by using solid phase Fmoc [N-(9-

fluorenyl)methoxycarbonyl] chemistry on a 433A peptide synthe-

sizer (Applied Biosystems, Foster City, CA) with a Tenta Gel S

RAM resin, as described previously for other peptides [68]. Biotin

was conjugated onto the e–amino group of a Lys attached at the C

terminus of TNYL-RAW through an aminohexanoic acid linker.

The crude peptide was purified to ,95% final purity. Alterna-

tively, TNYL-RAW at ,90% purity was obtained from Anaspec

(Fremont, CA).

Preparation of TNYL-RAW-Fc, TNYL-RAW-streptavidin and
PEG-TNYL-RAW

TNYL-RAW fused with human Fc (TNYL-RAW-Fc) was

produced by cloning a cDNA encoding the TNYL-RAW peptide

into a pcDNA3-based vector preceded by a signal peptide

sequence for secretion into the medium and followed by sequences

encoding a GSGSK linker and human Fc [69]. The TNYL-RAW-

Fc plasmid was used to transiently transfect human embryonic

kidney (HEK) 293 cells, which were expanded in DMEM with

10% fetal bovine serum (FBS) (Hyclone, Logan, UT), and then

grown for 4 days in serum-free low IgG Opti-MEM (Life

Technologies/Invitrogen). TNYL-RAW-Fc was purified from

the cell culture medium using protein A-coupled to sepharose

beads (GE Healthcare, UK).

TNYL-RAW in complex with streptavidin (TNYL-RAW-

streptavidin) was obtained by incubating biotinylated TNYL-

RAW and streptavidin (Pierce Biotechnology, Rockford, IL) at a

molar ratio of 4:1 for 30 min at 4uC in phosphate buffered saline

(PBS).
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PEGylated TNYL-RAW (PEG-TNYL-RAW) was generated by

incubating TNYL-RAW (200–500 mM) with branched 40 KDa

PEG-succinimidyl-glutarate molecules (NHS-glutaryl PEG, NOF

Corporation, Tokyo, Japan) at a 1:2 or 1:3 molar ratio in PBS for

30 min at room temperature followed by 5 hours at 4uC. The

PEGylated peptide was then dialyzed for 1.5 days at 4uC against

PBS using 5,000 MWCO microdialysis units (Pierce Biotechnol-

ogy, Rockford, IL) in order to remove peptide that may have

remained uncoupled. However, the concentration of PEG-TNYL-

RAW after dialysis was estimated assuming that essentially all the

peptide was coupled to PEG. A solution containing NHS-glutaryl

PEG that underwent all the steps described above but without the

addition of TNYL-RAW was used as control in cell-based

experiments.

Preparation of EphB4 AP and ephrin-B2 AP
Alkaline phosphatase (AP) fusion proteins were produced by

transiently transfecting the mouse EphB4 AP [70] or mouse

ephrin-B2 AP plasmids (GeneHunter, Nashville, TN) in HEK

293T cells and growing the cells in serum-free Opti-MEM

medium for 2–4 days. If necessary, the culture medium containing

the secreted AP protein was concentrated by centrifugation in

Amicon 30,000 MW cutoff filters (Millipore, Inc., Temecula, CA).

EphB4 and ephrin-B2 AP concentrations were calculated from

alkaline phosphatase activity [71].

Measurements of TNYL-RAW binding affinity
The EphB4 binding affinity of the different forms of TNYL-

RAW was measured in ELISA assays. Different concentrations of

biotinylated TNYL-RAW and TNYL-RAW-streptavidin were

incubated in TBST buffer (150 mM NaCl, 50 mM Tris-HCl,

pH 7.5 with 0.01% Tween 20) in protein A-coated wells (Pierce

Biotechnology, Rockford, IL) in which EphB4 Fc (1 mg/ml in

TBST; R&D Systems, Minneapolis, MN) had been immobilized.

