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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder and the most common form of dementia in 
the elderly. With the average life expectancy on the rise, 
AD is predicted to become a major socioeconomic burden 
in the near future. Extracellular amyloid plaques (APs) 
and intraneuronal neurofibrillary tangles (NFTs) are two 
major hallmark lesions of this fatal pathology [13]. Despite 
the significant advancement in our understanding of the 
mechanisms that contribute to AD progression, the effec-
tive disease-modifying/-ceasing drugs are still missing. In 
search for more optimal treatment avenues, AD research-
ers are increasingly considering combinatory approaches 
and shifting their focus to more fundamental disease-pro-
moting events. To this end, alterations/dysfunctions in the 
endolysosomal–autophagic system are well-recognized 
early neuropathological features of AD, marked by promi-
nent enlargement of endosomal compartments, progressive 
accumulation of autophagic vacuoles (AVs) and lysosomal 
deficits [102]. Lysosomes are major cellular degradative 
organelles, involved in turnover of molecular cargo from 
both autophagic and endocytic pathways, and in AD, dis-
turbed lysosomal degradation is presumed to be of key 
importance in aberrant AV turnover. However, the princi-
pal causes of this dysfunction and the specific contribution 
of endosomal alterations herein are still debated, owing 
to the high complexity and the strong contextual depend-
ence of AD pathogenesis. In this review, we summarize 
some of the findings pertaining to these issues in light of 
our current understanding of AD progression. We highlight 
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the increasing evidence supporting the mutually depend-
ent functioning of autophagy and endolysosomal traffick-
ing regulators, particularly focusing on aspects of possible 
pathogenic importance in AD. Finally, we propose how 
insights from these early disease-promoting mechanisms 
could/should shape the development of novel therapeutic 
strategies toward the more efficient treatments for AD. The 
general modes of action and specific cellular functions of 
numerous autophagy and endolysosomal trafficking regula-
tors are discussed only briefly, as they have already been 
summarized in other excellent reviews [48, 108], including 
some of this cluster (see e.g., Damme et al. [26]). We limit 
our focus to molecules/processes relevant to AD.

Etiology of Alzheimer’s disease

AD pathology is associated with a progressive deterioration 
of memory and other cognitive functions. In most preva-
lent sporadic cases, the disease has a late onset. Here, the 
time between the initiation of cognitive decline and death 
is highly variable, ranging from years to over a decade. The 
main risk factor in AD is age; however, even though one in 
three people older than 85  years will become affected by 
this pathology, the disease itself is not a simple outcome of 
aging. For instance, rare familial AD (FAD) forms have an 
early onset and many additional genetic and environmental 
risk factors influence the more common sporadic AD (SAD) 
pathology [13]. Symptomatic manifestations of AD reflect 
impaired functioning of specific brain areas, where underly-
ing pathogenic processes result in a progressive dysfunction/
degeneration of synapses/neurites and eventual loss of vul-
nerable neurons [13]. Assuming that APs and NFTs are dis-
ease-causing alterations, the majority of the research efforts 
in the AD field initially focused on these lesions, revealing 
that amyloid beta (Aβ) peptide aggregates and hyperphos-
phorylated tau fibrils, respectively, are their prominent con-
stituents [13]. Despite our growing understanding of this 
disease, how exactly these AD hallmarks relate to specific 
pathogenic processes, however, still remains enigmatic.

Aβ: mechanisms of generation and toxicity

Aβ peptides are produced by a consecutive cleavage of 
amyloid precursor protein (APP) by beta-site APP-cleav-
ing enzyme 1 (BACE1, or β-secretase), and γ-secretase, 
a transmembrane protein complex, which in humans con-
sists of anterior pharynx-defective 1 (APH-1A/1B), pre-
senilin enhancer 2 (PEN-2), nicastrin (NCT) and cata-
lytically active presenilin 1 or 2 (PSEN1/2) [28, 138]. 
This dual amyloidogenic scission of APP, which in cells/
neurons competes with the non-amyloidogenic processing 

mechanisms, yields several peptide species of slightly dif-
ferent length, among which the 40 amino acid residues long 
(Aβ40) is the most abundant form [28]. Longer Aβ42/43 
species, however, have a higher propensity to aggregate 
and are therefore considered more neurotoxic [28, 123] 
(Fig. 1a, b). They are believed to be a main driver of neu-
rodegeneration in AD, as many FAD-associated dominant 
mutations in the genes encoding APP and PSENs increase 
their total and/or relative amounts compared to Aβ40 [22, 
28]. While this provides a strong support for the disease-
promoting role of Aβ in context of certain early-onset FAD 
cases, the precise contribution of these peptide entities to 
SAD is still elusive. Also, the primary sites of Aβ toxic 
activity and the contribution of its aggregation status herein 
continue to be debated.

Extracellular vs. intracellular Aβ and its aggregation in the 
pathogenesis of AD

The presumed pathogenicity of extracellular Aβ is based on 
the fact that these aggregation-prone peptides are secreted 
into the external environment where plaques are found 
[133]. In this case, amyloidogenic processing of APP 
would result in Aβ liberation and its consequent spontane-
ous self-aggregation into amyloid forms of higher order, 
including Aβ fibrils, which precipitate in APs. Insoluble 
APs, however, correlate poorly with neuronal loss [45] and 
dementia [5], and nowadays their Aβ oligomeric precursors 
are considered to be more neurotoxic [160]. In AD, these 
soluble Aβ forms associate better with disease severity [88] 
and dementia [87], and display stronger correlation with 
synaptic loss [79]. Here, their excessive binding to synap-
tic membranes/receptors is believed to underlie consequent 
cognitive deficits [94]; however, whether all aspects of 
Aβ toxicity are exclusively mediated via their pathogenic 
influences from the extracellular environment remains an 
intriguing question (Fig. 1b, c).

To this end, in recent years, there is a growing awareness 
that the intraneuronal pool of Aβ as well may be detrimen-
tal in AD. In an APP-based murine AD model, in which 
enhanced oligomerization of Aβ occurs without its fibrilli-
zation, it is noted that the time of initial deterioration of 
synaptic function and memory coincides with intraneuronal 
Aβ accumulation [150]. Also, in 3xTg-AD and arcAβ mice, 
accumulation of intraneuronal Aβ correlates with early cog-
nitive deficits, preceding the appearance of APs [11, 65]. In 
APP(SL)/PS1KI mice, in turn, internal pile up of Aβ, rather 
than its external deposition in APs, associates with neuronal 
loss [23]. In primary neurons and brains of Tg2576-AD 
APP mutant mice as well as in human AD brains, intracel-
lular Aβ42 accumulates and oligomerizes within late endo-
somal multivesicular bodies (MVBs) of neuronal processes 
and synaptic compartments, where its deposition associates 
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with their morphological abnormalization [144]. In line, 
in both AD and Down syndrome patients (that invariably 
develop features of AD neuropathology due to trisomy of 
chromosome 21 and thus an extra APP copy) early rises in 
Aβ coincide with its deposition within abnormally enlarged 
neuronal endosomes [19]. Dystrophic neurites and synaptic 
terminals in AD also prominently accumulate AVs [101], 
which not only can facilitate the Aβ clearance [62], but 
also may be an important source of amyloidogenic activ-
ity [172]. Together, this implies that part of the pathogenic 
mechanisms in AD could also affect the homeostasis of the 
cellular interior, where internalized and/or internally pro-
duced Aβ may be a factor of synapto/neurotoxicity (Fig. 1c).