Bound biotinylated TNYL-RAW was detected with horseradish

peroxidase (HRP)-conjugated streptavidin (1:2,000 dilution in

TBST, Pierce Biotechnology, Rockford, IL) and bound TNYL-

RAW-streptavidin was detected with an anti-streptavidin antibody

coupled with HRP (1:1,000 dilution in TBST, Life Technologies-

Invitrogen). Absorbance at 405 nm was measured following

incubation with 0.2 mg/ml 2,29-azino-bis(3-ethylbenzthiazoline-

6-sulfonic acid) (ABTS) (Sigma-Aldrich, Steinheim, Germany) in

citric acid as a substrate for HRP, and the absorbance in wells

without peptide was subtracted as background.

Binding of PEG-TNWL-RAW to EphB4 was measured using a

similar ELISA assay, except that Ni-NTA-coated wells (Qiagen,

Valencia, CA) were used to immobilize EphB4 Fc (which also

contains an hexa-histidine tag). The bound PEG-TNYL-RAW

was detected using 2 mg/ml AGP3 anti-PEG antibody (Academia

Sinica, Taiwan) in TBST followed by a secondary anti-mouse

IgM-HRP antibody (1:1,000 dilution in TBST, Morphosys,

Munich, Germany). Biotinylated PEG-TNYL-RAW could not

be detected using streptavidin-HRP, presumably because the

bulky PEG interferes with the binding of streptavidin to the C-

terminal biotin tag on the peptide. The absorbance from wells

without peptide was subtracted as background.

To compare the binding affinities of biotinylated TNYL-RAW

and TNYL-RAW Fc, polystyrene high binding capacity plates

(Corning, Corning, NY) were coated overnight with either 2 mg/

ml streptavidin (Pierce Biotechnology, Rockford, IL) or 10 mg/ml

anti-Fc antibody (Jackson laboratory, Sacramento, CA) diluted in

borate buffer (0.1 M boric acid, 0.1 M Na borate, pH 8.7) to

capture biotinylated TNYL-RAW and TNYL-RAW-Fc, respec-

tively. After blocking with 5 mg/ml bovine serum albumin in PBS,

different amounts of EphB4 AP in cell culture medium diluted in

TBST were added to the wells for 3 hours. Bound EphB4 AP was

detected by adding 1 mg/ml pnitrophenylphosphate (pNPP;

Pierce Biotechnology, Rockford, IL) in SEAP buffer (105 mM

diethanolamine, 0.5 mM MgC12, pH 9.8) as a substrate and

measuring the absorbance at 405 nm. The absorbance from wells

where no EphB4 AP was added was subtracted as the background.

All binding curves were analyzed using non-linear regression and

the program Prism (GraphPad Software Inc.).

Inhibition of EphB4-ephrin-B2 binding
EphB4 Fc (1 mg/ml in TBST) was immobilized in protein A-

coated plates and incubated for 3 hours with 0.02 nM ephrin-B2

AP in culture medium diluted in TBST in the presence of different

concentrations of TNYL-RAW, TNYL-RAW-Fc, TNYL-RAW-

streptavidin and PEG-TNYL-RAW. Bound ephrin-B2 AP was

quantified by adding pNPP as the substrate and measuring the

absorbance at 405 nm. Alkaline phosphatase activity from wells

where human Fc (R&D Systems, Minneapolis, MN) was added

instead of EphB4 Fc was subtracted as the background. The

binding curves were analyzed using non linear regression and the

program Prism (GraphPad Software Inc.).

Measurement of TNYL-RAW stability in cell culture
medium

PC3 prostate cancer cells were grown in RPMI 1640 medium

(Mediatech, Inc, Herndon, VA) with 10% fetal bovine serum (FBS)

(Hyclone, Logan, UT), penicillin and streptomycin. B16-F10-luc-

G5 melanoma cells (Caliper Life Sciences, Hopkinton, MA) were

grown in Eagle’s MEM with Earle’s Balanced Salts (EBSS)