Endosomal trafficking/sorting regulation 
in amyloidogenesis

Indeed, increasing evidence suggests that in neurons/cells 
amyloidogenic processing of APP preferentially occurs 

internally, e.g., within the biochemically optimal endosomal 
compartments, where specific protein trafficking/sorting 
regulators can impact the Aβ production [113, 125]. In this 
respect, in AD context, the role of retromer and its acces-
sory proteins is becoming prominent. This heteropentameric 
adaptor protein complex, comprising two subcomplexes (the 
VPS35/26/29 trimer and hetero/homodimer of sorting nex-
ins (SNXs)), facilitates protein cargo recognition and trans-
port from endosomes to the trans Golgi network (TGN) or 
plasma membrane [131]. While this is primarily important 
in the maintenance of an active pool of lysosomal hydro-
lase receptors in TGN, retromer-mediated sorting also con-
trols intracellular shuttling of other proteins, including Aβ 
yielding APP and BACE1 [113, 162, 163]. Notably, in AD-
vulnerable entorhinal cortex, the levels of both VPS35 and 
VPS26 are specifically decreased [135]. The importance of 
this AD-related change is underscored by findings demon-
strating that hemizygous deletion of VPS35 in Tg2576 mice 
elevates the hippocampal Aβ levels and exacerbates the AD 

Fig. 1   Amyloidogenic vs. nonamyloidogenic APP processing, Aβ 
aggregation and intracellular vs. extracellular Aβ toxicity. a Non-
amyloidogenic processing of APP (left) requires the dual proteolysis, 
first by members of the ADAM (a disintegrin and metalloprotease 
domain-containing) protein family (mainly, ADAM10 and ADAM17, 
also called α-secretases) followed by γ-secretase, resulting in release 
of soluble sAPPα ectodomain, a non-amyloidogenic p3 fragment 
and APP intracellular domain (AICD). In the amyloidogenic path-
way (right), APP is first cleaved by β-secretase BACE1 releasing 
the sAPPβ ectodomain, followed by γ-secretase processing of the 
remaining β-CTF giving rise to AICD and Aβ peptide species of 
slightly different lengths. b Monomeric Aβ species, particularly Aβ42 
and Aβ43, have a tendency to aggregate and form structures of higher 
order. These include toxic soluble Aβ dimers, trimers, oligomers and 

protofibrils, found both inside and outside of the cells/neurons, as 
well as more inert insoluble amyloid fibrils, which comprise extra-
cellular APs. c In AD, in addition to their direct effects on synaptic 
transmission/integrity via binding to synaptic membranes/receptors, 
toxic Aβ species may also accumulate within dystrophic neurites and 
aberrant synaptic regions in intracellular compartments, including 
late endosomal multivesicular bodies (MVB) and autophagic vacu-
oles (AVs) [144, 172]. Indicated as well is the hypothesized self-pro-
pelling exacerbating influence of excessive Aβ/cholesterol accumula-
tion, disturbed endolysosomal trafficking regulation and/or defective 
turnover of autophagic vacuoles (AV) in this context. All together, 
this could lead to aberrant cellular signaling that in turn may induce 
and propagate excessive tau phosphorylation, accumulation of toxic 
tau species and related synapto/neurotoxic effects
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pathology [162]. There is also strong evidence that APP 
sorting receptor SORLA/LR11/SORL1 (sortilin-related 
receptor), genetically linked to AD, is as well decreased 
and/or dysfunctional in this disorder [163]. SORLA controls 
the intracellular APP trafficking by associating with the ret-
romer and other sorting adaptors [163]. Like in the case of 
VPS35, its deficiency has been implicated in enhanced Aβ 
production and AD pathogenesis [34]. Although there is still 
no clear consensus with respect to how exactly retromer-
mediated intracellular sorting of APP and BACE1 affects 
the Aβ production, a  currently prevailing idea postulates 
that retromer dysfunction may disrupt normal trafficking of 
APP and BACE1, thereby increasing the likelihood of their 
physical co-sequestration in endosomal vesicles, and thus 
promote amyloidogenesis (for a review see [113, 163]). In 
line, other retromer-associated sorting receptors genetically 
linked to increased AD risk, like, e.g., SORCS1, may play a 
similar role [68]. Interestingly, in addition to APP, SORLA 
via its N-terminal VPS10P domain may also directly bind 
Aβ and thus regulate its trafficking to lysosomes for deg-
radation. This function is disturbed by an FAD mutation 
in SORL1, which compromises its interaction with Aβ 
[17]. Endosomal sorting defects related to decreased levels 
of phosphatidylinositol-3-phosphate (PI3P), required for 
proper functioning of retromer and other sorting regulators, 
were recently also associated with AD and shown to under-
lie aberrant amyloidogenic processing [93]. Finally, intra-
cellular sequestration of cholesterol, a relevant risk factor in 
AD [13], can as well promote abnormal endosomal traffick-
ing/activity of amyloidogenic proteins, thus enhancing Aβ 
production [81, 119, 167].

Toxic effects of Aβ on endolysosomal–autophagic system

In addition to being produced within intracellular com-
partments, Aβ can also disturb their normal functioning. 
To this end, recent genome-wide genetic screen in yeast, 
accompanied by congruent findings in nematode gluta-
matergic and rat primary cortical neurons [151], identified 
several endocytic regulators as modifiers of Aβ42 toxic-
ity. This among others included the ortholog of human 
PICALM (phosphatidylinositol binding clathrin assembly 
protein), a regulator of clathrin-mediated endocytic traf-
ficking and one of the most well-established SAD risk 
factors [151]. The importance of endosomally localized 
Aβ indeed cannot be underestimated, because a failure 
in either degrading or secreting it may increase its local 
concentration within these acidic compartments, thus 
facilitating its oligomerization and subsequent pathogenic 
processes [41, 51, 144]. Accordingly, AD-associated APP 
“Arctic” mutation (APParc; E693G) favors the formation of 
soluble Aβ protofibrils as well as the intracellular amyloi-
dogenic APP processing [99, 122]. Pile up of oligomeric 

Aβ42 in endosomes in turn may hamper cholesterol efflux 
from these compartments [91], thus creating a vicious 
cycle of self-propelling endosomal dysfunction and exces-
sive Aβ production (see above and Fig. 1c). Localized to 
endosomes, Aβ42 may also affect their sorting capacity, 
thereby causing degradation and signaling defects [1]. 
Importantly, excessive levels of oligomerized Aβ42 may 
even compromise the physical integrity (impermeability) 
of endolysosomal–autophagic compartments [31, 41, 74, 
144, 155, 169]. For instance, an in vivo overexpression 
of Aβ42 in fruit fly (Drosophila melanogaster) neurons 
causes progressive impairment of their degradative capac-
ity and buildup of increasingly dysfunctional AVs [74]. 
Here, at early stages, AVs are protective and contribute to 
Aβ42 elimination, but as toxic burden increases, impaired 
degradation and leakage of lysosomal proteins from abnor-
mal AVs promote neurodegeneration [74]. Taken together, 
intracellular Aβ accumulation may be both a cause and a 
consequence of an endolysosomal–autophagic dysfunction 
in AD (Figs. 1c, 4).

Molecular origins of NFTs: tau phosphorylation and its 
pathological functions in AD

NFTs are insoluble intraneuronal fibrillary aggregates 
comprised of hyperphosphorylated microtubule-binding 
protein tau, which are readily observed in relation to AD 
and several other neurodegenerative tauopathies [8]. Tau 
protein is primarily found in neurons of the central nervous 
system, where it mainly localizes to axons and to a lesser 
extent neuronal soma and dendrites [12]. Here, tau stabi-
lizes neuronal microtubules and regulates axonal transport 
of molecular cargo between the cell body and the distant 
synapses [32]. In neurons, tau, however, may also act as a 
specialized protein scaffold, thereby taking part in various 
signal transduction cascades [47]. Phosphorylation is one 
of the major posttranslational modifications of tau, which 
contributes to fine-tuning of its physiological functions 
both in development and adulthood [161]. In neurodegen-
erative pathologies, including AD, abnormal tau phospho-
rylation, however, disrupts its normal functioning, result-
ing in its self-aggregation into paired helical filaments that 
form NFTs [2, 8] (Fig. 1c). Notably, while the anatomically 
defined blueprint of NFT spreading is a well-established 
correlate of dementia and AD severity [16], increasing data 
suggest that here prefilamentous tau oligomers may in fact 
be a more relevant contributing factor to early toxicity [95].

Although tau plays an important role in AD pathogen-
esis, no FAD mutations have been found in its MAPT gene, 
arguing against an initial causality for developing AD. 
Familial mutations in tau, however, do exist in a subset of 
frontotemporal lobar degeneration (FTLD) pathologies, 
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called frontotemporal dementia with parkinsonism linked 
to chromosome 17 (FTDP-17). Here, filamentous intraneu-
ronal inclusions of hyperphosphorylated tau found in carri-
ers of these mutations strongly reinforce the importance of 
this protein and its excessive phosphorylation in neurode-
generation in general [18, 165].

Importantly, in AD context, Aβ-mediated neurotoxicity 
seems to require tau [55, 117]. Accordingly, Aβ is able to 
modulate tau phosphorylation and the extent of NFT burden 
[46, 149]. Recent data also show that Aβ-associated clinical 
decline in cognitively normal older individuals occurs only 
in relation to elevated phospho-tau [30]. Therefore, in the 
pathogenic cascade of events leading to tau hyperphospho-
rylation, Aβ likely acts as an upstream modulator.

How abnormal tau phosphorylation contributes to AD 
pathology is nevertheless still enigmatic. On one hand, tau 
deficiency is largely protective against Aβ toxicity, sug-
gesting that in AD tau may gain a toxic function [55, 117]. 
However, in certain contexts, lack of tau may as well be 
detrimental, as shown by crossing Tg2576-AD mice with 
tau−/− animals [27]. While this suggests that loss of func-
tion mechanisms cannot be excluded as potential patho-
genic modality for tau, increasing evidence implies that 
toxic gain of function by this protein may after all be more 
relevant. One of the current hypotheses postulates that in 
AD, tau-related toxicity may result from its mislocalization 
to neuronal soma/dendrites and/or excessive phosphoryla-
tion that would render aberrant interactions with molecules 
with which it either would not normally interact or would 
do so to a lesser extent [47]. Notably, these tau pathogenic 
activities may affect processes in both axonal and den-
dritic compartments. For instance, tau phosphorylation-
dependent retention of the kinesin complex component, 
c-Jun N-terminal kinase-interacting protein 1 (JIP1) in neu-
ronal soma, provides a possible explanation for impaired 
axonal transport in AD [56]. In turn, in the context of den-
dritic roles of tau, its interaction with the Src kinase Fyn 
was shown to be pivotal in Aβ-mediated excitotoxicity via 
a mechanism involving tau-dependent shuttling of Fyn to 
postsynaptic sites [55]. As phosphorylation of tau can pro-
mote its interaction with Fyn [10] as well as its postsyn-
aptic targeting and consequent early synaptic deficits [50], 
abnormal localization, phosphorylation and interactions of 
this protein in dendrites may all be relevant AD promoters 
(Fig. 1c). While the precise spatio-temporal relationship in 
this cascade of pathogenic events in AD is slowly emerg-
ing, the key mechanisms responsible for the aberrant tau 
phosphorylation are still obscure. Based on certain patho-
mechanistic analogies between AD and Niemann–Picks 
disease type-C (NPC), we hypothesize that here deficits 
in endolysosomal–autophagic system may, at least in part, 
underlie the abnormal activity of enzymes controlling the 
extent of tau phosphorylation.

Endolysosomal–autophagic dysfunction and tau 
phosphorylation: lessons from NPC

NPC is an autosomal recessive lysosomal storage disorder, 
caused by mutations in NPC1 or NPC2 genes and charac-
terized by late endosomal/lysosomal accumulation of sev-
eral lipid species, including unesterified cholesterol [156]. 
Interestingly, this fatal neurodegenerative disease displays 
some intriguing parallels to AD with respect to certain 
aspects of cellular pathology. In addition to similar exacer-
bating influence of cholesterol and intracellular Aβ42 depo-
sition in endosomes [58], this also includes pronounced 
endolysosomal–autophagic abnormalities [36, 58, 73] as 
well as aberrant tau phosphorylation [78, 128]. Because 
neither in AD nor NPC tau is mutated, its abnormal phos-
phorylation in the context of these diseases therefore likely 
results from deregulated levels/activity of tau kinases and/
or phosphatases. To this end, it is noteworthy that many of 
these enzymes (reviewed in [82, 83] and summarized in 
Table 1) take part in various cellular signaling cascades, in 
which endosomal membranes play an important regulatory 
function as signaling platforms [90, 108]. Because a simi-
lar role in cellular signaling control has recently also been 
ascribed to certain autophagy regulators and autophago-
somal membranes [84, 85], it seems plausible to assume 
that anomalies in endolysosomal–autophagic system, com-
mon to both NPC and AD, may at least in part explain the 
aberrant activity of enzymes regulating tau phosphoryla-
tion. Notably, abnormal functioning of  the endolysoso-
mal–autophagic system, in addition, may contribute to 
pile up of toxic tau species by hampering their clearance 
(as their turnover relies on autophagy and lysosomal func-
tion) [109]. Accordingly, autophagy deficits have recently 
been directly implicated in tau phosphorylation and related 
neurodegeneration [52]. Moreover, intracellular accumu-
lation of oligomeric Aβ, known to promote endolysoso-
mal–autophagic defects (see above), coincides with early 
rises in abnormal tau phosphorylation in an APP-based 
AD model with endogenous (unmutated) tau, long before 
APs are formed [150]. Overall, this strongly supports the 
pathogenic relevance of disturbed intracellular trafficking/
degradative homeostasis in AD in general and tau pathol-
ogy in particular (Fig. 1c). Additional evidence reinforcing 
this concept comes from studies demonstrating that AD-
related and γ-secretase-associated PSENs, may independ-
ent of their proteolytic function affect the endolysosomal–
autophagic system as well as tau phosphorylation.