(Hyclone, Logan, UT) supplemented with 10% FBS, non essential

amino acids (Hyclone, Logan, UT), L-glutamine, sodium pyruvate

(Hyclone, Logan, UT), MEM vitamin solution (Life Technologies-

Invitrogen), penicillin and streptomycin (Omega Scientific, Tar-

zana, CA). HUVECs (Cascade Biologics, Portland, OG) were

grown in Medium 200 supplemented with low serum growth

supplements (Cascade Biologics), 10% FBS, penicillin and strepto-

mycin, and fungizone (Omega Scientific, Tarzana, CA). Rat EMCs

were grown in DMEM (Mediatech, Inc, Herndon, VA) supple-

mented with 10% FBS, penicillin and streptomycin. The different

modified forms of TNYL-RAW at a concentration of 25 nM were

added to fresh medium or culture medium conditioned by the cells

for 1–4 days. The culture medium was collected after different time

periods and diluted 1:10 in ELISA wells. The amount of intact

TNYL-RAW peptide remaining was measured by using the ELISA

assays described above for measurement of binding affinity. In some

experiments, the peptide was incubated at 37uC with PC3 cell

conditioned medium collected from the cells in the absence or in the

presence of protease inhibitors (10 mg/ml aprotinin, 5 mg/ml

pepstatin, 10 mg/ml leupeptin and 0.75 mM or phenylmethylsulfo-

nylfluoride (PMSF)).

Peptide retention in mouse blood
2.1 nmoles TNYL-RAW-Fc, 1.5 nmoles TNYL-RAW-strepta-

vidin and 6 nmoles PEG-TNYL-RAW, diluted in 150 ml sterile

PBS, were administered to C57BL/6 mice by intravenous or

intraperitoneal injection. Blood was collected from each mouse

from the orbital sinus at two time points after injection and by

cardiac puncture under Avertin anesthesia at a third time point.

These experiments were carried out in accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use
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Committee of the Sanford-Burnham Medical Research Institute

(Animal Assurance Number: A-3053-1). After collection, the blood

was clotted fibrinogen, and the serum was stored at 220uC. The

different forms of TNYL-RAW in the serum were detected by

using the same ELISA assays described above for measurements of

binding affinity. The absorbance from wells incubated with mouse

serum without TNYL-RAW was subtracted as the background

and the concentration of TNYL-RAW in the blood was calculated

based on a standard curve generated using serum containing

known TNYL-RAW concentrations. The half-life of each peptide

was estimated by using non linear regression and the program

Prism (GraphPad Software Inc.). The area under the curve (AUC)

was expressed as % IDNhours/ml (where ID is the initial dose of

peptide injected) and calculated by dividing the AUC value

obtained using the program Prism by the amount of injected

peptide and multiplying by 100.

Capillary-like tube formation assays
An EMC clone expressing EGFP was generated by transducing

EMCs (a kind gift from H. Eid) with a lentiviral construct followed

by clonal selection [46]. To generate capillary-like tubes,

HUVECs (2.86104), EMCs (7.56104) or a mixture of the two

cell types (2.86104 HUVECs and 1.46104 EMCs) were grown for

5 to 20 hours in 24-well tissue culture plates (Corning, Corning,

NY) precoated with 80 ml Matrigel (BD Bioscience, San Jose, CA)

in Medium 200 or DMEM complete culture medium containing

PEG-TNYL-RAW or PEG control. In some experiments, mixed

cultures were treated with TNYL-RAW or DMSO control. The

cells were then fixed for 15 min in 4% formaldehyde in PBS and

photographed under a fluorescence microscope. Tube length was

quantified using ImageJ software.

Immunofluorescence
HUVECs, EMCs or a 2:1 mixtures of the two cell types were

cultured for 15 hours on untreated or Matrigel-coated glass coverslips

and stained with an anti-smooth muscle actin antibody (Sigma-

Aldrich, Steinheim, Germany), followed by a secondary anti-mouse

antibody conjugated with Alexa Fluor 568 (Life Technologies/

Invitrogen). To assess the effect of PEG-TNYL-RAW on ephrin-B2

phosphorylation, HUVECs and EMCs were plated at a 1:1 ratio on

glass coverslips in complete Medium 200 in the presence of PEG-

TNYL-RAW or PEG control. After 15 hours, the cells were

stimulated with 1.5 mg/ml EphB4 Fc or Fc control, which had been

preclustered with a 3 fold excess of an anti-Fc antibody for 20 min in

the continued presence of the peptide. The cells were then fixed for

15 min in 4% formaldehyde in PBS, permeabilized for 3 min in

0.5% Triton X-100 in TBS, and stained with anti phospho-ephrin-B

(Tyr324/329) antibody (Cell Signalling, Danvers, MA) followed by a

secondary anti-rabbit antibody conjugated with Alexa Fluor 568.