γ‑Secretase‑independent function of PSENs  
in the endolysosomal–autophagic system

PSENs are primarily known to be catalytic components of 
the γ-secretase complex that—besides APP—cleaves many 
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other type I transmembrane proteins, thus taking part in a 
wide range of cellular processes [28, 60]. However, other 
functions, distinct from their role in intramembrane prote-
olysis have been attributed to the PSENs as well, including 
cellular signaling, intracellular Ca2+ homeostasis, endolys-
osomal trafficking and autophagy (Fig.  2). Particularly 
interesting seems that, in both in vitro and in vivo settings, 
using various cell types, primary neuronal cultures as well 
as murine brain samples, PSEN deficiency was shown to 
result in endolysosomal–autophagic abnormalities [33, 37, 
69, 97, 164]. For instance, in adult murine brain neurons, 
with both PSEN isoforms genetically ablated, such defects 
occur very early (already at 2–3  months after birth) [69]. 
Around the same time these mice start having synaptic and 
memory deficits, which worsen with age due to progressive 
neurodegenerative alterations, accompanied by aberrant 
tau phosphorylation [127], implying an important role of 

PSENs in all these phenomena. Additional evidence indi-
cates that much like lack of PSENs, also certain of their 
FAD-linked mutations can alter the intracellular signal-
ing, leading to pathological tau phosphorylation [7] and 
in vitro degeneration of primary neurons [6], in a manner 
independent of their catalytic activity [6, 7]. FAD-related 
PSEN mutations also associate with pronounced lysosomal 
neuropathology in AD neurons [20], which based on evi-
dence from FAD patient fibroblasts may compromise their 
degradative function [69]. In line, other studies demon-
strate that some of the PSEN1 FAD mutants, unlike wild-
type human PSEN1 (hPSEN1) and its catalytically inactive 
forms, are unable to fully rescue altered Wnt signaling in 
PSEN-deficient cells [33] or completely alleviate defec-
tive epidermal growth factor receptor (EGFR) turnover in 
lysosomes,  in a similar context [116]. Together, all these 
studies suggest that FAD-associated PSEN mutations, in 
addition to altering the catalytic activity of this protein, 
may also contribute to disease progression via additional 
loss of other functions. As PSEN-dependent endolysoso-
mal–autophagic and signaling phenotypes are even more 
pronounced when PSENs are lacking [33, 69, 116], their 
overall decreased levels, per se, may also be important. In 
support, polymorphisms are found in the PSEN1 promotor 
sequence that repress transcription of PSEN1 and associate 
with both increased risk for AD and elevated total Aβ load 
[146]. Progressive lowering of PSEN1 expression in vitro, 
paralleled by concomitant gradual  increase in Aβ42 levels 
(observed in another study) [115], accordingly reinforces 
the assumption that such mechanisms are possible and 
potentially relevant, also in amyloidogenesis. To this end, 
structural (conformational) changes in PSEN1, similar to 
those observed in some of its FAD mutants, were recently 
shown to occur in relation to SAD and aging, wherein they 
were proposed to underlie pathogenic amyloidogenesis 
[159]. Based on this, it seems tempting to speculate that 
in AD, altered levels, structure and activity of PSEN pro-
teins may all be relevantly important and that their catalytic 
function may work together with γ-secretase-independent 
roles in disease promotion.

One of the first clear indications of a γ-secretase-
independent role of PSEN1 in endolysosomal–autophagic 
system emerged from the identification of its interaction 
with ICAM-5 (also named telencephalin) [3]. This fore-
brain-specific neuronal intercellular cell adhesion molecule 
with an exclusive somatodendritic localization is, despite 
its type I transmembrane topology, not a γ-secretase sub-
strate [37]. Instead, in PSEN1−/− primary hippocampal 
neurons, ICAM-5 accumulates intracellularly in degrada-
tive organelles that are not acidified, but label positively 
for certain autophagic markers [37]. While these accu-
mulations also occur in wild-type (WT) neurons, PSEN1 
deficiency clearly leads to their earlier and more abundant 

Table 1   Protein kinases and phosphatases implicated in regulation of 
tau phosphorylation

Note that the above listed enzymes can affect the extent of tau phos-
phorylation directly and/or indirectly, by regulating the activity and/
or the ability of other kinases/phosphatases to phosphorylate/dephos-
phorylate tau at specific serine, threonine or tyrosine residues (as 
reviewed in [82, 83])

Full name

GSK3 Glycogen synthase kinase-3

CDK5 Cyclin-dependent protein kinase-5

Erk1/2 Extracellular signal-regulated kinase 1/2

JNK1–3 c-Jun N-terminal kinase 1–3

P38 P38 kinase

CK1/2 Casein kinase 1/2

PKA Protein kinase A

CaMKII Calcium- and calmodulin-dependent protein 
kinase-II

TTBK1/2 Tau tubulin kinase 1/2

PKC Protein kinase C

PhK Phosphorylase kinase

PKB (Akt) 1–3 Protein kinase B 1–3

DYRK1A/2 Dual-specificity tyrosine phosphorylation 
and regulated kinase-1A/2

PKN Protein kinase N

MARK 1–4 Microtubule affinity-regulating kinase 1–4

SFK Src family kinases (Src, Lck, Syk, Fyn)

c-Abl c-Abelson kinase

(Arg) kinase Abl-related gene kinase

PP-2A Protein phosphatase 2A

PP-1 Protein phosphatase 1

PP-2B (PP3) Protein phosphatase 2B (calcineurin)

PP5 Protein phosphatase 5

PTEN Phosphatase and tensin homolog deleted on 
chromosome 10
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appearance [37, 111]. Accumulation of similar degradative 
organelles was also noted in another study, where PSEN1 
deficiency in neurons was shown to lead to a pronounced 
α- and β-synuclein intracellular accumulation [164]. Later, 
Lee and co-workers supported these seminal observations 
by identifying extensive accumulations of autophagic com-
partments in PSEN1-deficient cells, as well as in the brains 
of PSEN1 hypomorph or conditional knockout mice [69]. 
Importantly, in addition to extensive accumulation of AVs, 
PSEN-deficient cells were also shown to have significantly 
more late endosomal MVBs [33]. Although all studies 
agree that the observed phenomena relate to an impaired 
turnover of endosomal/autophagic cargo, whether lyso-
somal degradation per se or their fusion capacity is com-
promised, remains debated. To explain these deficits, two 
major hypotheses have been put forth, including defective 
lysosomal acidification and Ca2+ homeostasis (Fig. 3).

Lee et  al. suggested a model whereby PSEN1 defi-
ciency/FAD-related mutations would compromise a pro-
claimed role of endoplasmic reticulum (ER)-localized 
full-length PSEN1 as a critical co-factor of the oligosac-
charyltransferase (OST) complex in N-glycosylation 
of the V0a1 subunit of the vacuolar ATPase (v-ATPase; 
proton pump). Allegedly, this should hamper the target-
ing of V0a1 to lysosomes, thus compromising the proton 
pump function and consequently lysosomal acidification 
and degradation (by impairing the activity of lysosomal 
hydrolases) [69]. In contrast, we as well as others failed to 
reproduce pronounced acidification defects [24, 97, 175], 
related to it disruption of lysosomal proteolysis and cath-
epsin D maturation [24, 175] and, critically important for 
the original hypothesis, defective N-glycosylation of the 
V0a1 subunit in PSEN-deficient cells [24, 175]. Using 

Drosophila melanogaster as a model, we conclusively 
showed that embryonic lethality caused by the lack of the 
V0a1 ortholog v100 could be fully rescued by a glycosyla-
tion-deficient v100 mutant, underscoring that N-glycosyla-
tion is even dispensable for the proper lysosomal target-
ing and function of this proton pump subunit [24]. Overall, 
this raises doubt if defective lysosomal acidification and 
the proposed mechanism, in particular, indeed primarily 
underlie PSEN-related lysosomal deficits. Alternatively, 
we originally demonstrated that lysosomal calcium stor-
age/release, which is as well required for lysosomal func-
tion and fusion, is compromised in PSEN-deficient cells 
and neurons [24]; a finding later confirmed by others [96] 
(Fig. 3).

This phenomenon resembles the situation in NPC cells 
where a significant reduction in lysosomal calcium storage/
release irrespective of acidification defects causes similar 
endolysosomal dysfunction. The initiating factor here is 
an aberrant sphingosine storage that instigates altered cal-
cium homeostasis leading to secondary sphingomyelin and 
cholesterol storage [76]. In line, NPC disease-associated 
endolysosomal dysfunction can be induced by decreas-
ing and rescued by increasing the Ca2+ levels [76]. Res-
cue of Ca2+ defects in PSEN-deficient cells in turn can be 
achieved by catalytically inactive hPSEN1 [24], underscor-
ing a γ-secretase-independent nature of PSEN-mediated 
lysosomal Ca2+ regulation.

Toward identifying the underlying causes of this lyso-
somal dysfunction, our recent omics study performed on 
isolated plasma membranes  (PMs) of PSEN-deficient cells 
already provide first insights. Using a novel isolation pro-
cedure, based on superparamagnetic nanoparticles, we com-
pared the biomolecular composition of pure PMs derived 

Fig. 2   γ-secretase-dependent and -independent functions of prese-
nilins (PSENs). PSEN1 (and likely PSEN2) has nine transmembrane 
domains (TMDs) [139], with two aspartate residues (D257/D385; yel-
low circles) in TMD 6 and 7 forming the catalytic core [138]. Full-
length PSEN1 is endoproteolyzed in early secretory compartments 
resulting in stable PSEN1-NTF and -CTF heterodimers [138]. The 
catalytic role of PSENs, as part of the γ-secretase complex, is asso-

ciated with the processing of around 100 currently known substrates 
[60]. PSENs, however, also have γ-secretase-independent functions, 
including roles in endolysosomal protein/membrane trafficking and 
clearance of autophagic vacuoles [37, 69, 116, 164], intracellular 
Ca2+ homeostasis (ER [98, 153] and lysosomal [24, 96]) and cellular 
signaling [6, 7, 33, 116]
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from PSEN double knockout (PSENdKO) mouse embry-
onic fibroblasts (MEFs) vs. their WT and hPSEN1 rescued 
counterparts [147]. Our experiments revealed a convergent 
prominent surface depletion of cholesterol along with cer-
tain proteins, of which many are constituents of focal adhe-
sion sites, lipid rafts and caveolae (or functionally related 
to them), in PSEN deficient cells  [147]. Several of these 
molecules are also  small GTPases involved in endosomal 
transport regulation [147]. As these PSEN-dependent sur-
face alterations go along with a decrease in focal adhesion 
sites and caveolae, intracellular accumulation of choles-
terol, caveolin-1 and the integrin-interacting CD47 pro-
tein [147, 166], we hypothesize that PSENs may regulate 
selective intracellular trafficking routes. Among the sur-
face-depleted GTPases in PSENdKO MEFs, several play a 
role in endosomal recycling, such as RAB10, RAB11 and 
RAB35. RAB11 is a known interactor of PSENs [35], also 
recently shown to be of potential relevance to AD and amy-
loidogenesis [154]. RAB35, on the other hand, has mutu-
ally antagonizing roles with ADP-ribosylation factor 6 
(ARF6) in endocytosis and endosomal sorting/recycling, 
important in regulation of cellular adhesion, migration, 

phagocytosis, cytokinesis and neurite outgrowth [21]. Inter-
estingly, ARF6 has recently been found to be functionally 
linked as well to both APP processing and PSEN1 interac-
tors. First, we showed that ARF6 plays a role in surface to 
endosome transport of BACE1 via the clathrin-independent 
internalization route, thereby keeping this amyloidogenic 
sheddase spatially separated from APP (the internalization 
of which is primarily clathrin dependent) until they meet 
in early endosomes [126]. Here, affecting ARF6 activity 
or expression inversely impacted on APP processing and 
Aβ production, thereby underscoring the important role of 
sorting/recycling regulation mediated by ARF6 in amyloi-
dogenesis [126]. Second, and related to PSEN1, ARF6 also 
regulates the surface expression and later endosomal rout-
ing of the PSEN1 interactor ICAM-5 (which accumulates 
intracellularly in PSEN1−/− neurons; see above) [37, 111]. 
While the exact role of ARF6 in these PSEN-related traf-
ficking defects remains to be elucidated, it seems interest-
ing that NPC-associated aberrant cholesterol efflux from 
endosomes can be induced by blocking and rescued by 
promoting ARF6-mediated recycling [130]. Aberrant cho-
lesterol efflux in NPC also affects amyloidogenic APP 