Nuclei were labeled with 49,6-diamidino-2-phenylindole (DAPI) and

the cells were photographed under a fluorescence microscope. To

quantify the amount of phosphorylated ephrin-B2, total fluorescence

intensity from 6 representative micrographs was measured using

Metamorph software (Molecular Devices) and normalized to the

number of cells in each micrograph.

Capillary sprouting assay
Spheroids were generated by seeding 750 HUVECs transduced

with a lentiviral vector encoding mCherry (GeneCopoeia, Rock-

ville, MD), EMCs expressing EGFP or a 1:1 mixture of the two cell

types in 20 ml of complete Medium 200 in non-adherent round

bottom 96 well plates (Corning, Corning, NY). The plates were

centrifuged at 160 g for 25 sec and placed in a 5% CO2 cell culture

incubator at 37uC. After 24 hours, PEG-TNYL-RAW or control

PEG were added in 5 ml FBS and the spheroids were embedded in

collagen by adding to each well 20 ml of 2 mg/ml neutralized rat tail

collagen according to a published protocol [72]. After allowing the

collagen to polymerize for 1 hour at 37uC, complete medium

without added angiogenic factors and containing PEG-TNYL-

RAW or PEG was added on top of the collagen. The embedded

spheroids were kept for 2 days in a 5% CO2 cell culture incubator at

37uC and photographed under a fluorescence microscope. The

number and total length of capillary sprouts originating from each

spheroid was quantified using ImageJ software.

Immunoprecipitation and immunoblotting
B16-F10-luc-G5 melanoma cells, which endogenously express

EphB4, were serum starved for 1–3 hours in Eagle’s MEM/EBSS

containing 0.5% FBS and incubated for 15 min or 24 hours with

different concentrations of PEG-TNYL-RAW. The cells were then

stimulated for 20 min with 1.5 mg/ml ephrin-B2 Fc, which had

been preclustered with a 3 fold excess of an anti-Fc antibody, in

the continued presence of the peptide. HUVECs, EMCs or a 1:1

mixture of the two cell types were plated for 20 hours in complete

medium in the presence of PEG or PEG-TNYL-RAW. Medium

200 was used for HUVECs and HUVECs and EMCs co-cultures,

DMEM was used for EMCs. The cells were lysed in modified

RIPA buffer (1% Triton X-100, 1% Na deoxycholate; 0.1% SDS;

20 mM Tris; 150 mM NaCl; 1 mM EDTA) containing 10 mM

NaF, 1 mM sodium pervanadate and protease inhibitors. Protein

concentrations were measured using the BCA protein assay kit

(Pierce Biotechnology, Rockford, IL). For immunoprecipitations,

cell lysates were incubated with 20 mg of an anti-EphB4 antibody

made to a GST fusion protein of the EphB4 SAM domain and

carboxy-terminal tail [15] immobilized on GammaBind Sepharose

beads (GE Healthcare Life Sciences). Immunoprecipitates and

lysates were probed by immunoblotting with anti-phosphotyrosine

antibody (Millipore, Inc., Temecula, CA), pan-ephrin-B antibody

(Life Technologies/Invitrogen), anti-ß-actin antibody (Sigma-

Aldrich, Steinheim, Germany), and anti-EphB4 antibody.

Supporting Information

Figure S1 The TNYL-RAW peptide is rapidly lost in cell
culture medium from different cell types. Biotinylated

TNYL-RAW was added to cell culture medium collected from

B16 melanoma cells, HUVECs and EMCs after overnight culture.

Functional (EphB4- and streptavidin-binding) peptide remaining

at the indicated times was captured in ELISA plates coated with

EphB4 Fc and detected with streptavidin-HRP.

(TIF)

Figure S2 EMCs express smooth muscle actin. EMCs

expressing EGFP were cultured on coverslips (top panels) or

coverslips coated with Matrigel (bottom panels) and stained for a-

smooth muscle actin and with DAPI to label nuclei. HUVECs

were also stained as a negative control. Scale bars = 100 mM.

(TIF)
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