Fig. 3   Presenilins (PSENs) and lysosomal degradation. Impaired 
lysosomal degradation observed in PSEN-deficient cells is attributed 
to either a failure in lysosomal acidification (left) or disturbed lysoso-
mal calcium release/storage (right). Left a defect in lysosomal acidi-
fication is here primarily caused by the failure of the V0a1 subunit of 
the V-ATPase (proton pump) to become N-glycosylated, resulting in a 
dysfunctional proton pump, higher pH and decreased lysosomal deg-
radative capacity. This in turn is claimed to underlie the accumulation 
of autophagic vacuoles (AVs) [69]. Alternatively (right), a deficit in 
lysosomal calcium storage/release affects the fusion of degradation-

prone vesicles (late endosomes  (MVBs) and AVs) with lysosomes 
[24, 37], thus compromising their clearance. Here, PSEN-dependent 
lysosomal Ca2+ defects could relate to alterations in endosomal traf-
ficking homeostasis (endosomal recycling and normal endosomal 
maturation), which may lead to a buildup of lipids like cholesterol 
(Chol) and/or mislocalization of relevant transporters and channels, 
all of which could underlie the observed deficits (see the main text for 
clarifications). The middle panel depicts undisturbed fusion/degrada-
tion with/in lysosomes in cells with normal levels of PSENs
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processing by trapping APP and BACE-1 in the same endo-
somal compartments [81], thus further extending parallels 
to ARF6-mediated transport regulation in amyloidogenesis. 
Based on these studies it seems tempting to speculate that a 
defect in selective protein/membrane routing (to recycling 
and/or degradation) may contribute to or even underlie the 
endolysosomal–autophagic dysfunction observed in relation 
to PSEN deficiency and/or different PSEN FAD mutants 
(Fig.  3). As similar deficits are also noted in SAD, analo-
gous pathogenic mechanisms, disturbing specific traffick-
ing/degradative processes, may also operate in late-onset 
AD. Note, however, that depending on the context (FAD vs. 
SAD) the primary pathogenic factors may differ. To provide 
further support for this concept, in the following paragraphs 
we will highlight the known functional links between the 
autophagy and the endolysosomal trafficking regulators, 
which may be of potential pathogenic significance in AD.

(Macro)autophagy, a major neuroprotective stress 
response pathway: functional links with endolysosomal 
trafficking regulators and their potential roles in AD

Aging is still the primary risk factor in AD [13]. Macroau-
tophagy, (hereafter called autophagy) in turn, is one of the 

main quality control systems in cellular homeostasis and 
a major regulator of longevity [157], triggered by various 
stressors, including nutrient scarcity, hypoxia, oxidative 
stress, infection as well as the accumulation of aggregated 
(aggregate-prone proteins) and dysfunctional organelles 
[66]. Autophagy proceeds in a stepwise manner, via the 
initiation, elongation, maturation and degradation phases, 
during which its cytoplasmic targets are first engulfed by 
autophagosomal membranes to eventually become deliv-
ered to lysosomes for degradation (see Damme et al. [26] 
from this cluster of reviews for an updated overview of 
molecular mechanisms of autophagy progression and selec-
tive cargo clearance).

Autophagy-mediated degradation is particularly impor-
tant in neurons because these postmitotic cells are other-
wise unable to dilute accumulating toxic cytoplasmic debris 
and dysfunctional organelles (e.g., mitochondria) through 
subsequent cellular divisions. It is therefore not surpris-
ing that defects in the highly efficient baseline autophagic 
flux, likely at later AV maturation stages, are relevant to AD 
pathogenesis [14] (Fig. 4).

Importantly, studies from the last two decades estab-
lished that undisturbed autophagic flux requires a tight 
cooperation between the endosomal compartments and 
AVs. For instance, before fusing with lysosomes and 

Fig. 4   Stepwise autophagy progression in normal and AD-affected 
neurons. Left different steps in autophagosome formation and 
maturation under normal (physiological) conditions, starting from 
phagophore expansion. Before fusing with lysosomes, double-
membraned autophagosomes can also merge with early  (E.E) and 
late endosomes  (L.E./MVBs) giving rise to amphisomes. Right in 
AD-related processes, normal autophagic flux is compromised. 
This results in a pile up of autophagic vacuoles (autophagosomes, 
amphisomes, autolysosomes) due to disturbed trafficking, fusion with 
and/or degradation processes within dysfunctional lysosomes. These 
changes are particularly pronounced in dystrophic neurites, where 
they likely contribute to synapto-/neurotoxicity (see also Fig.  1c). 
Here, intracellular toxic Aβ species may work together with dys-

functional endosomal sorting/trafficking mechanisms in aggravat-
ing these degradative abnormalities. Inset in the right panel depicts 
this hypothesized self-propelling endosomal dysfunction, while the 
arrows from it point toward the likely sites where consequent distur-
bances in membrane flow “roadblocks” may occur. These pathogenic 
processes may eventually compromise the impermeability of endolys-
osomal compartments. Because autophagy can directly target toxic 
Aβ species [62] as well as injured lysosomes [80], we hypothesize 
that in the AD context both physically injured endosomes/lysosomes 
and toxic Aβ species released into cytosol may become its targets. 
Here, initially autophagy may be protective, but as the disease devel-
ops and the toxic burden exceeds cellular reparative capacity, neu-
ronal death may follow
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forming autolysosomes, autophagosomes can also directly 
fuse with early and/or late endosomes, to form hybrid 
structures named amphisomes [9, 75] (Fig.  4). Moreover, 
successful autophagic degradation not only requires undis-
turbed early and late endosomal sorting/maturation [40, 
114, 121], but autophagosomal biogenesis mechanisms 
also share some regulators with endosomal compartments 
[64, 72] and may even rely on recycling endosomes as a 
source of membranes [110].

Indeed, key endosomal recycling regulators appear to be 
functionally involved at crossing points of these two cel-
lular pathways. For instance Rab11, in addition to facili-
tating  the physical merger of MVBs with autophagosomes 
[39, 143], also functions in early steps of autophagosome 
formation [77]. On the other hand, a recent study revealed 
a novel role for ARF6 in late endosomal maturation (sort-
ing) [44], which, similarly to Rab11, in addition to cellular 
recycling also promotes biogenesis of autophagosomes [59, 
92]. Interestingly, these roles of ARF6 are mediated via its 
downstream effector phospholipase D (PLD) [59, 92], an 
enzyme which as well takes part in the later maturation steps 
of autophagy [25]. Here, PLD seems to operate downstream 
of the class III phosphatidylinositol-3 kinase (hereafter 
referred to as PI3K) [25], a multimeric protein complex and 
a key regulator of both autophagy and endosomal trafficking 
[42, 112]. PI3K drives the phosphorylation of phosphati-
dylinositol (PI) to produce PI3P, a membrane-localized lipid 
species that recruits proteins with specific binding modules 
and distinct regulatory functions in endosomal trafficking/
signaling and/or autophagy [70, 103, 112]. The catalytic 
component of the PI3K was originally identified in yeast 
as a regulator of vesicular protein targeting to the vacuole 
(analogous process to endolysosomal protein trafficking in 
mammals), and named therefore vacuolar protein sorting 34 
(Vps34) [129]. Later studies revealed the human orthologs 
of both Vps34 (PIK3C3) and one of its regulatory subunits 
Vps15 (p150/PIK3R4) [106, 158]. Interestingly, Vps34 may 
affect autophagy at its early, initiating stages, via direct 
involvement in autophagosomal biogenesis, as well as at 
its later maturation steps [42]. Thereby, the cellular activi-
ties of Vps34 resemble the above-mentioned small GTPases 
(Rab11/ARF6); nevertheless, how exactly these proteins are 
functionally related remains to be established. We do how-
ever know that in these dual and converging PI3K activities 
in autophagy, particularly important is the role of several 
proteins associated with beclin 1, which either alone or as 
part of a PI3K/beclin 1 core complex affect these specific 
processes [49]. Beclin 1 is a mammalian ortholog of the 
yeast autophagy-related 6 (Atg6)/Vps30 protein and an 
essential component of the PI3 K complex, important in var-
ious (patho)physiological processes, including neurodegen-
eration [49]. Its functional/physical interactions within the 
PI3K protein complex are of pivotal relevance for cellular 

homeostasis, as they ensure dynamic coordination of spe-
cific endosomal trafficking and autophagy steps at various 
levels [72, 86, 120].

In both yeast and mammals, two distinct mutually exclu-
sive beclin 1 containing PI3K complexes exist. The first 
one contains the yeast Atg14 [mammalian Atg14L (yeast 
Atg14-like)/Beclin 1-associated autophagy-related key 
regulator (Barcor)] protein [53, 63, 140]. Conversely, the 
other complex contains only the Vps38 protein [53, 63], a 
likely functional analog of the mammalian UV irradiation 
resistance-associated gene (UVRAG) [54]. In yeast, Atg14 
and Vps38 complexes have specific subcellular localiza-
tion and distinct functions in early autophagosomal bio-
genesis and protein transport to  the vacuole, respectively 
[63, 104]. While a similar functional specification has been 
implied also for their mammalian counterparts [53, 54, 
148], a recent study demonstrated that here Atg14L as well 
may affect the endocytic trafficking (independently of its 
association with beclin 1), underscoring its more complex 
regulatory functions in higher organisms [64]. This higher 
complexity is further highlighted by the function of another 
PI3K/beclin 1 complex component not present in yeast, 
namely RUN domain and cysteine-rich domain containing 
beclin 1-interacting protein (Rubicon). Rubicon interacts 
with a subpopulation of UVRAG containing PI3K/beclin 
1 complexes [86] and blocks the autophagosomal matura-
tion steps and autophagosomal clearance in lysosomes, 
by directly inhibiting PI3K activity and other mechanisms 
involved in endosomal/autophagosomal maturation [86, 
141, 142]. Taken together, these findings highlight the fact 
that different roles of PI3K/beclin 1 complex may relate to 
specific accessory proteins which at particular subcellular 
sites synchronize the functioning of autophagic and the 
endolysosomal system to ensure undisturbed degradation 
of incoming cargo from both pathways.

PI3K/beclin 1 complex and its relevance in AD

These mechanisms may be of great importance in AD, as 
decreased PI3P, Vps34 and beclin 1 levels have all been 
reported [57, 93, 107]. Importantly, as genetic ablation of 
beclin 1 or Vps34 results in reduced levels of both Atg14L 
and UVRAG [53, 148], these changes in addition to com-
promising autophagy as well may affect endolysosomal 
trafficking [148]. Indeed, the phenotypes of beclin 1- and 
Vps34-deficient mice are more severe (E7.5–8.5; lethal) 
[173, 176] than that of other autophagy-related genes, such 
as Atg3 [136], Atg5 [67] and Atg16L [124] (P1; neonatal 
lethal). This suggests additional, autophagy-independent 
cellular roles of beclin 1 and Vps34, some of which likely 
relate to their endolysosomal trafficking function.

In line, Vps34 deficiency in sensory neurons leads 
to rapid neurodegeneration, primarily resulting from 
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disruption of the endosomal and not the autophagic path-
way [177]. Similarly, Vps34 downregulation in primary 
cortical neurons results in impaired endosomal sorting and 
consequent endosomal swelling [93].

Also in relation to beclin 1, recent studies demon-
strate that this protein may not be exclusively involved in 
autophagy initiation, as originally proposed [174], but as 
well could play a role in endocytic trafficking regulation. 
For instance, beclin 1, Vps34, Vps15 and UVRAG were 
all shown to take part in trafficking of membrane recep-
tors toward lysosomes [148]. Moreover, in C. elegans both 
beclin 1 ortholog (BEC-1) and Vps34 are pivotal in retro-
grade retromer-mediated endocytic sorting toward the TGN 
[118]. Finally, a similar role in endocytic trafficking for 
beclin1 has also been demonstrated in Drosophila [134].

In beclin 1+/− mice also lysosomal abnormalities are 
noted, while their crossing with an APP-based AD mouse 
model results in higher intraneuronal and extraneuronal 
Aβ levels, more profound ultrastructural defects, including 
more severe lysosomal/autophagic abnormalities as well 
as increased neurodegeneration [107]. Beclin 1 overex-
pression in the same AD model reduces intraneuronal Aβ 
and extracellular plaque pathology [107], thus underscor-
ing that turnover and/or excessive production of toxic Aβ 
peptides may rely on beclin 1-mediated functions. To this 
end, in the follow-up study, the authors show that beclin 1 
transient downregulation in parallel to increasing the Aβ 
secretion also causes intracellular accumulation of APP 
and APP-CTFs [57]. Interestingly however, in beclin 1 
silenced cells and in AD brains where beclin 1 and Vps34 
are reduced, higher levels of autophagosomal marker LC3-
II (the lipidated form of the microtubule-associated pro-
tein 1 light chain 3) are also observed [57]. As this indi-
cates boosted (not hampered) autophagy, which would be 
expected should beclin 1 exclusively regulate autophagy 
initiation, to explain their findings Jaeger and colleagues 
proposed that beclin 1 may also regulate later maturation 
steps of autophagy. Here, defective beclin 1-dependent 
clearance of autophagic compartments would explain the 
increased levels of APP metabolites and Aβ. These findings 
are also consistent with a primary defect in the endolyso-
somal trafficking pathway: in the study of Jaeger et  al., 
lowered beclin 1 levels parallel those of Vps34 not only in 
AD, but also in cells where either of these two proteins is 
silenced [57]. This is important, as in AD lowered levels of 
Vps34 and its product PI3P may disturb normal endosomal 
sorting of APP, thus causing its enhanced amyloidogenic 
processing [93]. As decreased PI3P levels also directly 
impact functioning of the endosomal sorting complex 
required for transport (ESCRT) [93], which is pivotal in 
MVB maturation as well as fusion of AVs with the endolys-
osomal system and consequent cargo degradation [121], a 
primary defect in the endolysosomal system provides an 

alternative explanation for the observed effects by Jaeger 
and collaegues [57].

In line, although AVs were implied as an important 
source of amyloidogenic activity in neurons [172], more 
recently Boland et  al. contested this view by showing a 
more likely primary role of the endolysosomal system in 
APP processing [15]. Despite these conceptual dispari-
ties, both studies, however, largely agree with respect to 
the contribution of disturbed lysosomal degradation in 
these phenomena [15, 172]. Accordingly, in TgCRND8 AD 
mice, improved lysosomal degradative function, achieved 
through genetic ablation of endogenous lysosomal cysteine 
protease inhibitor cystatin B, rescues autophagic/lysoso-
mal dysfunction and amyloid pathology, as well as related 
memory and cognitive deficits [170].

Taken together, all these findings further strengthen the 
important role of the endolysosomal system in amyloido-
genesis and balanced autophagic degradation (Fig. 4).

Granulovacuolar degeneration (GVD) bodies: additional 
pathomorphological link between the endolysosomal 
and autophagy dysfunction in AD

Endolysosomal and autophagy dysfunctions in AD may 
also be linked via an underappreciated pathomorphological 
feature of this disease, namely the granulovacuolar degen-
eration (GVD) bodies. These intracellular, double mem-
brane-bound organelles, with electron-dense core granules 
[105], occur in relation to aging and different neurodegen-
erative disorders, but only in AD do these autophagic-like 
structures [43] disseminate in an orderly hierarchical pat-
tern, which correlates with distribution of several disease 
progression markers and the degree of dementia [145].

Interestingly, GVD bodies stain positively for the 
charged multi-vesicular body protein 2B (CHMP2B) [43]. 
This subunit of the ESCRT-III protein complex, involved 
in intraluminal vesicle (ILV) sorting in MVBs, is impor-
tant in successful autophagic degradation, as CHMP2B 
mutations, found in a subset of FTD and amyotrophic later 
sclerosis (ALS) patients, compromise lysosomal degrada-
tion of AV cargo [40]. In line, depletion of other ESCRT 
complex components produces a similar phenotype. Here, 
autophagosomes and amphisomes seem to be normally 
formed; however, ESCRT depletion-related sorting defects 
impair fusion of these AVs with lysosomes and thus deg-
radation in nascent autolysosomes [40]. Based on their 
resemblance to late-stage AVs, CHMP2B-positive GVD 
bodies were also proposed to accumulate due to a failure in 
autolysosome formation [43].

Interestingly, GVD bodies may also link to tau pathol-
ogy. Accordingly, several prominent tau kinases, such 
as casein kinase 1 delta (CK1δ) [61], glycogen syn-
thase kinase-3 beta (GSK3β) [71] and cyclin-dependent 
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protein kinase-5 (CDK5) [100], physically associate with 
GVD  bodies, which appear in correlation with the early 
accumulation of phospho-tau pathology [168]. This pro-
vides additional proof for the concept proposed by us 
that aberrant tau phosphorylation may in fact stem from 
endolysosomal–autophagic deficits and related cellular 
signaling and/or degradative abnormalities (see previously 
and Fig. 1c).

GVD bodies also contain lipid raft marker proteins, such 
as flotillin-1 [100]. In this respect, we reported that  the 
PSEN1-interactor ICAM-5 associates with flotillin-1 both 
at the cell surface and within endosomal compartments 
[111]. Moreover, in “aged” (in vitro) WT primary neu-
rons, ICAM-5 accumulations (similar to those observed in 
younger PSEN1−/− neurons [37]), much like GVD bod-
ies, stain positively for flotillin-1 as well as late endoso-
mal MVBs [111]. These convergent pathomorphological 
and cell biological findings may reflect commonalities in 
endolysosomal dysfunction that occur in relation to aging 
and of relevance to AD. Here, underlying transport jam-
ming and/or delayed cargo degradation potentially relates 
to either declining function (levels) of PSEN1 or another 
relevant trafficking deficit. Taken together, all this further 
strengthens the notion that autophagic and endolysosomal 
trafficking pathways cannot be perceived as autonomous, 
physically separate entities, but rather as two functional 
components of an integrated cellular system, the balance of 
which in AD may become compromised at various levels 
and in relation to many different factors.

Conclusions

We here provide a comprehensive literature overview to 
highlight the important role of endolysosomal trafficking 
as well as autophagy in pathogenic processes underlying 
AD. Overall, the available data strongly argue that in AD, 
defective endosomal sorting/trafficking and lysosomal dys-
function may work together with intracellular (endosomal) 
Aβ accumulation to subsequently affect the late autophagy 
stages, leading to inefficient clearance of AVs and thus 
resulting in their progressive buildup (Fig. 4). This is sup-
ported by the fact that autophagic degradation requires 
undisturbed endolysosomal sorting and that in unrelated 
neurodegenerative diseases, like NPC, similar autophagic 
phenotypes result from primary endolysosomal deficits. 
Following the same analogy to NPC, we also hypothesize 
that in AD these pathogenic mechanisms may as well con-
tribute to abnormal tau phosphorylation and accumulation 
of toxic tau species.

Considering the multistep character of the autophagic 
process and its major reliance on endolysosomal traffick-
ing regulation, therapeutic strategies aiming at promoting 

autophagic activity in AD will most likely have to be com-
bined with treatments which would concomitantly enhance 
the performance of lysosomal degradation to allow effi-
cient turnover of the incoming AVs. Transcription factor 
EB (TFEB) fulfills both of these criteria as it coordinately 
activates lysosomal biogenesis as well as genes required 
for autophagosomal formation [132]. As its efficacy has 
already been demonstrated in several diseases, includ-
ing lysosomal storage disorders [137], Huntington’s dis-
ease (HD) [152] and Parkinson’s disease (PD) [29], it is 
expected that similar benefits may also be achieved in the 
AD context. To this end, a recently published study pro-
vides a first support that TFEB may indeed be beneficial 
in AD and other tauopathies [109]. Another way to tackle 
the disturbed lysosomal function and AV clearance may 
involve pharmacological treatments which would improve 
the catalytic performance of lysosomal enzymes, as implied 
by the study of Yang et  al. [170]. Alternatively, interven-
tions aiming at alleviating the burden to the endolysosomal 
compartments causing their inappropriate functioning as 
well hold some potential. Here, for instance, lowering cho-
lesterol and/or preventing Aβ production/oligomerization 
may all prove beneficial. Indeed, in both NPC and AD, the 
cholesterol-lowering drug 2-hydroxypropyl-beta-cyclodex-
trin (HP-β-cyclodextrin) is emerging as a potentially useful 
pharmacological tool [4, 171]. In light of Aβ in turn, our 
recent work implies that peptides that disrupt the physical 
interaction between the APP and PSEN1 may be useful 
selective inhibitors of Aβ production [38]. Finally, as grow-
ing evidence suggests that restoring proper endosomal traf-
ficking (recycling) may be similarly efficient, development 
of specific pharmacological modulators of these processes 
may constitute another potential strategy. Here, a recently 
developed pharmacological stabilizer of the retromer sort-
ing complex provides a first proof of concept [89]. Indeed, 
given the relatively early character of endolysosomal/
dysfunction in AD, and a major reliance of amyloido-
genic processing on sorting regulators, future therapeutic 
efforts should maybe aim to lengthen the fidelity of endo-
somal transport and degradation, and not only focused on 
majorly targeting the amyloidogenic enzymes, BACE1 and 
γ-secretase complexes.
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